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To my students and the Sage community;
let’s keep exploring together.
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To Everyone

Welcome to Number Theory! This book is an introduction to the theory and
practice of the integers, especially positive integers — the numbers. We focus on
connecting it to many areas of mathematics and dynamic, computer-assisted
interaction. Let’s explore!

Carl Friedrich Gauss, a great mathematician of the nineteenth century, is
said to have quipped ' that if mathematics is the queen of the sciences, then
number theory is the queen of mathematics (hence the title of [E.5.4]). If you
don’t yet know why that might be the case, you are in for a treat.

Number theory was (and is still occasionally) called ‘the higher arithmetic’,
and that is truly where it starts. Even a small child understands that there is
something interesting about adding numbers, and whether there is a biggest
number, or how to put together fact families. Well before middle school many
children will notice that some numbers don’t show up in their multiplication
tables much, or learn about factors and divisors. One need look no further
than the excellent picture book You Can Count on Monsters [E.6.1] by Richard
Evans Schwartz to see how compelling this can be.

Later on, perfect squares, basic geometric constructs, and even logarithms
all can be considered part of arithmetic. Modern number theory is, at its
heart, just the process of asking these same questions in more and more general
situations, and more and more interesting situations.

They are situations with amazing depth. A sampling:

e The question of what integers are possible areas of a right triangle seems
very simple. Who could have guessed it would lead to fundamental ad-
vances in computer representation of elliptic curves?

e There seems to be no nice formula for prime numbers, else we would have
learned it in middle school. Yet who would have foreseen they are so very
regular on average?

o Taking powers of whole numbers and remainders while dividing are el-
ementary and tedious operations. So why should taking remainders of
tons of powers of whole numbers make online purchases more secure?

This book is designed to explore that fascinating world of whole numbers.
It covers all the ‘standard’ questions, and perhaps some not-quite-as-standard
topics as well. Roughly, it covers the following broad categories of topics.

o Basic questions about integers

In Wolfgang Sartorius von Waltershausen’s rather lengthy and nearly hagiographic (‘his
undying name ... whom no contemporary nation can place as an equal beside’) biography
Gauss zum Gedéchtnis; see the bottom of page 31 at the Internet Archive (link kindly
provided by Neil McKay at the University of New Brunswick).
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Basic congruence arithmetic

Units, primitive roots, and Euler’s function (via groups)
Basics of cryptography, primality testing, and factorization
Integer and rational points on conic sections

The theory and practice of quadratic residues

Basics of arithmetic functions

The prime counting function and related matters

Connecting calculus to arithmetic functions

Finally, it won’t take long to notice that the way in which this book is
constructed emphasizes connections to other areas of math and encourages
dynamic interaction. (See the note To the Instructor.) It is my hope that all
readers will find this ‘in context and interactive’ approach enjoyable.



To the Student

Hi! Not too many students read this bit in textbooks, but I hope you do, and
I hope you circle stuff you think is important. In pen.

Doing math without writing in the book (or on something, if you're only
using an electronic version) is sort of like reading much literature (like Shake-
speare or Homer) or many religious texts (like the Psalms or Vedas) without
paying attention to the spoken aspect. It’s possible, and we all may have done
it (some successfully), but it’s sort of missing the point.

So read this book and write in it. My students do. They even like it.

Here are three things that will lead to success with this book.

¢ You should like exploring numbers and playing with them. If you were
the kind of kid who added

142+43+44+5+4+6+7+8+9+10+-

on your calculator when you were bored to see if there would be an
interesting pattern, and actually liked it, you will like number theory. If
you then tried

2.3.4-5-6-7-8-9-10----

you will really like it.

e I also hope you are open to using computers to explore math and check
conjectures. As Picasso said, “[T]hey can only give you answers” — but
oh what answers! We use the SageMath system, one that will grow with
you and that will always be free to use (for several meanings of the word
free). You don’t have to know how to program to use this, though it’s
useful. Plus, you are using number theory under the hood anyway if you
use the internet much, so why not?

¢ Finally, you should want to know why things are true. I assume a stan-
dard introduction to proof course as background, but different people
are ready in different ways for this. If you are reasonably familiar with
proofs by induction and contradiction, and have some basic experience
with sets and relations, that is a good start. Some good free resources
online include A Gentle Introduction to the Art of Mathematics [E.3.2]
and Book of Proof [E.3.1].

Some of the proofs will be hairy, and some exercises challenging. (Not
alll) Do not worry; by trying, you will get better at explaining why
things are true that you are convinced of. And that is a very useful skill.
(Provided you are convinced of them; if not, go back to the first bullet
point and play with more examples!)
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Remark 0.0.1 A final note to the student. As a last note before you dig
in, if you think that it is worth exploring the possible truth (see Section 25.3)

of

1
I+24+3+445+46+T+8+9+10+ =7,

or if as a kid you did

to see what would happen, then maybe you should become a mathematician.
In that case, click on all links in the text and find a cool problem that interests
youl!



To the Instructor

Assuming that the reader of this preface is an instructor of an actual course,
may I first say thank you for introducing your students to number theory!
Secondly of course I'm grateful for your at least briefly considering this text.

In that case, gentle reader, you may be asking yourself, “Why on earth
yet another undergraduate number theory text?” Surely all of these topics
have been covered in many excellent texts? (See the preface To Everyone for
a brief topic list, and the Table of Contents for a more detailed one.) And
surely there is online content, interactive content, and all the many topics here
in other places? Why go to the trouble to write another book, and then to
share it? These are excellent questions I have grappled with myself for the past
decade.

There are two big reasons for this project. The first is reminiscent of Ter-
tullian’s old quote about Athens and Jerusalem; what has arithmetic to do
with geometry? (Or calculus, or combinatorics, or anything?) At least in
the United States, away from the most highly selective institutions (and in my
own experience, there as well), undergraduate mathematics can come across as
separate topics connected by some common logical threads, and being at least
vaguely about ‘number’ or ‘magnitude’;, but not necessarily part of a unified
whole.

When I first taught this course, I was dismayed at how few texts really fully
tackled the geometry, algebra, and analysis inherent in number theory. Many
do one or two (especially algebra, since number theory might often be a second
course in abstract algebra), but few attacked all connections. Still, there are
some which do, and I even found Elementary Number Theory by Jones and
Jones [E.2.1] which does a very good job of this, though at a slightly higher
level of sophistication than I found my students ready for. Those familiar with
it will find that my presentation of certain topics (e.g. arithmetic functions,
the zeta function) and some topic order is influenced by it; for certain proofs
(especially in Dirichlet series) the proofs there and in [E.4.6] are the only ones I
could find! T try to point out all such cases, and I have substantively modified
even those in ways more appropriate for typical US undergraduates, as well as
with somewhat different emphases.

Given my first goal, I would have happily used that text with some extra
details for my students, were it not for the magic and wonder of the internet.
How could I not harness this to have my students do approximations to the size
of computations that their browsers are constantly doing as they go shopping
on the web? Having found Sage, I found it hard to avoid using it whenever I
could, and encouraging students to do the same to explore things like Euler’s
¢ function (as I encourage yours to do in Section 9.2 by hand).

Interactivity and visualization is becoming common currency in mathemat-
ics education. In calculus and lower-level courses this has been true for some
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time, but even in abstract algebra there are books like Nathan Carter’s Vi-
sual Group Theory [E.6.2], specialized software projects like PascGalois, and
many general applets (including ones from the Wolfram Demonstrations or
Maple Mébius projects). This has been coming into number theory too, natu-
rally, beyond the programming projects many books have included. An early
number theory text involving explicit programs (and a CD-ROM!) written for
extensive course work was [E.4.7], and the first book invoking extensive use
of Sage commands was probably the founder’s own [E.2.3]. Very recently (in
fact, after the unofficial release of this text) the book [E.2.10] (which has simi-
lar content and aims to the current work, though at a somewhat higher level)
appeared in second edition with complete SageMath worksheets on its website,
which can be used on CoCalc (or on a local Docker version of CoCalc). Hence
the time is more than right for a fully online resource.

So my second goal for this book is to bring online interactivity into a
mainstream number theory text. It is wonderful to see students with an interest
in the arts respond to the dynamic visualization in Sage interacts, while those
with interests in computer science love to ask questions about how to view the
source code or some of the details of representing large numbers. And all the
students have access to computations from simple ones involving the aliquot
parts function to the full Riemann formula for the prime number function.

Why should you not use this book? First, I make few claims to topical or
mathematical originality?. The ordering is somewhat different than usual, I
include a few topics I haven’t seen addressed adequately very often in truly
introductory texts (notably a beginning of the geometry of numbers and long-
term averages of arithmetic functions), and I have created many visualization
and exploration oriented applets.

At the low end of other reasons you might not use it, some topics of great
importance which are perfect for beginners (especially partitions and contin-
ued fractions) are absent. You can’t cover everything in a semester, after all,
and I have shied away a bit from more purely combinatorial stuff, though I
hope to steadily add slightly more in successive editions®. At the high end of
preparation, I do not and cannot expect a course in abstract algebra or complex
(or even real) analysis for my students, and so this book reflects that reality.
Knowing about proofs by induction and contradiction, as well as basics of sets,
integers, and relations, is what I can assume. In fact, I have great recommen-
dations for you if you know all your students can do contour integration or are
ready to define a number field — see References and Further Resources. Finally,
I don’t have a corporation behind me.

On the other hand, I think you should consider using it. This is class-
tested material for standard topics (plenty for a semester-long course at most
institutions), and not beholden to any interests beyond being a good resource
for instructors in ‘mainstream’ undergraduate math programs in the United
States. There are plenty of exercises (though not a surfeit, so feel free to
supplement), fun links, and hopefully a quirky and engaging sense of wonder
and exploration. The price is also right. Finally, I don’t have a corporation
behind me.

Should you choose to use this text, I have only a few recommendations for
how to use it (see also my notes To the Student).

2T have tried hard to credit any non-standard proofs which are essentially in the form
I found them, as well as many of those which I have modified for my students’ needs. I
appreciate forbearance (and notification!) if I have missed any such citations so that I may
correct them.

3See [E.2.11] for a nice introduction in a more combinatorial vein, particularly to partition
identities.


http://faculty.salisbury.edu/~despickler/pascgalois/
http://tvazzana.sites.truman.edu/introduction-to-number-theory/
https://cocalc.com
https://github.com/sagemathinc/cocalc-docker

XV

o Encourage in-class exploration. Put away books, turn off the computers,
and just try stuff out. Create your own worksheet to explore (say) the
Moébius function or solutions to linear Diophantine equations. In short,
make sure your students see mathematics as a dynamic enterprise — par-
ticularly because so many of the theorems involved are highly abstract.

e Less is more. I will often pick one representative proof in a section,
project it on the screen, and then really follow it through on an adjacent
blackboard with specific numbers (such as p = 13, which is just big
enough to be interesting but not so big as to be overwhelming).

o Use computer examples judiciously. Sage (or any other system) can just
as easily become a Delphic oracle (pun intended) spewing forth cryptic
utterances as a useful tool to help create and solve conjectures. You're
possibly doing your students a disservice if you don’t use it at all, but
despite having written this text with Sage in mind throughout, I don’t
regard its use as completely essential. Number theory in this form has
been around since Euclid, so the past thirty years of mass-market com-
putation is a drop in the bucket of time. If you want a true inquiry-based
approach, I like the text Number Theory through Inquiry [E.2.5] a lot.

