
By Karl-Dieter Crisman

NUMBER THEORY
In Context and Interactive

Number Theory
In Context and Interactive

Number Theory
In Context and Interactive

Karl-Dieter Crisman
Gordon College

July 20, 2021

About the Author Karl-Dieter Crisman has degrees in mathematics from
Northwestern University and the University of Chicago. He has taught at a
number of institutions, and has been a professor of mathematics at Gordon
College in Massachusetts since 2005. His research is in the mathematics of
voting and choice, and one of his teaching interests is (naturally) combining
programming and mathematics using SageMath. He has given invited talks on
both topics in various venues on three continents.

Other (mathematical) interests include fruitful connections between math-
ematics and music theory, the use of service-learning in courses at all levels,
connections between faith and math, and editing. Non-mathematical interests
he wishes he had more time for include playing keyboard instruments and ex-
ploring new (human and computer) languages. But playing strategy games
and hiking with his family is most interesting of all.

Edition: 2021/7 Edition

Website: math.gordon.edu/ntic

©2011–2021 Karl-Dieter Crisman

The text (and most images) is (currently) licensed under a Creative Commons
Attribution-NoDerivatives 4.0 International License. In addition, several im-
ages are utilized under non-commercial licenses, so the work as a whole may
not be distributed in commercial form.

http://www.sagemath.org
http:/\penalty \exhyphenpenalty {}/\penalty \exhyphenpenalty {}math.gordon.edu/\penalty \exhyphenpenalty {}ntic
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

iv

To my students and the Sage community;
let’s keep exploring together.

vi

Acknowledgements

This text evolved over the course of teaching MAT 338 Number Theory for
many years at Gordon College, and immense thanks are due to the students
through five offerings of this course for bearing with using a text-in-progress.
The Sage Math team and especially the Sage cell server have made an inter-
active book of this nature possible online, and the PreTeXt project (formerly
known as Mathbook XML) and MathJax projects have contributed immensely
to its final form, as should be clear. I’m particularly grateful to Rob Beezer’s
answering questions and upgrading PreTeXt capabilities early and often.

In addition, I’d like to thank the many people who found errors or im-
provements since the January 2017 edition. Gordon College MAT 338 stu-
dents Kevin Neil, Holly Gershman, Jess Wild, Julianne McKay, Ethan Kang,
Joshua Yang, Hyunjun Park, Samuel Paquette, King Hunter, Richard Ryzi,
Micah Martin, Dean Tengdin, and Abraham Holleran all contributed. Inter-
net users Pieter Geerkens, Jiekai Zheng, and niwox contributed useful fixes.
Colleagues including Bucknell’s Sally Koutsoliotas, Longwood’s Phillip Poplin,
USF’s Bruce Cohen, KU’s Marge Bayer, Biola’s Joseph DiMuro, Marian’s Matt
DeLong, Maryland’s Todd Rowland, and especially Puget Sound’s Mike Spivey
all found key typos, tacit hypotheses, or broken links for me to fix and im-
prove. Most importantly, George Jennings (emeritus of Cal State Dominguez
Hills) spent many hours making hundreds of detailed suggestions (especially
for clarifying proofs, exercises, and exposition); I gratefully thank him for his
assistance, using ‘new eyes’ to look at text I’ve pored over too many times.

Finally, no acknowledgement would be complete without recognizing the
patience of my family with respect to the days and weeks of travel, from an
hour away in New England to as far away as Cape Town and India, in order to
learn more about Sage and teach using Sage in the classroom. It was always
done with the goal in view of enriching others’ lives and not just my own, and
I hope I have lived up to that promise.

vii

http://www.sagemath.org
http://sagecell.sagemath.org
http://pretextbook.org/
http://www.mathjax.org/

viii

To Everyone

Welcome to Number Theory! This book is an introduction to the theory and
practice of the integers, especially positive integers – the numbers. We focus on
connecting it to many areas of mathematics and dynamic, computer-assisted
interaction. Let’s explore!

Carl Friedrich Gauss, a great mathematician of the nineteenth century, is
said to have quipped 1 that if mathematics is the queen of the sciences, then
number theory is the queen of mathematics (hence the title of [E.5.4]). If you
don’t yet know why that might be the case, you are in for a treat.