« Note the Sage notes (full list at the List of Sage notes). Especially if you
have more than just a few students who have a little programming ex-
perience, this is a perfect course to find projects to challenge them with,
such as those in the venerable [E.2.4]. The Sage notes gently remind or
give short introductions to some aspects of how to use Sage and Python
(the language Sage is based on). They are not formally structured or
arranged, or comprehensive; if you are looking for this, you should sup-
plement your course with a real basic programming text in Python, such
as [E.3.7] or [E.3.8]. (The already-initiated should note that as of January
2020 this book has been updated to Sage 9 and Python 3, so some com-
mands, especially those involving print(), may not work with certain
earlier versions of Sage.)

o Use the exercises, and ones outside the book if you want. There are exer-
cises for each chapter, of varying difficulty levels (in the grand tradition
of upper-level math texts, I do not provide solutions). In general, assign-
ing daily, collecting weekly seems to be a decent model — though be sure
to give students ample warning as to which ones will be collected! The
last few chapters’ material is more advanced, and there are correspond-
ingly fewer possible exercises. I find this to be a good time for a small
project in the history of number theory; especially if you have students
from several different cultural heritages, having them discover where it
comes up in theirs (it nearly always does) has been a perennial favorite.

There are no sections marked as optional, or table of dependencies, though
these should be pretty similar to most elementary texts. (I do pretty much
everything in my own course, picking results or sections to skip on the fly if
time or the students seem to require this.) Here are some minor suggestions,
though.

e If you are teaching a shorter course or wish to spend more time on some
topic, the chapters on Beyond Sums of Squares and More on Prime Num-
bers are certainly optional in this sense.

e The chapters concerning Points on Curves and Long-Term Function Be-
havior are not optional in my view of number theory, but may be viewed
as ‘selected topics’.
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o The introductory (short) chapters 1 and 18 should not be considered
optional, but may be emphasized or not to instructor taste. The point is
just to motivate what we are doing before getting to formal definitions.

e If you don’t like cryptography or believe (like Hardy) that there are no ap-
plications to number theory, you can certainly create a nearly application-
free course by skipping the chapters on An Introduction to Cryptography
and Some Theory Behind Cryptography.

e I don’t consider the last several chapters on the prime counting function
and other arithmetic functions connecting to calculus to be optional, but
I have the luxury of having mostly juniors and seniors for a full semester.
In a quarter course or one aimed more at sophomores (in the United
States), one should still at the very least spend a couple days at the end
of the course talking about these topics, perhaps discussing sections 21.2
and 21.3, and smatterings of Chapter 25.

As a final note, I hope you enjoy using the text as much as I've enjoyed
teaching from it. Everyone should have that day where a student’s jaw drops
from a cool theorem displayed visually, or when the students are working so
intently on an in-class project that they don’t even notice the class period end.
It’s been my privilege to have that happen, and my hope is this text can bring
you closer to that goal.
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Chapter 1

Prologue

What is number theory? Briefly, it is the study of the integers and questions
arising from them.

Definition 1.0.1 The Integers. The set of counting numbers is denoted
N={0,1,2,3,4,---}.

Note that in this text, this set begins at zero'. The integers is the set of
positive and negative counting numbers:

Z={-,-3-2-10123, -}

O
This is a fairly dry definition, though. The best way to find out what this
definition means is to try to answer some questions about integers!

1.1 A First Problem

Let’s start! Suppose you have lots of left-over postage stamps? that are of just
a few different denominations. It could be fun to see what amounts you could
make from them.

To be concrete, let’s assume first that all your stamps are numbered 2¢ and
3c¢c. Here are two questions we could ask. They are mathematically equivalent,
but might take your exploration in two very different directions!

Question 1.1.1 Suppose you only have stamps (or some other currency-like
item) available in 2¢ and 3¢ amounts.

e Which denominations of postage can you get by combining just these two
kinds of stamps?

e Which denominations can you not get with just these two kinds?

You can search Mathematics Stack Exchange, Wikipedia, and many other interesting
sites for discussions about this. Authors disagree, though number theory texts tend to go
with the older tradition of only counting positive integers among the “natural numbers”,
both because they count things and because they are a natural set to work with. With the
advent of computers and (often) zero-based counting, as well as set theory, there is more
variety, and it will be convenient to start at zero here since we integrate the use of a zero-
based computer language so much. Apparently the ISO standard also begins counting at
Z€ro.

2Perhaps because you only use email or texting now; too bad for youl!


https://www.iso.org/standard/64973.html
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Once you’ve thought about that, try the same problem with 2¢ and 4¢ stamps.
What is the same, what is different? O

Now let’s get to a nontrivial case; what about with 3¢ and 4¢ stamps? In
this case, after some experimentation, it looks like only 1, 2, and 5 are not
possible, so anything six or above is possible. We call this number (in this
case, 6) the conductor of the set {3,4}.

What we are really asking, as might be clear by now, is which positive
integers n are impossible (or possible) to write in the form n = 3z + 4y, for
nonnegative integers z and y. This is also sometimes called the Frobenius® or
coin problem.

Continue trying this with different small pairs of positive integers (see also
Exercise 1.4.5-Exercise 1.4.7). For each pair, pay attention to two things:

o What is the conductor of the pair? (You might want to ask whether there
is a conductor!)

¢ How many numbers lower than the conductor cannot be written in this
way as a sum with this pair?

1.2 Review of Previous Ideas

Before going further, we need a bit of review. The following three topics may
be considered prerequisites for the course.

1.2.1 Well-Ordering

The first principle is both simple and deep. It is a deep property of the positive
integers, but we give it its usual name.

Axiom 1.2.1 Well-Ordering Principle. Any nonempty set of positive
integers has a least/smallest element.

This principle actually holds with any subset of Z which is bounded below,
such as N (recall Definition 1.0.1).

Let’s use it as an example to prove the following fact which you probably
didn’t know required proof.

Fact 1.2.2 Consecutive Integers. There are no integers between 0 and 1.
Proof. This proof proceeds by contradiction. Assume there are some such
integers, and let

S={reZ|0<z<1}.

This set must then have a least element a, and 0 < a < 1. If we multiply
through by a (which is positive) then we obtain 0 < a? < a.

Thus a? is another integer such that 0 < a? < 1, so a € S, but we also
know that a? < a. So a? is an element of S which is less than the least element
of S. That is a contradiction, so our original assumption was wrong and there
are no such integers (i.e. S is empty). |

Remark 1.2.3 To review, proofs by contradiction and contrapositive both
start by assuming the negation of the conclusion. A proof by contrapositive
uses that assumption to prove the negation of the original assumption. A proof
by contradiction, on the other hand, leads to some absurdity, but not neces-
sarily just negating the original assumptions. In the proof above of Fact 1.2.2,

3For a very full discussion, see [E.7.20], but not until after you have started the next
chapter of this book!
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the contradiction is that you can’t have two different smallest elements of a
set.

1.2.2 Induction

Sometimes we need a way to prove a statement for all integers n after a certain
point, for instance integers greater than or equal to n = 1. This is usually
called proof by induction. Usually there are two steps in a typical ‘simple’
induction.

1. First we prove the “base case” (often n =1 or n = 0).

2. Then we prove the “induction step”, that the case n = k implies case
n=*k+1.
These combine to prove a fact for all cases n > 1.

Example 1.2.4 Archetype for Induction. We shall show that

n

. o nn+1
ZZZ(;)

i=1

Solution. The base case is to check that 1 = w7 which is easy.
The induction step begins with the assumption that

and then proceeds by showing that the formula is still true when k is replaced
with k4 1. For this proof, to add just one more integer k+ 1 to the sum means

k+1 k

di=> it (k+1)

(which we can see by rewriting the sum). Then we can just plug in the induction
assumption to obtain

k(k+1) k

k
;i+(k+1)2+(k+1)(k+1)(2+1>(k+1)(k+2)

2

which is exactly what is required to finish the induction step, namely

Zi (k+1)2(k:+2)

O

Relative to some other basic axioms, one can actually take the legitimacy

of induction as a final axiom and use that to prove well-ordering (Axiom 1.2.1)

is true. Instructors will wish to note that the converse is false*. We will not

include any such proofs (or a collection of relevant axioms, such as Peano’s)
here, but note the helpful exposition in [E.7.33].

4A counterexample is given by the set of ordinals less than w + w, which is well-ordered
but for which induction does not hold.
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1.2.3 Divisibility

Definition 1.2.5 If an integer n can be written as a product kd = n of two
integers k and d, then we say that d divides n, or that n is divisible by d, or
that d is a divisor of n. We write d | n to denote that d divides n. O

Example 1.2.6 Divisibility is familiar.
o For instance, the concept that n is even is just the same thing as 2 | n.

e The divisors of n = 8 are .. £1,4+2 +4 4+8. (Don’t forget negative divi-
sors.)

o Very often we can write this generically, so for example n |  + 1 means
that = + 1 can be written as the product of n and some other integer m.

We occasionally use the term proper divisor to denote a positive divisor of

n which is not n; in the example with n = 8, 1, 2, and 4 are all proper divisors.

O

There are lots of interesting things to say about divisibility. Let’s prove

a somewhat unexpected statement using induction and just what we already
know.

Example 1.2.7 Show that 4 | 5 — 1 for n > 0.

Solution. This proof will proceed by induction. This time the base case will
be n = 0. We’ll try to make the steps clear with separate bullets.

o Base step: If n = 0 the formula says that 4 divides 5° -1 =1—-1=0,
which is definitely true.

e Induction step:
o Suppose 4 | 5¥ — 1. Then, by Definition 1.2.5, 5¥ — 1 = 4z for some
integer x.
o Hence 5% =1 + 4z is a fact we could use later.
o Our goal in this step is to show 4 | 5F1 — 1.

o Since we need something true about 51 — 1, let’s consider 5F+1
first. The key observation will be that 5¥+1 = 5 . 5.

o Using the fact we obtained from the induction assumption we can
write this as 5 - 5 = (1 + 4x) - 5; this means that

5L 1 =5(1+4x) — 1 =20z + 4.

o Certainly 20x + 4 is divisible by 4.
o Thus we have shown that 4 | 5**! — 1, so we have finished the
induction step, and our proof by induction is complete.

|
There are lots of other propositions about divisibility you are probably
familiar with from previous courses. Here is a sampler.

Proposition 1.2.8 Divisibility Facts.
1. Ifa|band b | c then a | c.

2. Ifa|b then ca | cb.

3. Ifc|a and c| b then ¢ | au+ bv for any integers u,v.
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4. If n > 0 then all divisors of n are less than or equal to n.

These are not hard to prove (see Exercise 1.4.1). For instance, the second
one can be proved by simply noting b = ka for some k € Z, so that cb =
c(ka) = c(ak) = (ca)k. The others are similar, and are good practice with
using basic algebraic manipulation in proofs.

1.3 Where are we going?

Before moving on from these preliminaries and our introductory Prologue, let’s
step back. What will we cover in this text?

o We have started by exploring basic integer questions, and will continue
looking at basic integers at first (Chapter 1-Chapter 3).

e We'll be essentially forced to move to the concepts of congruences and
primes by the material (Chapter 4-Chapter 7).

e Next, we'll explore a more advanced point of view of the concepts of
integers and congruences, including groups, to attack cryptography effi-
ciently (Chapter 8—Chapter 12).

e About halfway through, we’ll introduce the ways in which geometry in-
filtrates number theory (Chapter 13—Chapter 17).

e Finally, functions and limits will help us illuminate primes in depth, as
well as show us how the ideas of calculus really do show up in num-
ber theory quite naturally (Chapter 18-Chapter 24), concluding with an
introduction to the legendary Riemann Hypothesis in Chapter 25.

Let’s get ready for an exciting exploration of number theory!

1.4 Exercises

1. Prove some or all of the facts in Proposition 1.2.8.

Find a counterexample to show that when a | b and ¢ | d, it is not
necessarily true that a +c¢| b+ d.