Number theory was (and is still occasionally) called ‘the higher arithmetic’,
and that is truly where it starts. Even a small child understands that there is
something interesting about adding numbers, and whether there is a biggest
number, or how to put together fact families. Well before middle school many
children will notice that some numbers don’t show up in their multiplication
tables much, or learn about factors and divisors. One need look no further
than the excellent picture book You Can Count on Monsters [E.6.1] by Richard
Evans Schwartz to see how compelling this can be.

Later on, perfect squares, basic geometric constructs, and even logarithms
all can be considered part of arithmetic. Modern number theory is, at its
heart, just the process of asking these same questions in more and more general
situations, and more and more interesting situations.

They are situations with amazing depth. A sampling:

• The question of what integers are possible areas of a right triangle seems
very simple. Who could have guessed it would lead to fundamental ad-
vances in computer representation of elliptic curves?

• There seems to be no nice formula for prime numbers, else we would have
learned it in middle school. Yet who would have foreseen they are so very
regular on average?

• Taking powers of whole numbers and remainders while dividing are el-
ementary and tedious operations. So why should taking remainders of
tons of powers of whole numbers make online purchases more secure?

This book is designed to explore that fascinating world of whole numbers.
It covers all the ‘standard’ questions, and perhaps some not-quite-as-standard
topics as well. Roughly, it covers the following broad categories of topics.

• Basic questions about integers
1In Wolfgang Sartorius von Waltershausen’s rather lengthy and nearly hagiographic (‘his

undying name ... whom no contemporary nation can place as an equal beside’) biography
Gauss zum Gedächtnis; see the bottom of page 31 at the Internet Archive (link kindly
provided by Neil McKay at the University of New Brunswick).

ix

https://www.youtube.com/watch?v=N-7tcTIrers
https://archive.org/stream/bub_gb_h_Q5AAAAcAAJ#page/n33/mode/2up

x

• Basic congruence arithmetic

• Units, primitive roots, and Euler’s function (via groups)

• Basics of cryptography, primality testing, and factorization

• Integer and rational points on conic sections

• The theory and practice of quadratic residues

• Basics of arithmetic functions

• The prime counting function and related matters

• Connecting calculus to arithmetic functions

Finally, it won’t take long to notice that the way in which this book is
constructed emphasizes connections to other areas of math and encourages
dynamic interaction. (See the note To the Instructor.) It is my hope that all
readers will find this ‘in context and interactive’ approach enjoyable.

To the Student

Hi! Not too many students read this bit in textbooks, but I hope you do, and
I hope you circle stuff you think is important. In pen.

Doing math without writing in the book (or on something, if you’re only
using an electronic version) is sort of like reading much literature (like Shake-
speare or Homer) or many religious texts (like the Psalms or Vedas) without
paying attention to the spoken aspect. It’s possible, and we all may have done
it (some successfully), but it’s sort of missing the point.

So read this book and write in it. My students do. They even like it.
Here are three things that will lead to success with this book.

• You should like exploring numbers and playing with them. If you were
the kind of kid who added

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + · · ·

on your calculator when you were bored to see if there would be an
interesting pattern, and actually liked it, you will like number theory. If
you then tried

2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · · · ·

you will really like it.

• I also hope you are open to using computers to explore math and check
conjectures. As Picasso said, “They can only give you answers” – but
oh what answers! We use the SageMath system, one that will grow with
you and that will always be free to use (for several meanings of the word
free). You don’t have to know how to program to use this, though it’s
useful. Plus, you are using number theory under the hood anyway if you
use the internet much, so why not?

• Finally, you should want to know why things are true. I assume a stan-
dard introduction to proof course as background, but different people
are ready in different ways for this. If you are reasonably familiar with
proofs by induction and contradiction, and have some basic experience
with sets and relations, that is a good start. Some good free resources
online include A Gentle Introduction to the Art of Mathematics [E.3.2]
and Book of Proof [E.3.1].
Some of the proofs will be hairy, and some exercises challenging. (Not
all!) Do not worry; by trying, you will get better at explaining why
things are true that you are convinced of. And that is a very useful skill.
(Provided you are convinced of them; if not, go back to the first bullet
point and play with more examples!)

xi

http://www.sagemath.org
https://opensource.org/osd
https://www.gnu.org/philosophy/free-sw.en.html

xii

Remark 0.0.1 A final note to the student. As a last note before you dig
in, if you think that it is worth exploring the possible truth (see Section 25.3)
of

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + · · · = − 1

12
,

or if as a kid you did

23
45

67
89

···

to see what would happen, then maybe you should become a mathematician.
In that case, click on all links in the text and find a cool problem that interests
you!

To the Instructor

Assuming that the reader of this preface is an instructor of an actual course,
may I first say thank you for introducing your students to number theory!
Secondly of course I’m grateful for your at least briefly considering this text.

In that case, gentle reader, you may be asking yourself, “Why on earth
yet another undergraduate number theory text?” Surely all of these topics
have been covered in many excellent texts? (See the preface To Everyone for
a brief topic list, and the Table of Contents for a more detailed one.) And
surely there is online content, interactive content, and all the many topics here
in other places? Why go to the trouble to write another book, and then to
share it? These are excellent questions I have grappled with myself for the past
decade.

There are two big reasons for this project. The first is reminiscent of Ter-
tullian’s old quote about Athens and Jerusalem; what has arithmetic to do
with geometry? (Or calculus, or combinatorics, or anything?) At least in
the United States, away from the most highly selective institutions (and in my
own experience, there as well), undergraduate mathematics can come across as
separate topics connected by some common logical threads, and being at least
vaguely about ‘number’ or ‘magnitude’, but not necessarily part of a unified
whole.

When I first taught this course, I was dismayed at how few texts really fully
tackled the geometry, algebra, and analysis inherent in number theory. Many
do one or two (especially algebra, since number theory might often be a second
course in abstract algebra), but few attacked all connections. Still, there are
some which do, and I even found Elementary Number Theory by Jones and
Jones [E.2.1] which does a very good job of this, though at a slightly higher
level of sophistication than I found my students ready for. Those familiar with
it will find that my presentation of certain topics (e.g. arithmetic functions,
the zeta function) and some topic order is influenced by it; for certain proofs
(especially in Dirichlet series) the proofs there and in [E.4.6] are the only ones I
could find! I try to point out all such cases, and I have substantively modified
even those in ways more appropriate for typical US undergraduates, as well as
with somewhat different emphases.

Given my first goal, I would have happily used that text with some extra
details for my students, were it not for the magic and wonder of the internet.
How could I not harness this to have my students do approximations to the size
of computations that their browsers are constantly doing as they go shopping
on the web? Having found Sage, I found it hard to avoid using it whenever I
could, and encouraging students to do the same to explore things like Euler’s
ϕ function (as I encourage yours to do in Section 9.2 by hand).

Interactivity and visualization is becoming common currency in mathemat-
ics education. In calculus and lower-level courses this has been true for some

xiii

http://www.sagemath.org/

xiv

time, but even in abstract algebra there are books like Nathan Carter’s Vi-
sual Group Theory [E.6.2], specialized software projects like PascGalois, and
many general applets (including ones from the Wolfram Demonstrations or
Maple Möbius projects). This has been coming into number theory too, natu-
rally, beyond the programming projects many books have included. An early
number theory text involving explicit programs (and a CD-ROM!) written for
extensive course work was [E.4.7], and the first book invoking extensive use
of Sage commands was probably the founder’s own [E.2.3]. Very recently (in
fact, after the unofficial release of this text) the book [E.2.10] (which has simi-
lar content and aims to the current work, though at a somewhat higher level)
appeared in second edition with complete SageMath worksheets on its website,
which can be used on CoCalc (or on a local Docker version of CoCalc). Hence
the time is more than right for a fully online resource.

So my second goal for this book is to bring online interactivity into a
mainstream number theory text. It is wonderful to see students with an interest
in the arts respond to the dynamic visualization in Sage interacts, while those
with interests in computer science love to ask questions about how to view the
source code or some of the details of representing large numbers. And all the
students have access to computations from simple ones involving the aliquot
parts function to the full Riemann formula for the prime number function.

Why should you not use this book? First, I make few claims to topical or
mathematical originality2. The ordering is somewhat different than usual, I
include a few topics I haven’t seen addressed adequately very often in truly
introductory texts (notably a beginning of the geometry of numbers and long-
term averages of arithmetic functions), and I have created many visualization
and exploration oriented applets.

At the low end of other reasons you might not use it, some topics of great
importance which are perfect for beginners (especially partitions and contin-
ued fractions) are absent. You can’t cover everything in a semester, after all,
and I have shied away a bit from more purely combinatorial stuff, though I
hope to steadily add slightly more in successive editions3. At the high end of
preparation, I do not and cannot expect a course in abstract algebra or complex
(or even real) analysis for my students, and so this book reflects that reality.
Knowing about proofs by induction and contradiction, as well as basics of sets,
integers, and relations, is what I can assume. In fact, I have great recommen-
dations for you if you know all your students can do contour integration or are
ready to define a number field – see References and Further Resources. Finally,
I don’t have a corporation behind me.