3. Prove using induction that 2™ > n for all integers n > 0.
4. Prove, by induction, that if ¢ divides integers a; and we have other integers
u;, then ¢ | Y7 | au;.
Exploring the conductor question is a fun way to do new math where you don’t
already know the answer!
5. Write up a proof of the facts from the first discussion about the con-
ductor idea (in Section 1.1) with the pairs {2, 3}, {2,4}, and {3,4}.
6. What is the conductor for {3,5} or {4,5}7 Prove these in the same
manner as in the previous problem.
7. Try finding a pattern in the conductors. Can you prove something
about it for at least certain pairs of numbers, even if not all pairs?
8. What is the largest number d which is a divisor of both 60 and 427
9. Try to write the answer to the previous problem as d = 60x + 42y for
some integers x and y.

10. Get a Sage worksheet account somewhere, such as at https://cocalc.com
(CoCalc) or at a Sage notebook or Jupyterlab server on your campus, if


https://cocalc.com
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you don’t already have one.
11. Color the linked ‘Paint by Number’ Sunday comic from 2006.

1.5 Using Sage for Interactive Computation

This text is advertised as having interactive computation, but so far any com-
putation has been your own. How does digital computation (interactive or not)
fit in? We’ll skip ahead slightly here to see how this will work.

In the interactive version of this text, the areas below are called Sage cells,
or cells for short. Assuming you’re connected to the internet, this very first cell
will use SageMath (usually just called Sage) to check whether a given fraction
remains a fraction when reduced, or whether it reduces to an integer. Click
“Evaluate” to try it out.

38/19

Again, if you’re viewing this online, go ahead and try changing the numbers,
clicking the evaluate button again.

As we go through the text, you'll see lots of opportunities to use Sage.
Sometimes I'll give you the opportunity to learn a little bit about how to use
it in Sage notes, such as the following one.

Sage note 1.5.1 About Sage notes. Sage notes will teach you useful things
about basic programming, or more general facts about Sage and Python, the
computer language Sage is based on.

Let’s try another computational cell. We haven’t defined prime numbers
yet (see Chapter 6), but I figure you know what they are. Here you can check
whether an integer is prime.

is_prime(3169)

True

Sage note 1.5.2 Using commands in Sage cells. Assuming you are
using this book online, you can put any legitimate Sage command in the cells
above. (Try integrate(x*3,x) if you know some calculus.) Or you can use
these commands in your own Sage worksheet at your local Sage server or with
CoCalc, so that you can save your work!

If you are using an offline or hard copy version, I still highly recommend
sifting through some of the code and commands; much of it will enlighten the
reader. (Then try it out online or on your local computer!)

Finally, let’s test some conductor ideas using Sage. In the cell below, Sage
will automatically list all the nonnegative numbers up to n that can be written
as n = ax + by for nonnegative integers x and y. The default values are
a = 3,b = 4; you can experiment by changing one or both of these values.

@interact
def _(a=(3,[2..10]1),b=(4,[2..101),n=(20,[10..501)):
list_of_them=list(set([axx+b*xy for x in srange(n/a+1) for
y in srange(n/b+1)1))
list_of_them=[item for item in list_of_them if item <= n


https://licensing.andrewsmcmeel.com/features/ft?date=2006-04-09
http://www.sagemath.org
http://www.python.org
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1; list_of_them.sort ()
pretty_print(html("The_nonnegative_integers_up_.to_$n=%s$_

which_can_be"%(str(n))))
pretty_print(html("written_as_positive_combinations_of_

$a=%s$_and_$b=%s$_are:"%(str(a),str(b))))
print(list_of_them)

Notice that with the default values above we are definitely getting the same
answers as expected from our ‘pencil and paper’ experiments.

Finally, notice that the algorithm I used in the code is very naive — I just
listed all possible combinations under a certain size. It would be interesting to
use this to try to verify patterns you may have noticed about the precise size
of the conductor, and when it exists.
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Chapter 2

Basic Integer Division

In this chapter, we introduce some concepts of numbers which are familiar, but
key for our further study. In particular, we try to understand why they work.

e The division algorithm (Section 2.1),
e The greatest common divisor (Section 2.2), and
e The Euclidean algorithm (Section 2.3).

Then we’ll put them together with the Bezout identity (Section 2.4).

2.1 The Division Algorithm

2.1.1 Statement and examples

Let’s start off with the division algorithm. This is the familiar elementary
school fact that if you divide an integer a by a positive integer b, you will
always get an integer remainder r that is nonnegative, but less than b.

Equally important, there is only one possible remainder under these cir-
cumstances.

Theorem 2.1.1 Division Algorithm. For a,b € Z and b > 0, we can
always write a = gb+r with 0 < r < b and q an integer. Moreover, given
a, b there is only one pair q,r which satisfy these constraints. We call the first
element q the quotient, and the second one r the remainder.

Proof. The proof appears below in Subsection 2.1.2. |

Finding ¢ and r is easy in small examples like a = 13,b = 3.
We have 13=4-3+1sog¢g=4and r = 1.

For bigger values it’s nice to have the result implemented in Sage.

divmod (281376 ,29)

(9702, 18)

We can check the correctness of the Sage output by multiplying and adding
back together.

9702%29+18
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281376

Sage note 2.1.2 Counting begins at zero. There are several things to
note about this early computation. First, note that the answer to divmod came
in parentheses, a so-called tuple data type.

Second, there is another way to approach this computation, more program-
matically so that it’s easier to reuse. What do you think the [0] and [1]
mean?

divmod (281376,29)[0] * 29 + divmod (281376,29)[1]

281376

To access the first and second parts of the answer (the quotient and re-
mainder), we use square brackets, asking for the 0th and 1st parts of the tuple
(9702,18)! (This operation is called indexing.) In Python, the programming
language behind Sage (as in many other languages), counting begins at zero.

The discussion in the previous note actually turns out to be an enduring
argument in number theory, too. Do we only care about positive numbers, or
nonnegative ones as well? We saw this in the stamps example, since one could
send a package for free under certain circumstances (campus mail), but might
not care about that case. Similarly, are we required to use at least one of each
type of stamp, or is it okay (as in our problem) to not use one type?

2.1.2 Proof of the Division Algorithm

One neat thing about the division algorithm is that it is not hard to prove but
still uses the Well-Ordering Principle; indeed, it depends on it. The key set is
the set of all possible remainders of a when subtracting multiples of b, which
we call

S={a—kb|keZ}.

(Note that the set looks the same if we add multiples of b, since k € Z, but for
the purposes of exposition it is easier to think of it as subtraction.)

The object of main interest in the proof will be the nonnegative piece of
S which we will call S = SN N. For example, if a = 13,b = 3, then S =
{...19,16,13,10,7,4,1,—2,—5,...} while §' = {...19,16,13,10,7,4,1}.

Our strategy will be to apply the well-ordering principle to S’. (It is worth
thinking briefly about why both S and S’ are nonempty.) Give the name r to
the smallest element of S’, which must be writeable as r = a — bg (that’s the
definition of being an element of S’ C S, after all).

Now let’s briefly suppose by way of contradiction that » > b. In that case
we could subtract b from 7, and then r — b € S” as well. So r would not be the
least element of S”, which is a contradiction. Hence we know that r < b. (Note
that r is the smallest nonnegative number in S’, just as with our intuition
regarding remainders from school.)

We still have to show that r and ¢ are the only numbers fulfilling this
statement. Suppose a = bq’ + 7’ for some integers ¢, where 0 < 1’ < b;
clearly if r = 7’ then we can solve a —bg = r =1’ = a — bq’ to get ¢ = ¢’ (since
b > 0), so the only interesting case is if r # r’. Without loss of generality, we
can assume r < 1.

In that case, a —bg = r < v’ = a — bq’, which can be rewritten as 0 <
" —r =0b(q—¢'). Since q,q' € Z, by Fact 1.2.2 ¢ — ¢’ must be at least one if
it isn’t zero. But then b=b-1<7¢'—r =0b(¢—¢') or b < r+b < r’, which
contradicts 0 < 7’ < b. Thus ¢ — ¢’ = 0 and hence ¢ = ¢ and r = 1’.
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It’s worth actually trying out the details of this proof with some a and b,
say with ¢ = 26 and b = 3.

As a scholium (see Exercise 2.5.1) note that if b < 0 there can still be a
positive remainder, but here we would need 0 < r < |b| in the theorem.

2.1.3 Uses of the division algorithm

It’s kind of fun to prove interesting things about powers using the division
algorithm, and likely you did in a previous course. For instance, there is an
interesting pattern in the remainders of integers when dividing by 4. If you
are online, evaluate the following Sage cell to see the pattern. (It’s also easy
to just get the remainders of the first ten or so perfect squares by hand.)

for i in [0..10]:
pretty_print(html("The_remainder_of_{}_squared_with_
respect._to_4_is_{}".format(i,divmod(i*2,4)[11)))

Sage note 2.1.3 Repeating commands for different input. The syntax
for i in [0..10]: just means we want to do the next command for integers
from 0 to 10. Such a repetition is called a loop.

Another way Python uses to generate the list of different input is the range
command; try substituting range(11) for [0..10] in the Sage cell above. Can
you discover what the difference is between these?

The rest of the command (all the percent symbols and so forth) is mostly
for correct formatting. That includes the indentation in the second line — an
essential part of Python and Sage.

This certainly provides strong numerical evidence for the following propo-
sition. But better than that will be the proof!

Proposition 2.1.4 A perfect square always leaves remainder r = 0 or r = 1
when divided by 4.

Proof. Using the division algorithm, we can write n = 4¢ + r. What happens
if we square it, (4q +r)??

Algebraically this yields 16¢% 4 8qr +r2. Clearly this is a multiple of 4 plus
r2. So the only possible remainders of n are the remainders of r2, where r is
already known to be less than 4!

Now check these yourself to see that the only possibilities are the ones in
the statement of the proposition. |

One cool thing about this proof is that if we just change the proof from
using n = (4¢+r)? to one using n = (mq+1)?, we can essentially do the same
thing for several divisions at once. If the number we divide by is m, then

(mq +7)% = m2¢* + 2mgr + r* = m(mq® + 2qr) + 2,

hence all that matters for the final remainder is 72
divisible by m.

But we know that there are only b possibilities for r, so it’s easy to check
all their squares. For m = 6, the following cell checks for you if you don’t want

to check them by hand.

, since the rest is already

for i in [0@..5]:
pretty_print(html("The_remainder_of_%s._squared_with_
respect_to_6_is_%s"%(i,divmod(i*2,6)[1]1)))
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This verifies that » = 0,1,3,4 are the only possible remainders of perfect
squares when you divide by six.

2.2 The Greatest Common Divisor

It seems intuitive that of all the numbers dividing a number (the divisors of
the number), one is biggest. We can carry that idea to two numbers.

Definition 2.2.1 Common Divisors. If we consider the various divisors of
two numbers a and b, we say that d is a common divisor of a and b if d | a
and d | b. If d is the biggest such common divisor, it is called the greatest

common divisor, or gcd, of a and b, written d = ged(a, b). %
Example 2.2.2 What are all the common divisors of 6 and 10?7 What is their
ged? O

Remark 2.2.3 What is the greatest common divisor of zero and zero? By
definition, there is none (or it is infinity?). Some authors (such as [E.2.1])
simply don’t allow this case at all; others (like [E.2.4]) define it to be zero
without further comment. As for computation, both SageMath and Wolfram
Alpha apparently compute it to be zero (perhaps by The Euclidean Algorithm),
while one online calculator throws an error.

This text chooses to remain agnostic on this point. However, ring theory
and lattice theory both allow for an alternate definition which naturally yields
zero as the answer; either consult an abstract algebra text, or see all the answers
to this question at Mathematics StackExchange for some good fireside reading
after you do your homework for this section.

We now come to a great definition-theorem.