On the other hand, I think you should consider using it. This is class-
tested material for standard topics (plenty for a semester-long course at most
institutions), and not beholden to any interests beyond being a good resource
for instructors in ‘mainstream’ undergraduate math programs in the United
States. There are plenty of exercises (though not a surfeit, so feel free to
supplement), fun links, and hopefully a quirky and engaging sense of wonder
and exploration. The price is also right. Finally, I don’t have a corporation
behind me.

Should you choose to use this text, I have only a few recommendations for
how to use it (see also my notes To the Student).

2I have tried hard to credit any non-standard proofs which are essentially in the form
I found them, as well as many of those which I have modified for my students’ needs. I
appreciate forbearance (and notification!) if I have missed any such citations so that I may
correct them.

3See [E.2.11] for a nice introduction in a more combinatorial vein, particularly to partition
identities.

http://faculty.salisbury.edu/~despickler/pascgalois/
http://tvazzana.sites.truman.edu/introduction-to-number-theory/
https://cocalc.com
https://github.com/sagemathinc/cocalc-docker

xv

• Encourage in-class exploration. Put away books, turn off the computers,
and just try stuff out. Create your own worksheet to explore (say) the
Möbius function or solutions to linear Diophantine equations. In short,
make sure your students see mathematics as a dynamic enterprise – par-
ticularly because so many of the theorems involved are highly abstract.

• Less is more. I will often pick one representative proof in a section,
project it on the screen, and then really follow it through on an adjacent
blackboard with specific numbers (such as p = 13, which is just big
enough to be interesting but not so big as to be overwhelming).

• Use computer examples judiciously. Sage (or any other system) can just
as easily become a Delphic oracle (pun intended) spewing forth cryptic
utterances as a useful tool to help create and solve conjectures. You’re
possibly doing your students a disservice if you don’t use it at all, but
despite having written this text with Sage in mind throughout, I don’t
regard its use as completely essential. Number theory in this form has
been around since Euclid, so the past thirty years of mass-market com-
putation is a drop in the bucket of time. If you want a true inquiry-based
approach, I like the text Number Theory through Inquiry [E.2.5] a lot.

• Note the Sage notes (full list at the List of Sage notes). Especially if you
have more than just a few students who have a little programming ex-
perience, this is a perfect course to find projects to challenge them with,
such as those in the venerable [E.2.4]. The Sage notes gently remind or
give short introductions to some aspects of how to use Sage and Python
(the language Sage is based on). They are not formally structured or
arranged, or comprehensive; if you are looking for this, you should sup-
plement your course with a real basic programming text in Python, such
as [E.3.7] or [E.3.8]. (The already-initiated should note that as of January
2020 this book has been updated to Sage 9 and Python 3, so some com-
mands, especially those involving print(), may not work with certain
earlier versions of Sage.)

• Use the exercises, and ones outside the book if you want. There are exer-
cises for each chapter, of varying difficulty levels (in the grand tradition
of upper-level math texts, I do not provide solutions). In general, assign-
ing daily, collecting weekly seems to be a decent model – though be sure
to give students ample warning as to which ones will be collected! The
last few chapters’ material is more advanced, and there are correspond-
ingly fewer possible exercises. I find this to be a good time for a small
project in the history of number theory; especially if you have students
from several different cultural heritages, having them discover where it
comes up in theirs (it nearly always does) has been a perennial favorite.

There are no sections marked as optional, or table of dependencies, though
these should be pretty similar to most elementary texts. (I do pretty much
everything in my own course, picking results or sections to skip on the fly if
time or the students seem to require this.) Here are some minor suggestions,
though.

• If you are teaching a shorter course or wish to spend more time on some
topic, the chapters on Beyond Sums of Squares and More on Prime Num-
bers are certainly optional in this sense.

• The chapters concerning Points on Curves and Long-Term Function Be-
havior are not optional in my view of number theory, but may be viewed
as ‘selected topics’.

https://www.python.org

xvi

• The introductory (short) chapters 1 and 18 should not be considered
optional, but may be emphasized or not to instructor taste. The point is
just to motivate what we are doing before getting to formal definitions.

• If you don’t like cryptography or believe (like Hardy) that there are no ap-
plications to number theory, you can certainly create a nearly application-
free course by skipping the chapters on An Introduction to Cryptography
and Some Theory Behind Cryptography.

• I don’t consider the last several chapters on the prime counting function
and other arithmetic functions connecting to calculus to be optional, but
I have the luxury of having mostly juniors and seniors for a full semester.
In a quarter course or one aimed more at sophomores (in the United
States), one should still at the very least spend a couple days at the end
of the course talking about these topics, perhaps discussing sections 21.2
and 21.3, and smatterings of Chapter 25.

As a final note, I hope you enjoy using the text as much as I’ve enjoyed
teaching from it. Everyone should have that day where a student’s jaw drops
from a cool theorem displayed visually, or when the students are working so
intently on an in-class project that they don’t even notice the class period end.
It’s been my privilege to have that happen, and my hope is this text can bring
you closer to that goal.

Contents

Acknowledgements vii

To Everyone ix

To the Student xi

To the Instructor xiii

1 Prologue 1

1.1 A First Problem 1
1.2 Review of Previous Ideas 2
1.3 Where are we going? 5
1.4 Exercises . 5
1.5 Using Sage for Interactive Computation. 6

2 Basic Integer Division 9

2.1 The Division Algorithm 9
2.2 The Greatest Common Divisor 12
2.3 The Euclidean Algorithm 13
2.4 The Bezout Identity 14
2.5 Exercises . 17

3 From Linear Equations to Geometry 21

3.1 Linear Diophantine Equations 21
3.2 Geometry of Equations 24
3.3 Positive Integer Lattice Points 26
3.4 Pythagorean Triples 30
3.5 Surprises in Integer Equations 36
3.6 Exercises . 38
3.7 Two facts from the gcd 40

4 First Steps with Congruence 43

4.1 Introduction to Congruence 43
4.2 Going Modulo First 44

xvii

CONTENTS xviii

4.3 Properties of Congruence 46
4.4 Equivalence classes 47
4.5 Why modular arithmetic matters 49
4.6 Toward Congruences. 51
4.7 Exercises . 53

5 Linear Congruences 57

5.1 Solving Linear Congruences 57
5.2 A Strategy For the First Solution 59
5.3 Systems of Linear Congruences 61
5.4 Using the Chinese Remainder Theorem 64
5.5 More Complicated Cases 68
5.6 Exercises . 70

6 Prime Time 73

6.1 Introduction to Primes 73
6.2 To Infinity and Beyond. 76
6.3 The Fundamental Theorem of Arithmetic 78
6.4 First consequences of the FTA 81
6.5 Applications to Congruences 83
6.6 Exercises . 85

7 First Steps With General Congruences 89

7.1 Exploring Patterns in Square Roots 89
7.2 From Linear to General 90
7.3 Congruences as Solutions to Congruences 94
7.4 Polynomials and Lagrange’s Theorem 95
7.5 Wilson’s Theorem and Fermat’s Theorem 97
7.6 Epilogue: Why Congruences Matter 99
7.7 Exercises .101
7.8 Counting Proofs of Congruences102

8 The Group of Integers Modulo n 107

8.1 The Integers Modulo n107
8.2 Powers. .110
8.3 Essential Group Facts for Number Theory112
8.4 Exercises .118

9 The Group of Units and Euler’s Function 121

9.1 Groups and Number Systems121
9.2 The Euler Phi Function124
9.3 Using Euler’s Theorem125
9.4 Exploring Euler’s Function128
9.5 Proofs and Reasons130
9.6 Exercises .132
9.7 The Conductor, solved133

CONTENTS xix

10 Primitive Roots 137

10.1 Primitive Roots138
10.2 A Better Way to Primitive Roots139
10.3 When Does a Primitive Root Exist?142
10.4 Prime Numbers Have Primitive Roots145
10.5 A Practical Use of Primitive Roots147
10.6 Exercises .151
10.7 All the Primitive Roots.152

11 An Introduction to Cryptography 155

11.1 What is Cryptography?155
11.2 Encryption .158
11.3 A Modular Exponentiation Cipher161
11.4 An Interesting Application: Key Exchange.167
11.5 RSA Public Key169
11.6 RSA and (Lack Of) Security174
11.7 Other applications179
11.8 Exercises .182