Theorem 2.2.4 Let a and b be integers, not both zero. Then the greatest
common divisor of a and b is all of the following:

o The largest integer d such that d | a and d | b. (This is Definition 2.2.1.)

e The number achieved by applying the Fuclidean algorithm (a repeated
division algorithm) to a and b. (See Section 2.3.)

e The smallest positive number which can be written as ax + by for some
integers x and y. (See Section 2.4 and Subsection 2.4.2.)

This is amazing, and the first real indication of the power of having multiple
perspectives on a problem. It means that the very theoretical issue of when a
ged exists (and finding it) can be treated as a purely computational problem,
completely independent of finding divisors in the usual sense. And further,
there is a definition purely in terms of addition and multiplication, nothing
more complex.

If you need to actually calculate a gecd, you use the algorithm. If you want
to prove something about it that has to do with dividing, you use the original
definition. And if you need to prove something about it where division is hard
to use, you use the third characterization. This sort of idea will come up again
and again in this book — that having multiple ways to define something really
helps.

2.3 The Euclidean Algorithm

The Euclidean algorithm says that to find the ged of a and b, one performs
the division algorithm until zero is the remainder, each time replacing the


https://sagecell.sagemath.org/?z=eJxLT07RMNAx0AQACuICDA==
http://www.wolframalpha.com/input/?i=gcd(0,0)
http://www.wolframalpha.com/input/?i=gcd(0,0)
https://www.dcode.fr/gcd
https://math.stackexchange.com/questions/495119/what-is-gcd0-0
https://math.stackexchange.com/questions/495119/what-is-gcd0-0

CHAPTER 2. BASIC INTEGER DIVISION 13

previous divisor by the previous remainder, and the previous number to be
divided (sometimes called dividend) by the previous divisor. The last non-zero
remainder is the ged.

We'll state and prove this momentarily (Algorithm 2.3.3). Let’s try it with
a reasonably sized problem.

Example 2.3.1 Let a = 60 and b = 42.

60 =42-1+18
42=18-246
18=6-34+0
So ged(60,42) = 6. O

This procedure is named after Euclid because of Proposition VII.2 in Eu-
clid’s Elements. There is an amazing complete Java interactive implementation
of all the propositions, by David Joyce, whose version of this proposition in-
cludes some explanation of Euclid’s background assumptions. In particular,
Euclid basically assumes the Well-Ordering Principle, although of course he
didn’t think of it in such anachronistic terms.

Historical remark 2.3.2 Euclid’s Elements. Euclid, a mathematician in
Alexandria during the Hellenistic era, appears to have written the Elements as
a compendium of rigorous mathematical knowledge. In addition to being the
main geometry textbook in the Western and Islamic worlds for two millennia
(as late a teacher as Charles Dodgson a.k.a. Lewis Carroll extolled its virtues in
print in Euclid and His Modern Rivals), there are substantial number-theoretic
portions as well. No one really knows how much of the Elements is original
to Euclid, but the work as a whole is monumental and well-organized, despite
some well-known criticisms (see e.g. the discussion in [E.5.5]).

Try the algorithm on your own by hand for the ged of 280 and 126. Or, for
even more practice, try it with ged(2013,1066) and then check your work with
Sage.

gcd (2013,1066)

Algorithm 2.3.3 Euclidean algorithm. To get the greatest common divisor
of a and b, perform the division algorithm until you hit a remainder of zero, as
below.

a=bq +7r
b=r1q2 + 12

T1L =7T2q3 + T3

Tn—3 = Tp—2Qn—1 + -1

Tn—2 = n—1qn + 0

Then the previous remainder, r,_1, is the greatest common divisor.

Proof. First let’s see why this algorithm even terminates. The division algo-
rithm says each r; is less than the previous one, yet they may not be less than
zero. So let’s apply the Well-Ordering Principle to the set of remainders. This
set must have a least positive element, and will be the answer. Another way
to think about it is that since b is finite, there won’t be an infinite number of


http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII2.html
http://aleph0.clarku.edu/~djoyce/java/elements
http://aleph0.clarku.edu/~djoyce/java/elements
https://books.google.com/books/about/Euclid_and_His_Modern_Rivals.html?id=rEUMAAAAYAAJ
https://books.google.com/books/about/Euclid_and_His_Modern_Rivals.html?id=rEUMAAAAYAAJ
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steps.
Of course, that just gives a number, with no guarantee it has any connection
to the ged. So consider the set of common divisors d | @ and d | b. All such d
also divide
a—qpb=1-a+(—-q1) -b=mn

So these d also divide ro = b — ga71, and indeed divide all the remainders, even
Tnel = Tn—3 — @n_1Tn—2. S0 all common divisors of a and b are divisors of
Thn—1-

On the other hand, if d divides r,,_1, it divides r,_o = 7,_1¢y, and thus
divides 7,3 = "n_2Gn_1 + Tn_1, and so forth. Hence d divides a and b.

So the set of common divisors of a and b are equal to the set of divisors of
Tn—1, 0 this algorithm really does give the ged. |

As you might expect, the proof makes more sense if you try it out with
actual numbers; for the theoretical view, see Exercise 2.5.14. Especially if you
can find a and b for which the algorithm takes four or five steps, you will gain
some insight.

2.4 The Bezout Identity

2.4.1 Backwards with Euclid

Now, before we get to the third characterization of the ged, we need to be
able to do the Euclidean algorithm backwards. This is sometimes known as the
Bezout identity.

Definition 2.4.1 Bezout identity. A representation of the ged d of a and
b as a linear combination az + by = d of the original numbers is called an
instance of the Bezout identity. (This representation is not unique.) O

It is worth doing some examples'. Perhaps you already have gotten one,
probably by trial and error. For instance,

6=-2-60+3-42.

The third characterization in Theorem 2.2.4 implies that doing this is al-
ways possible; ged(a,b) = ax + by for some integers x and y. Doing the
Euclidean algorithm backwards is one way to obtain this.

Example 2.4.2 Sometimes it helps visually when starting to write the Euclid-
ean algorithm down one side of a table, and then go up the other side of the
table to obtain an instance of the Bezout identity.

Here’s an example with the ged of 8 and 5; follow it from top left to the
bottom and then back up the right side. The middle column provides the
necessary rewriting.

8=1-5+3(1-8-1-5=3|1=2-3-1-5=2-(8—1-5)—-1-5=2-8
5=1-34+2|1-5-1-3=2|1=1-3-1-2=1-3-1-(6—-1-3)=2-3
3=1-241(1-3-1-2=1|1=1-3-1-2

2=2-140 Go up this column...

Sol1=2-8-3-50r2-8+(-3)-5. O

IFor convenience, all examples will be in the form d = za + yb, putting the coefficients
first, even though we state this in the other order. The habit of using the letters a, b,d and
alphabetical order is too hard to break.
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Example 2.4.3 Usually students need a couple example of this to get the way
this works, so here is another one. Let’s do it with the gcd of 60 and 42.

60=1-42+18 | 1-60—-1-42=18 | 6=1-42—-2-18=1-42—-2-(60—1-42)
42=2-18+6 1-42—-2-18=6 6=1-42—-2-18

18=3-6+0 Go up this column...

Simplifying 1-42 — 2 - (60 — 1 - 42) (the top line on the right), we get 6 =
342+ (—2) - 60 again. O

This question of the Bezout identity is implemented in Sage as xgcd(a,b),
because this is also known as the e Xtended Euclidean algorithm.

xgcd (60,42)

(6, -2, 3)
Or, 6 = —2-60 + 3 - 42, once again.
Example 2.4.4 Try to get the xged/Bezout identity for ged(135,50) using
this algorithm. You should get 5 = 3135 4 (—8) - 50. Can you get another

one a different way?
Try the following Sage cell to check that it works.

xgcd (135,50)[11%135 + xgcd(135,50)[2]%50

O

Sage note 2.4.5 Remind how to get list elements. Do you remember
what the [1] means? What do you think the [2] means in this context?

Example 2.4.6 Try to get the xged/Bezout identity for ged(1415,1735) using
this algorithm. Hopefully you get 5 = 103 - 1415 + (—84) - 1735, though it may
take a while! The previous example might help you on your way. O

Historical remark 2.4.7 Bezout and friends. While Etienne Bézout did
indeed prove a version of the Bezout identity for polynomials, the basics of using
the extended Euclidean algorithm to solve such equations was known in Europe
to Bachet de Méziriac (see Historical remark 3.5.2) about four hundred years
ago. However, the Indian mathematician Aryabhata about 1500 years ago in
his method later called the Kuttaka used essentially the same algorithm, in fact
in a manner more amenable to swift and accurate usage than the one we (and
most Western texts) use, with a view toward questions such as Theorem 3.1.2.

2.4.2 Proving the final characterization

The final characterization of the greatest common divisor (Theorem 2.2.4) is
that it is the least positive integer which can be written ax + by for integers
x,y. Let’s prove that now.

First, we know there are some positive integers which can be written ax+by
(just use positive z,y). So we know there is a smallest such positive integer,
which we will call ¢ = au + bv. Let’s also designate the ged of @ and b to be d.

By Proposition 1.2.8, any integer which divides a and b divides any ax + by,
so it divides au 4+ bv = c. In particular, since d is a divisor of both a and b, it
must also divide ¢. So d < c.

On the other hand, we know from the backward/extended Euclidean algo-
rithm/Bezout identity that d can be written d = az’ + by’ for some integers x’


https://mathshistory.st-andrews.ac.uk/Biographies/Bezout/
https://en.wikipedia.org/wiki/Kuṭṭaka

CHAPTER 2. BASIC INTEGER DIVISION 16

and y’. Since ¢ is the smallest such (positive) integer, ¢ < d. Thus we conclude
that d = c.

2.4.3 Other gcd questions

We mentioned earlier there are many such linear combinations for any given
pair a,b. How might we find more than one such representation?

Example 2.4.8 Using Bezout to get another Bezout. We used the
backwards Euclidean algorithm to see that 6 = —2 - 60 + 3 - 42. Let’s use that
to get another.

« Since 6 is itself a divisor of both 60 and 42, let’s pick one (the smaller
onel), 42, and write it as 42 =7 - 6.

e Then we can really write
42=T7-6=7-(—2-60+3-42),
since after all we just saw that was a way to represent 6!

e Now we plug this back into the original equation:
6=-2-60+3-42=-2-60+3-(7-6)
=-2-604+3-(7-(—2-60+3-42))

If we simplify it out, that means 6 = —44 - 60+ 63 - 42, which is indeed correct!
|

So, substituting a Bezout identity into itself yields more and more such
identities. How many such identities are there? Is there a general form?

Another interesting question is that some gcds of large numbers are very
easy to compute. What makes finding ged (42000, 60000) so easy? If you're in
a classroom, this is a perfect time to discuss.

On a related note, if ged(a, b) = d, could you make a guess as to a formula
for ged(ka, kb) (for k > 0)? Can you prove it in Exercise 2.5.167 (Hint: here
is where our original definition or the Bezout version could be useful.)

2.4.4 Relatively prime

There is one final thing that the linear combination version of the ged can
give us. It is something you may think is familiar, but which can arise very
naturally from the Bezout identity.

Consider the smallest possible greatest common divisor, which is one. Un-
der what circumstances would a and b have ged(a,b) = 1?7 By our characteri-
zation, it is precisely when you can write ax + by = 1 for some integers x and
Y.

Think about this, though; if the gcd of @ and b is 1, then we could write any
integer as a (linear) combination of @ and b! This is a property I think people
would have come up with no matter how the development of mathematics had
gone; namely, identifying pairs of integers such that you can write any number
as a (linear) combination of them.

Definition 2.4.9 Relatively Prime. If the greatest common divisor of two
numbers is one, we call them relatively prime numbers or coprime numbers.