12 Some Theory Behind Cryptography 185

12.1 Finding More Primes185
12.2 Primes – Probably189
12.3 Another Primality Test.193
12.4 Strong Pseudoprimes196
12.5 Introduction to Factorization198
12.6 A Taste of Modernity204
12.7 Exercises .210

13 Sums of Squares 213

13.1 Some First Ideas214
13.2 At Most One Way For Primes217
13.3 A Lemma About Square Roots Modulo n220
13.4 Primes as Sum of Squares222
13.5 All the Squares Fit to be Summed.232
13.6 A One-Sentence Proof233
13.7 Exercises .234

14 Beyond Sums of Squares 237

14.1 A Complex Situation237
14.2 More Sums of Squares and Beyond241
14.3 Related Questions About Sums244
14.4 Exercises .244

15 Points on Curves 247

15.1 Rational Points on Conics.248
15.2 A tempting cubic interlude253
15.3 Bachet and Mordell Curves255
15.4 Points on Quadratic Curves258
15.5 Making More and More and More Points261

CONTENTS xx

15.6 The Algebraic Story265
15.7 Exercises .269

16 Solving Quadratic Congruences 271

16.1 Square Roots272
16.2 General Quadratic Congruences274
16.3 Quadratic Residues276
16.4 Send in the Groups279
16.5 Euler’s Criterion283
16.6 Introducing the Legendre Symbol284
16.7 Our First Full Computation286
16.8 Exercises .288

17 Quadratic Reciprocity 291

17.1 More Legendre Symbols291
17.2 Another Criterion.293
17.3 Using Eisenstein’s Criterion296
17.4 Quadratic Reciprocity298
17.5 Some Surprising Applications of QR303
17.6 A Proof of Quadratic Reciprocity307
17.7 Exercises .313

18 An Introduction to Functions 315

18.1 Three Questions for Euler phi315
18.2 Three Questions, Again318
18.3 Exercises .322

19 Counting and Summing Divisors 323

19.1 Exploring a New Sequence of Functions323
19.2 Conjectures and Proofs.324
19.3 The Size of the Sum of Divisors Function326
19.4 Perfect Numbers328
19.5 Odd Perfect Numbers334
19.6 Exercises .337

20 Long-Term Function Behavior 341

20.1 Sums of Squares, Once More341
20.2 Average of Tau344
20.3 Digging Deeper and Finding Limits348
20.4 Heuristics for the Sum of Divisors356
20.5 Looking Ahead.360
20.6 Exercises .361

21 The Prime Counting Function 363

21.1 First Steps .363
21.2 Some History367
21.3 The Prime Number Theorem371
21.4 A Slice of the Prime Number Theorem375
21.5 Exercises .381

CONTENTS xxi

22 More on Prime Numbers 383

22.1 Prime Races.383
22.2 Sequences and Primes388
22.3 Types of Primes391
22.4 Exercises .396

23 New Functions from Old 399

23.1 The Moebius Function399
23.2 Inverting Functions402
23.3 Making New Functions403
23.4 Generalizing Moebius406
23.5 Exercises .410

24 Infinite Sums and Products 413

24.1 Products and Sums413
24.2 The Riemann Zeta Function415
24.3 From Riemann to Dirichlet and Euler418
24.4 Multiplication419
24.5 More series and convergence421
24.6 Four Facts .424
24.7 Exercises .432

25 Further Up and Further In 435

25.1 Taking the PNT Further435
25.2 Improving the PNT437
25.3 Toward the Riemann Hypothesis439
25.4 Connecting to the Primes443
25.5 Connecting to Zeta445
25.6 Connecting to Zeros448
25.7 The Riemann Explicit Formula450
25.8 Epilogue .452
25.9 Exercises .453

Appendices

A List of Sage notes 455

B List of Historical Remarks 457

C Notation 459

D List of Figures 461

E References and Further Resources 465

E.1 Introduction to the References465
E.2 General References465

CONTENTS xxii

E.3 Proof and Programming References467
E.4 Specialized References467
E.5 Historical References470
E.6 Other References471
E.7 Useful Articles472

Back Matter

Index 477

Chapter 1

Prologue

What is number theory? Briefly, it is the study of the integers and questions
arising from them.
Definition 1.0.1 The Integers. The set of counting numbers is denoted

N = {0, 1, 2, 3, 4, · · · }.

Note that in this text, this set begins at zero1. The integers is the set of
positive and negative counting numbers:

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

♢
This is a fairly dry definition, though. The best way to find out what this

definition means is to try to answer some questions about integers!

1.1 A First Problem
Let’s start! Suppose you have lots of left-over postage stamps2 that are of just
a few different denominations. It could be fun to see what amounts you could
make from them.

To be concrete, let’s assume first that all your stamps are numbered 2¢ and
3¢. Here are two questions we could ask. They are mathematically equivalent,
but might take your exploration in two very different directions!

Question 1.1.1 Suppose you only have stamps (or some other currency-like
item) available in 2¢ and 3¢ amounts.

• Which denominations of postage can you get by combining just these two
kinds of stamps?

• Which denominations can you not get with just these two kinds?
1You can search Mathematics Stack Exchange, Wikipedia, and many other interesting

sites for discussions about this. Authors disagree, though number theory texts tend to go
with the older tradition of only counting positive integers among the “natural numbers”,
both because they count things and because they are a natural set to work with. With the
advent of computers and (often) zero-based counting, as well as set theory, there is more
variety, and it will be convenient to start at zero here since we integrate the use of a zero-
based computer language so much. Apparently the ISO standard also begins counting at
zero.

2Perhaps because you only use email or texting now; too bad for you!

1

https://www.iso.org/standard/64973.html

CHAPTER 1. PROLOGUE 2

Once you’ve thought about that, try the same problem with 2¢ and 4¢ stamps.
What is the same, what is different? □

Now let’s get to a nontrivial case; what about with 3¢ and 4¢ stamps? In
this case, after some experimentation, it looks like only 1, 2, and 5 are not
possible, so anything six or above is possible. We call this number (in this
case, 6) the conductor of the set {3, 4}.

What we are really asking, as might be clear by now, is which positive
integers n are impossible (or possible) to write in the form n = 3x + 4y, for
nonnegative integers x and y. This is also sometimes called the Frobenius3 or
coin problem.

Continue trying this with different small pairs of positive integers (see also
Exercise 1.4.5–Exercise 1.4.7). For each pair, pay attention to two things:

• What is the conductor of the pair? (You might want to ask whether there
is a conductor!)

• How many numbers lower than the conductor cannot be written in this
way as a sum with this pair?

1.2 Review of Previous Ideas
Before going further, we need a bit of review. The following three topics may
be considered prerequisites for the course.

1.2.1 Well-Ordering
The first principle is both simple and deep. It is a deep property of the positive
integers, but we give it its usual name.
Axiom 1.2.1 Well-Ordering Principle. Any nonempty set of positive
integers has a least/smallest element.

This principle actually holds with any subset of Z which is bounded below,
such as N (recall Definition 1.0.1).

Let’s use it as an example to prove the following fact which you probably
didn’t know required proof.
Fact 1.2.2 Consecutive Integers. There are no integers between 0 and 1.
Proof. This proof proceeds by contradiction. Assume there are some such
integers, and let

S = {x ∈ Z | 0 < x < 1}.

This set must then have a least element a, and 0 < a < 1. If we multiply
through by a (which is positive) then we obtain 0 < a2 < a.

Thus a2 is another integer such that 0 < a2 < 1, so a ∈ S, but we also
know that a2 < a. So a2 is an element of S which is less than the least element
of S. That is a contradiction, so our original assumption was wrong and there
are no such integers (i.e. S is empty). ■
Remark 1.2.3 To review, proofs by contradiction and contrapositive both
start by assuming the negation of the conclusion. A proof by contrapositive
uses that assumption to prove the negation of the original assumption. A proof
by contradiction, on the other hand, leads to some absurdity, but not neces-
sarily just negating the original assumptions. In the proof above of Fact 1.2.2,

3For a very full discussion, see [E.7.20], but not until after you have started the next
chapter of this book!

CHAPTER 1. PROLOGUE 3

the contradiction is that you can’t have two different smallest elements of a
set.

1.2.2 Induction
Sometimes we need a way to prove a statement for all integers n after a certain
point, for instance integers greater than or equal to n = 1. This is usually
called proof by induction. Usually there are two steps in a typical ‘simple’
induction.

1. First we prove the “base case” (often n = 1 or n = 0).

2. Then we prove the “induction step”, that the case n = k implies case
n = k + 1.

These combine to prove a fact for all cases n ≥ 1.
Example 1.2.4 Archetype for Induction. We shall show that

n∑
i=1

i =
n(n+ 1)

2

Solution. The base case is to check that 1 = 1(1+1)
2 , which is easy.