Later, we will need to have a term for the situation where, in a collection
of several integers, all possible pairs are relatively prime. We will call this
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mutually coprime, coprime in pairs, or an analogous term. %

Proposition 2.4.10 Here are two interesting facts about coprime integers a
and b:

e Ifa|candb|c, then ab| c.

e Ifa|bc, then a|c.
Proof. The first is not too hard to prove, if you think in terms of Bezout. It
does need a little cleverness.

e Remember that 1 = az + by for some x, y, by definition of being coprime.
e So ¢ = cazx + cby.

e Now write ¢ = kb and ¢ = fa, and substitute them in the opposite parts
of the previous line.

o This gives ¢ = (kb)ax+ (¢a)by, and ab definitely divides both parts of this,
so it divides the whole thing by our earlier proposition about divisibility.

We leave the second as an exercise (Exercise 2.5.19). |

It’s also useful to try to find counterexamples! Can you find an example
where ged(a,b) # 1, a | ¢ and b | ¢, but ab does not divide ¢? (See Exer-
cise 2.5.20.)

2.5 Exercises

1. Try stating and proving the division algorithm (Theorem 2.1.1) but for
b<0.

2. Can you find an n such that the possible remainders of a perfect square
when divided by n are all numbers between zero and n — 1?7 If you can,
how many different such n can you find? If not, can you prove there are
none?

3. Write the ged of 3 and 4 as a linear combination of 3 and 4 in three
different ways. (Hint: trial and error.)

4. You can define the ged of more than two numbers as the greatest integer
dividing all of the numbers in your set. So, for instance, ged(20, 30, 70) =
10. Calculate the ged of some hard-looking sets of three numbers by listing
divisors.
With Sage you can calculate arbitrary geds like this, so you can check
your work in this problem using the same command as before, but with
slightly different syntax.

gcd ([3800,7600,1900])

1900

5. Find the gcd of the four numbers 1240, 6660, 15540, and 19980 without
Sage.

6. Prove that ged(a,a +2) =1 if a is odd and ged(a,a + 2) = 2 is a is even.

7. Let a be a positive integer. What is the greatest common divisor of a and
a+ 17 Prove it.

8. Use the Euclidean algorithm to find the gcd of 51 and 87, and then to
write that gcd as a linear combination of 51 and 87.
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9. Define the least common multiple of a and b to be the smallest positive
number which is divisible by both a and b. Prove that the least common
multiple of @ and b is ab precisely when a and b are coprime.

10. Find the ged of 151 and 187 using the Euclidean algorithm, then write the
gcd as a linear combination of these two numbers in two different ways.

11. Find the ged of 500000001 and 5000001 in any way you see fit other than
asking someone else.

12. In the following interact you can explore the gcd of numbers of the form
5-10™ + 1 for various n. Does the pattern you see continue? How would
you find a counterexample, how might you prove it?

@interact
def _(m=(3,[1..20]1),n=(2,[1..20])):
pretty_print(html("The_gcd_of_${}$_and_${}$_is._
${}$".format (5%x10*m+1, 5x10*n+1,
gcd (5%10*m+1,5%10*n+1))))

13. Find the ged of three four digit numbers, none of which is divisible by ten.

14. To make the proof of the Euclidean algorithm, Algorithm 2.3.3, very com-
plete, one would want to use induction to replace “and so forth” verbiage.
Do so for practice with induction.

15. For nonzero a, b, ¢, prove that if a and c are coprime, and likewise b and ¢
are coprime, then ab and c¢ are coprime. (Hint: use the Bezout identity.)

16. If ged(a,b) = d and k > 0 is an integer, prove a formula for ged(ka, kb).

17. You probably know the Fibonacci numbers 1,1,2,3,5,8, - - -, where f,,12 =
frnt1 + frn and we number as f; =1, fo = 1. Try applying the Euclidean
algorithm to a pair of consecutive Fibonacci numbers? As a function or
formula of n, how long does it take? (For a more general approach see
[E.2.1, Exercises 1.17-1.19].)

18. Try the above exercise again, but with a variant of the Fibonacci numbers
where fn4o = fn+1 + 2fn. This would start 1,1,3,5,11,21,---.

19. Prove the second piece of Proposition 2.4.10 that if ¢ and b are coprime,
and if a | be, then a | ¢. (Hint: use the Bezout identity again. Later
you will have the opportunity to prove this with more powerful tools; see
Exercise 6.6.6.)

20. Find examples that contradict the conclusions of Proposition 2.4.10 if a
and b are not coprime (i.e. share a factor greater than 1).

21. Verify that ged(a,b) = ged(—a, —b). (Contributed by Shawn Feng.)

The next two exercises consider a related concept to relatively prime.

22. We discussed relatively prime numbers in this chapter. Write down
your own definition of a prime number. Then compare it with the
book, a few internet sources, or some other authoritative source. Should
1 be considered prime? What about —17

23. Secarch books and/or the Internet and find at least three different
proofs that there is no largest prime number. (Ours, Theorem 6.2.1,
is the oldest one we know of.) You don’t have to understand all the
details; they should be fairly different from each other, though. Do
any of the proofs generate all primes in order?



Chapter 3

From Linear Equations to (Geom-
etry

So far, we have mostly investigated topics that will seem familiar even to the
high school student; for instance, the gcd shows up in adding fractions with
unequal denominators.

What makes number theory so interesting is that even a slight change in the
questions we ask, or the way in which we approach them, can yield completely
unexpected insights.

In this section, we will begin this process by going from the simple ques-
tions we started with into more subtle ones, largely motivated by a surprising
connection with geometry.

3.1 Linear Diophantine Equations

The first goal for this chapter is to completely solve all linear Diophantine
equations (of two variables). This is the question of finding solutions z,y € Z
of equations of the generic form

ax + by = c for given a, b, c € Z.

Historical remark 3.1.1 Diophantine and his equations. These equa-
tions have been studied since the late Roman era, most notably by the (Greek
speaking) mathematician Diophantus, from whom we derive their name, though
we know little else about him. One of the most notable things about Diophan-
tus’ work is that it incorporates a proto-algebra which begins to use certain
Greek letters for an unknown — an advance which, unfortunately, did not go
anywhere for over a millenium.

While Diophantus studied much more complicated equations as well (as
we will see), methods for solving equations like 6z + 4y = 2 were pursued
throughout antiquity and the medieval period — see Historical remark 2.4.7.

There are several main cases involved in the solution, as we see in the
following theorem.

Theorem 3.1.2 Solutions of Linear Diophantine Equations. Given
integers a, b, c, we wish to find all integer solutions x,y to ax + by = c.

Let d = ged(a,b), unless a = b = 0 in which case let d = 0. We will consider
cases by ease of generating solutions.

1. When ¢ is not a multiple of d (including if ¢ # d = 0), there is no
solution.

19
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2. When a or b is zero (but not both) and the nonzero one divides ¢, there
are infinitely many solutions that require little work to obtain.

3. When a,b # 0 and ¢ = d, there are infinitely many solutions, but you
will need to first obtain one solution in order to generate the others.

4. When a,b # 0 and c is a nontrivial multiple of d, there are infinitely
many solutions that are easiest to generate by means of a solution to
ax + by = d.
Proof. The details are in the following subsections.

1. When c is not a multiple of d: Subsection 3.1.1

2. When a or b is zero: Subsection 3.1.2

3. When ¢ = d: Subsection 3.1.3

4. When c is a nontrivial multiple of d: Subsection 3.1.4

You should definitely follow the steps with specific simple numbers to see how
each proof works. Examples 3.1.3 and 3.1.4 are good models. |

3.1.1 If ¢ is not a multiple of ged(a,b)

When d # 0, our previous theorems say that solving ax + by = ¢ is impossible.
Can you see why? For instance, try it out with a =6, b =9, and ¢ = 5.

Reading the statement of Theorem 3.1.2 carefully shows that this case
includes the situation where a = 0 = b but ¢ # 0. It is also an easy exercise
to show this is impossible. You can provide full details of all these things in
Exercise 3.6.8. Don’t forget the division algorithm!f

3.1.2 If ¢ or b is zero

Suppose b = 0 — in which case ged(a,b) = a. (Try a = 55 as an example.)
Then we are just solving ax = ¢, so the equation is true because we already
assumed that d = a | ¢. All pairs (g, y) with integer y are solutions.
If @ = 0 the answer is analogous; write it down for yourself as practice!

3.1.3 If ¢ = ged(a, b)

Suppose a,b # 0 and ¢ actually is the gcd of @ and b ... then there is some
work to do. Follow along with a = 60, b = 42, and ¢ = 6 if you wish.

Your first step should be to get that gcd d via the Euclidean algorithm.
Then you will be able to go backwards (i.e. using the Bezout identity 2.4.1) to
get one solution (z¢, yo). That is important, since now at least one azo+byy = ¢
is known.

The next step is the last one; write down the entire solution set:

b
x:onran,y:yof%n forneZ!

There are three comments to make to finish the proof.

o First, look at the structure of the solutions. The constants a and b have
switched their ‘affiliation’ from z and y to y and z. Also note that = and
y have + involved. It doesn’t really matter which is which (switch —n
for n to see why), but if they have the same sign it is wrong. (When in
doubt, try something and then check to see if the answers are right.)
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e It’s easy to check that any particular solution works.

b a
a<x0+dn>+b(y0dn

and axg + byg = ¢ by hypothesis.

) . abn b abn
= I’ — J—
0 d Yo d

e Why does this give all solutions? First note that since the only common
divisors of a and b are divisors of d, the integers g and § must be relatively
prime.

Now pick another solution z = 2/, y = v/, and let’s show it has the desired
form. Start with
ax’ +by = c=axg+ byo

and gather terms so that

a b
g(x/ —x0) = —g(?/ —%0)-

Since % divides the right side, it divides the left side as well. Now we use

Proposition 2.4.10 and the observation in the previous paragraph to see

% must divide the 2’ — zg factor of the left-hand side, so that there exists

an integer k such that

b .
2z’ — z¢ = k=, which means 2’ = z¢ + k—,

d d
which is exactly what we just said was the form of all solutions.

Example 3.1.3 An easy example: 6z + 4y = 2. Trial and error tells us
that 6z + 4y = 2 can be solved with ¢y = 1,y = —1. Thus the full answer is

—1—|—4 =-1 6
T = g™ U= 5"

which we may rewrite as

r=14+2ny=—-1-3n,n € Z.

3.1.4 If c is a nontrivial multiple of the gcd

Finally, what if ¢ is not the greatest common divisor but we still have solutions
because d | ¢? (Follow along in Example 3.1.4 if you wish.)

o First, we can write ¢ = dm, where again d is the greatest common divisor.

e In Subsection 3.1.3 we just saw that there must be a solution for ax+by =
d. Take any solution (g, yo) to this equation.

e By hypothesis, d = axg + byp. Now multiply this by m to obtain
¢ =dm = axom + byom = a(xem) + b(yom)

which shows = = zgm,y = yom is a solution to the original equation
ax + by = c.
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e Finally, the surprise is that the full solution has the same form as in
Subsection 3.1.3:

a
Jc—azom—i—gn,y—yom—gn

It is easy to check and the proof is very similar to the case ¢ = d (see
Exercise 3.6.9). Intuitively, the reason you don’t need the m in the
fractions is because they will just cancel anyway.

Example 3.1.4 Try to do 152 — 21y = 6, a slightly harder one. (Hint: d = 3;
what are ¢ and d? ]

3.2 Geometry of Equations

But just proving things are true and using them isn’t enough. Why is the
theorem true, intuitively? I believe the right way to approach this is with
geometry, as in the following figure. Then try out the interactive cell below to
see how things change with different coefficients.

-0 0 0 0B

-10 4

Figure 3.2.1 Solutions to 3z + 2y = 10 with z,y < 10

@interact
def _(a=slider(-10,10,1,6),b=slider(-10,10,1,4),
c=slider(-20,20,1,2),viewsize=slider(3,20,1,5)):
p = plot(-(a/b)*x+c/b,-viewsize,viewsize,
plot_points=200)
lattice_pts=[[i,j] for i in [-viewsize..viewsize] for j
in [-viewsize..viewsize]]
plot_lattice_pts = points(lattice_pts,rgbcolor=(0,0,0),
pointsize=2)
if mod(c,gcd(a,b))==0:
line_pts = [coords for coords in lattice_pts if
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axcoords[@]+b*coords[1]==c]
if line_pts==[]:
plot_line_pts = Graphics()
else:
plot_line_pts
points(line_pts,rgbcolor=(0,0,1),
pointsize=20)
pretty_print(html("Showing_solutions_to_$%sx+%sy=%s$._
in_this_viewing_window"%(str(a),str(b),str(c))))
show(ptplot_lattice_pts+plot_line_pts,
figsize=[5,5], xmin=-viewsize,b xmax=viewsize,
ymin=-viewsize,ymax=viewsize)

else:

pretty_print(html("The_gcd_of_$%s$_and_$%s$_ is_$%s$, .
which_does_not_divide._
$%s$,"%(str(a),str(b),str(gcd(a,b)),str(c))))

pretty_print(html("so_no_solutions_to.
$%sx+%sy=%s$"%(str(a),str(b),str(c))))

show(p+plot_lattice_pts,
figsize=[5,5],xmin=-viewsize, xmax=viewsize,
ymin=-viewsize,ymax=viewsize)

The little gray dots in the graphic above are called the integer lattice;
this is the collection of all the intersections of the lines y = m,x = n for all
integers m,n. There are many mathematical lattices (many quite intimately
connected to number theory), but we will focus on this one in this text.

Definition 3.2.2 The integer lattice is the set of points (m,n) for m,n € Z.
O
In the graphic, for instance (—2,3) is probably visible; on the other hand,
the point (—1,1/2) should not have a little dot, because it doesn’t have integer
values.
This is a good occasion to remind the reader of some familiar terms and
notation.

Definition 3.2.3 We consider any ratio of integers g with ¢ # 0 to be a

rational number, with equivalent ratios such as % = % identified as in school
mathematics!. The set of all rationals is denoted Q. If a (real, R) number is
not writeable in these terms, it is called an irrational number. O
To return to the lattice, since ax + by = ¢ may be thought of as a line (in
fact, the line
_a c
V=Tt
with slope —%), we now have a completely different interpretation of the most
basic number theory question there is, the linear Diophantine equation. It is
simply asking, “When (for what a, b, ¢ combinations) does the line hit this
lattice? If it does, can you tell me all intersections?” If you play around with
the sliders you will quickly see that things work out just as promised in the
theorems.
But let’s go a little deeper. There are three interesting insights we can get.

e First, Theorem 3.1.2 now expresses a very mysterious geometric idea,
depending on whether
ged(a,b) | ¢

IThat this is meaningful can be made rigorous using equivalence classes as we will do
with modular arithmetic in Proposition 4.3.2, but that is outside the scope of this course.
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If so, then this line hits lots of the lattice points; if not, the line somehow
slides between every single one of them! You can check this by keeping
a, b the same and varying c in the interact above.

e Secondly, it makes the proof of why Theorem 3.1.2 gets all of the answers
much clearer. If you have one answer (for instance, (1, —1)) and go right
by the run and down by the rise in § (our example was a = 6,b = 4),
you hit another solution (perhaps here (—3,5)) since it’s still all integers
and the slope was the line’s slope.

But wait, couldn’t there be points in between? Sure. So make § into

lowest terms (e.g. 3), which would be ZT/ZZ' And this is the ‘smallest’ rise

over run that works to keep you on the line and keep you on integer
points.

e Third, it can help clarify the role of the solution which the Bezout identity
(extended Euclidean algorithm) gives for az+by = c. Namely, as pointed
out in in a 2013 American Mathematical Monthly article by S. A. Rankin
[E.7.21], the “solution provided .. lies nearest to the origin” Try the
interactive cell at the beginning of this subsection to convince yourself of
this!

Although we won’t pursue it, there is a question which this formulation
in an online text brings up. Namely, given that the ‘line’s in question are
themselves only pixellated approximations whose coordinates may not satisfy
ax + by = ¢, what is the connection between the computer graphics and the
number theory? See How to Guard an Art Gallery [E.6.7], Chapter 4, for an
accessible take on this? from a number-theoretic viewpoint, as well as Exer-
cise 3.6.23.

3.3 Positive Integer Lattice Points

Now that we have the geometric viewpoint, here is a more subtle question:

Question 3.3.1 Assume there exists a solution (hence infinitely many) to

ax + by = ¢. How many such solution pairs (z,y) have x and y both positive?

|

This is similar to the conductor question. It is closely related to integer
programming, something with industrial applications.

2As well as several other topics in this text! But you’ll have to read it to find out which
ones.
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Figure 3.3.2 Positive solutions to 3x 4+ 2y = 10
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@interact
def _(a=slider(1,20,1,1), b=slider(1,20,1,1),
c=slider(1,20,1,4)):
ym = c/b + 1
xm = c/a + 1
p = plot(-(a/b)xx+c/b,-1,xm, plot_points = 200)
lattice_pts = [[i,j] for i in [@..xm] for j in [0@..ym]]
plot_lattice_pts = points(lattice_pts,rgbcolor=(0,0,0),
pointsize=2)
if mod(c,gcd(a,b))==0:
line_pts = [coords for coords in lattice_pts if
(coords[0]>0) and (coords[1]1>0) and
(axcoords[@]+bxcoords[1]==c)]
if len(line_pts)==0:
pretty_print(html( 'Solutions_to.
$%hsx+%sy=%s$: '%(str(a),str(b),str(c))))
pretty_print(html( 'No_.positive_lattice_points.
at_all!'))
show(ptplot_lattice_pts, figsize = [5,5], xmin
@, xmax = xm, ymin = @, ymax = ym)
else:
plot_line_pts = points(line_pts, rgbcolor =
(0,0,1), pointsize=20)
pretty_print(html('Solutions_to.
$%hsx+%sy=%s$: '%(str(a),str(b),str(c))))
pretty_print(html('Number_of_positive_lattice.
points_=_" + str(len(line_pts))))
show(p+plot_lattice_pts+plot_line_pts, figsize
[5,5], xmin = @, xmax = xm, ymin = @, ymax
ym)
else:
pretty_print(html('Solutions._to.
$%sx+hsy=%s$: '%(str(a),str(b),str(c))))
pretty_print(html('No_positive_lattice_points_at.
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all!'))
show(p+tplot_lattice_pts, figsize = [5,5], xmin = 0,
xmax = xm, ymin = @, ymax = ym)

Let’s explore this. How many such points are there in the following cases?
Draw pictures by hand, or use the interact above.

e x+y=4,z4+y=52+y=6,...

e 2x+y=4,2v+y=52x+y=6,...

e 2x+2y=4,2x+2y=>52x+2y=6, ...
e zv+ty=4,3x+y=53r+y=6, ...

Can you get any good conjectures?

3.3.1 Solution ideas

If you think about the question a little more carefully together with the picture,
you may realize that we are really asking about how many integer lattice points
lie between the intercepts. So one way to think about an answer would involve
the distance between solutions.

To be concrete, let’s assume that the equation is az+by = ¢, and ged(a, b) =
1. Then, using our technique from last time, from the solution (z,yo) we get
a new solution (xg + b,y0 — @), so the distance between any two solutions is,
by the Pythagorean Theorem,

V(o + ) — zo]2 + [(yo — a) + yo]2 = Va2 + 2.

Our strategy is to ask:

e How many times does that distance fit between the intercepts of the line?

Does that strategy make sense? It doesn’t give an exact answer, but should
give a good ballpark estimate.
Let’s calculate these things. You may want to follow it a =3, b =2, ¢ = 4.

 The intercepts are £ and , respectively.

e Using the Pythagorean Theorem again, we see that the whole length

available is
() - v

a b/  ab
e The ratio of this total length and the length between solutions is thus

<
ab*

That’s a nice pat answer. There are two problems with it, though!

1. There is no guarantee that —= is an integer! In fact, it usually won’t be.

For instance, with 2z + 3y = 10, 21—% ~ 1.67. So should the number of

points be bigger than or less than this?

2. Secondly, even so it’s not clear what the precise connection between -

and the actual number of points is. 2z 4+ 3y = 5 has one, and 2x+3y =7

has one, but 2z + 3y = 6 doesn’t. Yet — is about equal to one for all

three of these. In fact, the number of points is thus not even monotone
increasing with respect to ¢ increasing, which is rather counterintuitive.

We will have to deal with each of these situations.
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3.3.2 Toward the full solution
We can deal with each of these problems. To do so, we introduce a new function:

Definition 3.3.3 Greatest integer function. The greatest integer function
(also called the floor function) is the function which takes a real number x and
returns the largest integer below it (or equal to it). We notate it |z]. O

Example 3.3.4 A few examples should suffice to understand it:
|15/ =1,|1] =1,[1.99] =1,[0.99] =0,[—.01] = —1.
O

Now let’s use this to rectify our problems.

1. To take care of the integer problem, we will just consider n = Lﬁj, the

greatest integer function applied to —=.

2. Secondly, we simply recognize that there isn’t a nice formula. On average,
we should expect n lengths between integer points along the line segment
in question (and hence as many as n + 1 lattice points, since a partition
of n intervals has n + 1 endpoints associated to it).

Rather than give a general formula, we examine individual cases to show
what to expect. This applet can help supplement trying it by hand.

@interact
def _(c=[5..12]):

a =2
b =3
ym = c/b + 1
xm = c/a + 1

p = plot(-(a/b)*x+c/b,-1,xm, plot_points = 200)
lattice_pts = [[i,j] for i in [0..xm] for j in [0@..ym]]
plot_lattice_pts =
points(lattice_pts,rgbhcolor=(0,0,0),pointsize=2)
if mod(c,gcd(a,b))==0:
line_pts = [coords for coords in lattice_pts if
(coords[@]1>0) and (coords[1]>0) and
(a*coords[@]+bxcoords[1]==c)]
if len(line_pts)==0:
pretty_print(html('Solutions_to.
$%hsx+%sy=%s$: '%(str(a),str(b),str(c))))
pretty_print(html('No_positive_lattice_points_at._

all! "))
show(p+plot_lattice_pts, figsize = [5,5], xmin =
0, xmax = xm, ymin = @, ymax = ym)

else:
plot_line_pts = points(line_pts, rgbcolor =
(0,0,1),pointsize=20)
pretty_print(html('Solutions_to.
$%hsx+%sy=%s$: '%(str(a),str(b),str(c))))
pretty_print(html('Number_of_positive_lattice.

points_=_"' + str(len(line_pts))))

show(p+plot_lattice_pts+plot_line_pts, figsize =
[5,5], xmin = @, xmax = xm, ymin = @, ymax =
ym)

else:
pretty_print(html('Solutions._to.
$%sx+%sy=%s$: '%(str(a),str(b),str(c))))
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pretty_print(html('No_positive_lattice_points_at.

all!'"))
show(ptplot_lattice_pts, figsize = [5,5], xmin = 0,
xmax = xm, ymin = @, ymax = ym)

Let’s focus on the case where a,b > 0 are relatively prime, such as in the
graphic with 2z + 3y = c¢ for various c¢. Naturally, if ¢ < 6 in this specific
example, then n = {éj = 0, so one might not expect many points. What
about in general?

1. The easiest case is when just one of the intercepts is a lattice point.
Beginning at that point, there is definitely room for the full n lengths to
appear, and you're guaranteed to get n lattice points, because we just
said the other intercept isn’t a lattice point, so the nth one must appear
before that point. So the formula is just plain old

"= L)
~ Labd”
This will happen (where n = 1) with 2243y = 8 (or 9 or 10), for instance.

2. If neither ¢/a nor ¢/b is an integer, then you could get n or n+ 1 lattice
points. There’s no nice formula beyond this, and often examples will
be like 22 + 3y = 7 with just one lattice point as ‘expected’. When the
extra point ‘fits’ is in examples like the case 2x + 3y = 11, where we have
11 L 11

55— ﬂJ very close to one, and you do get L%J 41 = 2 positive lattice

points here.

3. Finally, it’s also possible for ‘not enough’ lattice points to fit; for example,
2z + 3y = 12 jumps back down to L%J — 1 =1 points! This situation
(not reaching n points) can occur when both the z- and y-intercepts
actually are lattice points, because the intercepts by definition do not
have positive coordinates. So if ¢/a and ¢/b are both integers, then we

get precisely
c
=[5
" ab

lattice points.

As a side note, the number of points not being a monotone nonincreasing
function of ¢ should always be expected when c¢ transitions to being a multiple
of ab, such as also from 2x 4+ 3y = 5 to 2x + 3y = 6. In fact, since the closest
solution to the origin of ax + by = —1 must be no more than one half the
usual distance va? + b2 away (cf. also [E.7.21]), all (positive) solutions of
az + by = kab will yield (positive) solutions to ax + by = kab — 1, as will one
of the intercepts. See Exercise 3.6.24 to fill in the details.

The excellent book The Geometry of Numbers [E.4.16, Section 2.2] gives
many more details. For instance, if ged(a, b) # 1, it is not too hard to show that
any such line with respect to lattice points is the same as a line o’z + b’y = ¢/
for which ged(a’,b") = 1. Which line would that be?

3.4 Pythagorean Triples

3.4.1 Definition

There are a lot of other interesting questions that one can ask about pure
integers, and polynomial equations they might satisfy (so-called Diophantine
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equations). However, answering many of those questions will prove challenging
without additional tools, so we will have to take a detour soon. But one such
question is truly ancient, and worth exploring more in this chapter.

It is also quite geometric. We just used the Pythagorean Theorem above,
but you’ll note that we didn’t really care whether the hypotenuse was an integer
there. Well, when is it? More precisely:

Question 3.4.1 When are all three sides of a right triangle integers? O
Definition 3.4.2 We call a triple of integers x, %, z such that 2> + 32 = 22 a
Pythagorean triple. O

There isn’t necessarily evidence that Pythagoras thought this way about
them. However, Euclid certainly did, and so will we. For that matter, we
should also think of them as z, y, z that fit on the quadratic curve 2 +9y? = 22,
given z ahead of time.

Let’s try this out for a little bit — on paper or with this applet. When do
we get a triple? (Keep in mind that we will always expect the triple (z,0, z)
and (0, z, z) where 0% + 22 = 22, but that’s not really what we are interested
in.)

@interact
def _(z=(2,[1..100])):
f(x,y)=x"2+y*2-z"2

max = z
p = implicit_plot(f,(x,-1,max),(y,-1,max),plot_points =
200)

lattice_pts = [[i,j] for i in [@..max] for j in [0..max]]
plot_lattice_pts =
points(lattice_pts,rgbcolor=(0,0,0),pointsize=2)
curve_pts = [coords for coords in lattice_pts if
f(coords[0], coords[1])==0]
if len(curve_pts)==0:
show(ptplot_lattice_pts, figsize = [5,5],
aspect_ratio=1)
else:
plot_curve_pts = points(curve_pts, rgbcolor =
(0,0,1),pointsize=20)
show(p+tplot_lattice_pts+plot_curve_pts, figsize =
[5,5], aspect_ratio=1)

3.4.2 Characterizing Pythagorean triples

When exploring, it can seem quite unpredictable for which z there exists a
Pythagorean triple! (We'll return to that question later.) Let’s see what triples
are possible overall.

3.4.2.1 Preliminaries

First, it turns out we really only need to worry about the case when x,y, z are
mutually relatively prime (Definition 2.4.9).

Definition 3.4.3 A Pythagorean triple with x,y, z mutually relatively prime
is called a primitive Pythagorean triple. %

Proposition 3.4.4 Any Pythagorean triple with two numbers sharing a factor
can be reduced to a primitive triple.


http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html
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Proof. If x = 2'a and y = y/a, for instance, then
l‘Q + y2 — (x’)2a2 4 (y/)2a2 _ 22

which means that a? | 22, and hence that a | z as well. The other cases are
similar. (One can prove the last statement with the gcd and Bezout as well,
but I trust you believe it for now. See below in Proposition 3.7.1.) |

So let’s consider just the case of primitive triples. In just a little while we
will discover we have the proof of a result, Theorem 3.4.6.

We can start with very elementary considerations of even and odd. By the
previous proposition, x and y can’t both be even.

I claim they can’t both be odd, either. For if they were, we would have
x=2k+1and y = 2¢+ 1 for some integers k, ¢, and then

(2k+12+ 20+ 1) =4 (K + P+ k+()+2

But this contradicts Proposition 2.1.4 with respect to the remainder of a perfect
square when divided by four.

So we may assume without loss of generality that x is odd and y is even,
(which means z is odd).

3.4.2.2 An intricate argument

We have now reduced our investigation to the following case: we assume that
ged(z,y,2) = 1, that z,z are odd, and that y is even. Now we will do a
somewhat intricate, but familiar, type of argument about factorization and
divisibility.

Let’s rewrite our situation as

y? = 2% — a2,

The right-hand side factors as
22 —2?=(2—2)(z + ).

Certainly z — z and z + = are both even, so that z —z = 2m and z +x = 2n
for integer m,n. But since their product is a square (y2), then that product
2m - 2n = 4mn is also a perfect square. Since y is even, y = 2j for some j € Z
and y? = 452, so mn = j2 is a perfect square.

Let’s look at these mysterious factors m = 5% and n = z";”. Are they
relatively prime? Well, if they shared a factor, then z =n—m and z =m+n
also share that factor. But ged(z, z) = 1, so there are no such factors and

ged (z;x, z—;—x) = ged(m,n) = 1.

As a result, not only do we have j2 = mn, but actually m and n are relatively
prime!

At this point we need what may seem to be an intuitive fact about squares
and division; if coprime integers make a square when multiplied, then they are
each a perfect square. (See Proposition 3.7.2.) So m = p? and n = ¢ for some
integers (obviously coprime) p and g.

This clearly implies that j2 = p?q?, so y = 2pq. In addition, if we go back
to the definitions of m, n above, we obtain z — x = 2p® and z + = = 2¢>.

3.4.2.3 The punch line

Now we can put everything together. We begin with a useful definition.
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Definition 3.4.5 We say two integers p, ¢ have opposite parity if one is even
and the other is odd, and we say they have the same parity otherwise. %

Theorem 3.4.6 Characterization of primitive Pythagorean triples.
For a primitive triple x,y, z, we have

z=p°+¢* z=q¢"—p*, andy=2pq.

Further, since x is odd, p and q must have opposite parity.

Algorithm 3.4.7 We can find all primitive Pythagorean triples by finding
coprime integers p and q which have opposite parity, and then using the for-
mula in Theorem 3.4.6. We can obtain all Pythagorean triples by multiplying
primitive triples by an integer greater than one.

It’s really worth trying to find these by hand; it gives one a very good sense
of how this all works.

Of course, you could generate some by computer as well ...

n=10
Generators=[(p,q) for p in range(1,n) for g in range(p+1,n)
if (gcd(p,q)==1) and not (mod(p,2)==mod(qg,2))]
for pairs in Generators:
X = pairs[1]1*2-pairs[0]1*2; y = 2*xpairs[@]*pairs[1]; z =
pairs[@]*2+pairs[1]*2
print('%s_squared_plus._%s._squared_is_%s._squared.-._
%S ' %(X,y,z,x"2+y*2==2"2))

3 squared plus 4 squared is 5 squared - True
15 squared plus 8 squared is 17 squared - True

15 squared plus 112 squared is 113 squared - True
17 squared plus 144 squared is 145 squared - True

Remark 3.4.8 One can find many infinite subfamilies of Pythagorean triples.
A nice brief article by Roger Nelsen [E.7.18] shows that there are infinitely
many Pythagorean triples giving nearly isosceles triangles (where the smaller
sides are just one unit different). What families can you find?

3.4.3 Areas of Pythagorean triangles
3.4.3.1 Which areas are possible?

Historically, one of the big questions one could ask about such Pythagorean
integer triangles was about its area. For primitive ones, the legs must have
opposite parity (do you remember why?), so the areas will be integers. (For
ones which are not primitive, the sides are multiples of sides with opposite
parity, so they are certainly also going to have an integer area.)

So what integers work? You all know one such triangle with area 6, and
it should be clear that ones with area 1 and 2 can’t work (because the sides
would be too small and because 2,1 doesn’t lead to a triple); can you find ones
with other areas?

n=10

Generators=[(p,q) for p in range(1,n) for g in range(p+1,n)
if (gcd(p,q)==1) and not (mod(p,2)==mod(qg,2))]

for pairs in Generators:
X = pairs[1]*2-pairs[0]*2; y = 2*pairs[@]*pairs[1]; z =
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pairs[@]*2+pairs[1]*2
print('The_primitive_triple_%s_gives_a_triangle_of_area.
%s ' %((x,y,2),x*y/2))

The primitive triple (3, 4, 5) gives a triangle of area 6
The primitive triple (15, 8, 17) gives a triangle of area 60

The primitive triple (15, 112, 113) gives a triangle of
area 840

The primitive triple (17, 144, 145) gives a triangle of
area 1224

It is worth asking why there are no odd numbers in the list so far. In fact,
we can prove quite a bit about these things.

Remember that in a primitive triple, 2 and y can be written as z = ¢% — p?
while y = 2pq, for relatively prime opposite parity ¢ > p. Then the area must
be

pa(a® = p*) = pa(q +p)(q — p).

So can the area be odd? The following proposition helps answer this (Exer-
cise 3.6.15) and many other questions.

Proposition 3.4.9 In a primitive Pythagorean triple given by the formula in
Theorem 3.4.6, the area of the corresponding triangle is pq(q® —p?). In addition,
the four factors of the area

pq(q+p)(q—p)

must all be relatively prime to each other.
Proof. We already know that p and ¢ are coprime, and that this is the correct
formula for the area.

The factors p and p + ¢ must also share no factors, since any factor they
share is shared by (p + q) — p = ¢, but ged(p, ¢) = 1. The same argument will
work in showing that p and ¢ — p are, as well as ¢ and either sum.

If ¢ + p and ¢ — p share a factor, since they are odd it must be odd, and
it must be a factor of their sum and difference 2¢q and 2p. Since the putative
factor is odd, it is coprime to 2, and so we can use Proposition 2.4.10 to say
that it is a factor of both p and ¢, which is impossible unless said factor is 1.

|

So one could analyze a number to see if it is possible to write as a product
of four relatively prime integers as a starting point. For example, the only
way to write 30 in such a way (assuming no more than one of them is 1) is
30=2-3-5-1. Since g+ p must be the biggest, we must set ¢+ p = 5. Quickly
one can see that ¢ = 3,p = 2 works with this, so there is such a triangle. (A
quick exercise is to determine the sides of this triangle.) See Exercise 3.6.16.

Trying to see if an integer is the area of a Pythagorean triangle turns
out to be a very deep unsolved problem. This linked news update from the
American Institute of Mathematics gives some background on the congruent
number problem, which asks the related question of which Pythagorean
triangles with rational side lengths give integer areas. This linked page in
particular is interesting from our present point of view.

3.4.3.2 Which areas are square?

But we can ask another question, which led Fermat (see Historical remark 13.0.4)
to some of his initial investigations into this theory.


http://www.aimath.org/news/congruentnumbers/
http://www.aimath.org/news/congruentnumbers/
http://www.aimath.org/news/congruentnumbers/ecconnection.html
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Question 3.4.10 When is the area of a Pythagorean triple triangle a perfect
square? O

@interact
def _(n=20):
Generators=[(p,q) for p in range(1,n) for g in
range(p+1,n) if (gcd(p,q)==1) and not
(mod (p,2)==mod(q,2))]
list = []
for pairs in Generators:
X = pairs[1]*2-pairs[0]*2; y = 2*pairs[@]*xpairs[1];
z = pairs[0]*2+pairs[1]1*2
if is_square(x*y/2):
pretty_print(html('The_primitive_triple._
$%s,%s,%s$_gives_a_triangle_of_square_area.
$%s$ "% (x,y,z,x*xy/2)))
list.append((x,y,z))
if not list:
pretty_print(html(r"No_triangles_of_square_area_up.
to_$p,q\leq_%s$!"%(n,)))

You'll notice by the empty output that we don’t seem to be getting a lot
of these. In fact, none. What would we need to do to investigate this?

In the previous section, we noted that each of the factors in the area, pq(q®—
p?) = pq(q+p)(q — p), are relatively prime to each other. So if the area is also
a perfect square, then since the factors are coprime, we use Proposition 3.7.2
again to see they themselves are all perfect squares!

Now we will do something very clever. It is a proof strategy, similar to
something the Greeks used occasionally, which Fermat used for many of his
proofs, called infinite descent. We are going to take that (hypothetical)
triangle, and produce a triangle with strictly smaller sides but otherwise with
the same properties — including integer sides and square area! That means
we could apply the same argument to our new triangle, and then the next
one ... But the Well-Ordering Principle (Axiom 1.2.1) won’t allow infinite sets
of positive integers less than a certain number — which yields the name of
the proof technique! Then (by way of contradiction) the original triangle was
impossible to begin with.

So let’s make that smaller triangle!

Proposition 3.4.11 If a primitive Pythagorean triangle with sides x,y,z,
where the hypotenuse is z, has area a perfect square, we can create another
one of strictly smaller hypotenuse length.

Proof. We use the same notation as in Proposition 3.4.9. We know that ¢ + p
and q — p are (odd) squares. Call them u? and v?. That means that we can
write u and v as “F¥ + 25 and “FY — Y22 (which are integers since u and v
are odd).

Letting a = “$* and b = “5%, we have that ¢ +p = (a+b)? and ¢ — p =
(a—0b)2. Then a little algebra (do it slowly if you don’t see it right away) shows
that ¢ = a? + b? and p = 2ab. These are both squares, so a? +b* = ¢ = ¢ (!),

ab __ 2ab _ p

which defines a triangle with area % = =7 = I, another perfect square.

Now let’s compare ¢ and z. We have z = ¢% + p? = (62)2 +p? =ct+p?, s0
that unless p = 0, ¢ is strictly less than z. But p = 0 doesn’t give a triangle at
alll So we have our strictly smaller triangle satisfying the same properties. W

Corollary 3.4.12 No Pythagorean triangles can have area a perfect square.
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Proof. 1f so, we can use the previous proposition infinitely often and violate
Axiom 1.2.1, a contradiction. [ |

Corollary 3.4.13 No difference of nonzero perfect fourth powers can be a
perfect square. That is,

cannot be solved in positive integers.

Proof. In the proof of the proposition, we really showed that there is no pair
p and q of (coprime) squares such that ¢> — p? is also a perfect square 2; that
is what we started with, after all. So, if p = u? and ¢ = v? we have that

is impossible. |
In Exercise 3.6.17 you will use this to prove the famous first case of Fermat’s
Last Theorem: There are no three positive integers x,y, z such that

od gyt =21

See also Subsection 14.2.2.

See [E.5.9] and nearly any generalist math journal for a lot more information
on Pythagorean triples; the search is the reward!

3.5 Surprises in Integer Equations

This chapter has discussed linear and quadratic Diophantine equations. As
you can see, even relatively simple questions become much harder once you
have to restrict yourself to integer solutions. And doing it without any more
tools becomes increasingly unwieldy.

But there is one final example of a question we can at least touch on.
Recall that Pythagorean triples come, at their heart, from the observation
that 32 + 42 = 52. This is an interesting coincidence of powers involving
nearby numbers, in this case perfect squares. So too, we can notice that 32
and 23 are only one apart, and 52 and 3 are only two units apart; a perfect
square and a perfect cube are close together.

As usual, we can think of this graphically, using the integer lattice.

Figure 3.5.1 Solutions to 23 = 32 — 1
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@interact
def _(k=(-1,[-25..5])):
f(x,y)=y*2-x"3+k
p = implicit_plot(f,(x,-4,4),(y,-8,8),plot_points = 200)
lattice_pts = [[i,j] for i in [-4..4] for j in [-8..8]]
plot_lattice_pts =
points(lattice_pts,rghbcolor=(0,0,0),pointsize=2)
curve_pts = [coords for coords in lattice_pts if
f(coords[0@], coords[1])==0]
if len(curve_pts)==0:
show(ptplot_lattice_pts, figsize = [5,5],
aspect_ratio=1)
else:
plot_curve_pts = points(curve_pts, rgbcolor =
(0,0,1),pointsize=20)
show(p+tplot_lattice_pts+plot_curve_pts, figsize =
[5,51)
if k>0:
pretty_print(html("Solutions_of_$x*3=y*2+%s$_in_this_
viewing_window"%(k,)))
if k<0:
pretty_print(html("Solutions_of_$x*3=y*2-%s$_in_this_
viewing_window"%(-k,)))
if k==0:
pretty_print(html("Solutions_of_$x%*3=y*2$_in_this_
viewing_window"))

The general form 23 = y? + k in the preceding interact can be known both
as as a Bachet equation or Mordell equation. We will use the latter for the
general form and reserve the former only for the special case k = 2, where a
cube and square are two apart.

Historical remark 3.5.2 Bachet de Méziriac. We will learn more about
Mordell in Section 15.3. André Weil in [E.5.8] describes “Claude Gaspard
Bachet, sieur de Méziriac” as a “country gentleman ... no mathematician [who
somehow] developed an interest in mathematical recreations”, but who in the
end provided “a reliable text of Diophantus along with a mathematically sound
translation and commentary.”

Just like triangles of Pythagorean triples, this equation is connected to
incredibly deep mathematics. The Bachet/Mordell equation connects directly
to objects called elliptic curves. Given their importance in cryptography
and theory, there is plenty of reason to study such equations; for instance,
see [E.4.19, Appendix A] for the connection between congruent numbers (and
hence Pythagorean triples) and elliptic curves. Studying them will take us too
far afield, unfortunately.

However, some equations of the form z® = y? + k are solvable by more ele-
mentary means. Here are some brief examples to whet your appetite; another
such is Proposition 7.6.3. See Section 15.3 for more details on this indepen-
dently interesting topic.

Historical remark 3.5.3 Bachet equation. We already saw that for
k = 2 we get the solution 25 4+ 2 = 27. The history is interesting; Bachet
himself, in his translation and commentary on Diophantus, talked about finding
rational solutions to what is now ‘his’ equation. Fermat asked the English
mathematician John Wallis (most famous for his infinite product for 7 and for
a nasty controversy with Thomas Hobbes) whether there were other solutions,


https://en.wikipedia.org/wiki/Wallis_product
https://www.press.uchicago.edu/ucp/books/book/chicago/S/bo3640378.html
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and implied there were no others. Euler proved this is the only solution, but
using some hidden assumptions so his proof was incomplete; see Fact 15.3.5.)

Example 3.5.4 When k = —1, Euler’s proof in 1738 that 9—1 = 8 is the only
nontrivial solution is correct, however. He uses the same method of infinite
descent we saw in Proposition 3.4.11. (He even shows that there aren’t even
any other rational number solutions to 2 = y? — 1, all in the midst of a paper
actually about demonstrating Exercise 3.6.17.) (|
This is also related to a very old question which was called Catalan’s con-
jecture, yet again related to these funny little coincidences about powers of
nearby numbers. Try exploring the question with the Sage cell following it.

Question 3.5.5 Catalan’s Conjecture. Eight and nine are consecutive
perfect (nontrivial) powers. Are there any others? |

@interact
def _(end_range=10):
pretty_print(html("Solutions_through_numbers_and_powers.
$%s$"%end_range))
print([(x,p,y,q) for x in range(1,end_range) for y in
range (1,end_range) for p in range(2,end_range) for g
in range(2,end_range) if x*p+1==y*ql)

Historical remark 3.5.6 Catalan’s conjecture — solved. This was called
Catalan’s conjecture because, as of 2002, the fact that there are no other such
powers is Mihailescu’s Theorem! The history of this question goes back to the
1200s and Levi ben Gerson. This article by Ivars Peterson and [E.4.18] have
nice overviews of many important pieces of its history, and Wolfram MathWorld
has an accessible introduction to the mathematics.

3.6 Exercises

For each of the following linear Diophantine equations, either find the form of
a general solution, or show there are no integer solutions.

1. 21z + 14y = 147 2. 2lx+ 14y =146
3. 30x+47y =-11 4. 30z +47y=2
5. 4dx—6y="T7 6. 4dx—6y="78

7. Find all possible solutions to the question in Exercise 2.5.10, now that we
have Theorem 3.1.2.

8. Confirm all details in Subsection 3.1.1, including which theorem applies
and the case a = b= 0.

9. Check the details and complete the proof in Subsection 3.1.4.

10. Find all simultaneous integer solutions to the following system of equa-
tions. (Hint: do what you would ordinarily do in high school algebra or
linear algebra! Then finish the solution as we have done.)

z+y +z =100
x + 8y+502=156

11. Compute the number of positive solutions to the linear Diophantine equa-
tion 62 + 9y = c for various values of ¢ and compare to the three-case
analysis at the end of Subsection 3.3.2.


http://eulerarchive.maa.org/pages/E098.html
https://web.archive.org/web/20090219013305/http://www.maa.org/mathland/mathtrek_06_24_02.html
http://mathworld.wolfram.com/CatalansConjecture.html
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

Explore the patterns in the positive integer solutions to ax + by = c situa-
tion in Section 3.3. For sure I want you to do this for the ones I mention
there, but try some other values of ¢ and see if you see any broader pat-
terns!

Prove that any line axz+by = ¢ which hits the integer lattice but ged(a, b) #
1 is the same as a line o’z + b’y = ¢’ for which ged(a’, V') = 1, and explain
why that means that without loss of generality Theorem 3.1.2 doesn’t
need any more explanations.

Find a primitive Pythagorean triple with at least three digits for each
side.

Use Proposition 3.4.9 to prove that a Pythagorean triple triangle cannot
have odd area.

Prove that 360 cannot be the area of a primitive Pythagorean triple tri-
angle.

Find a way to prove that z* + y* = 2* is not possible for any three

positive integers x,y, z. (Hint: use Corollary 3.4.13; this exercise needs a
little cleverness.)

We already saw that if z,y, z is a primitive Pythagorean triple, then ex-
actly one of x,y is even (divisible by 2). Assume that it’s y, and then
prove that y is divisible by 4.

Under the same assumptions as in the previous problem, prove that ex-
actly one of x,y, z is divisible by 3. (Combined with the previous exercise,
this proves that every area of a Pythagorean triple triangle is divisible by
6. Is it also true that exactly one of x,y, z is divisible by 57)

A Pythagorean triple satisfies 22 + 32 = 22. Explore patterns for triples
of positive integers which satisfy z? — xy + y? = 22. If Pythagorean
triples correspond to right triangles, what sort of triangles do these triples
correspond to?

Find a (fairly) obvious solution to the equation m™ = n™ for m # n. Are
there other such solutions?
Show that

ged(x,y)* = ged(2®, zy, y*)
which we use in Proposition 3.7.2. Y