The induction step begins with the assumption that

k∑
i=1

i =
k(k + 1)

2

and then proceeds by showing that the formula is still true when k is replaced
with k+1. For this proof, to add just one more integer k+1 to the sum means

k+1∑
i=1

i =

k∑
i=1

i+ (k + 1)

(which we can see by rewriting the sum). Then we can just plug in the induction
assumption to obtain

k∑
i=1

i+ (k + 1) =
k(k + 1)

2
+ (k + 1) = (k + 1)

(
k

2
+ 1

)
=

(k + 1)(k + 2)

2

which is exactly what is required to finish the induction step, namely

k+1∑
i=1

i =
(k + 1)(k + 2)

2
.

□
Relative to some other basic axioms, one can actually take the legitimacy

of induction as a final axiom and use that to prove well-ordering (Axiom 1.2.1)
is true. Instructors will wish to note that the converse is false4. We will not
include any such proofs (or a collection of relevant axioms, such as Peano’s)
here, but note the helpful exposition in [E.7.33].

4A counterexample is given by the set of ordinals less than ω + ω, which is well-ordered
but for which induction does not hold.

CHAPTER 1. PROLOGUE 4

1.2.3 Divisibility
Definition 1.2.5 If an integer n can be written as a product kd = n of two
integers k and d, then we say that d divides n, or that n is divisible by d, or
that d is a divisor of n. We write d | n to denote that d divides n. ♢
Example 1.2.6 Divisibility is familiar.

• For instance, the concept that n is even is just the same thing as 2 | n.

• The divisors of n = 8 are … ±1,±2,±4,±8. (Don’t forget negative divi-
sors.)

• Very often we can write this generically, so for example n | x+ 1 means
that x+ 1 can be written as the product of n and some other integer m.

We occasionally use the term proper divisor to denote a positive divisor of
n which is not n. When n = 8, we see that 1, 2, and 4 are all proper divisors.

□
There are lots of interesting things to say about divisibility. Let’s prove

a somewhat unexpected statement using induction and just what we already
know.
Example 1.2.7 Show that 4 | 5n − 1 for n ≥ 0.
Solution. This proof will proceed by induction. This time the base case will
be n = 0. We’ll try to make the steps clear with separate bullets.

• Base step: If n = 0 the formula says that 4 divides 50 − 1 = 1 − 1 = 0,
which is definitely true.

• Induction step:

◦ Suppose 4 | 5k − 1. Then, by Definition 1.2.5, 5k − 1 = 4x for some
integer x.

◦ Hence 5k = 1 + 4x is a fact we could use later.
◦ Our goal in this step is to show 4 | 5k+1 − 1.
◦ Since we need something true about 5k+1 − 1, let’s consider 5k+1

first. The key observation will be that 5k+1 = 5k · 5.
◦ Using the fact we obtained from the induction assumption we can

write this as 5k · 5 = (1 + 4x) · 5; this means that

5k+1 − 1 = 5(1 + 4x)− 1 = 20x+ 4.

◦ Certainly 20x+ 4 is divisible by 4.
◦ Thus we have shown that 4 | 5k+1 − 1, so we have finished the

induction step, and our proof by induction is complete.

□
There are lots of other propositions about divisibility you are probably

familiar with from previous courses. Here is a sampler.
Proposition 1.2.8 Divisibility Facts.

1. If a | b and b | c then a | c.

2. If a | b then ca | cb.

3. If c | a and c | b then c | au+ bv for any integers u, v.

CHAPTER 1. PROLOGUE 5

4. If n > 0 then all divisors of n are less than or equal to n.
These are not hard to prove (see Exercise 1.4.1) using direct proof , where

no indirect or inductive steps are needed. For instance, the second one can be
proved by simply noting b = ka for some k ∈ Z, so that cb = c(ka) = c(ak) =
(ca)k. The others are similar, and are good practice with using basic algebraic
manipulation in proof.

1.3 Where are we going?
Before moving on from these preliminaries and our introductory Prologue, let’s
step back. What will we cover in this text?

• We have started by exploring basic integer questions, and will continue
looking at basic integers at first (Chapter 1–Chapter 3).

• We’ll be essentially forced to move to the concepts of congruences and
primes by the material (Chapter 4–Chapter 7).

• Next, we’ll explore a more advanced point of view of the concepts of
integers and congruences, including groups, to attack cryptography effi-
ciently (Chapter 8–Chapter 12).

• About halfway through, we’ll introduce the ways in which geometry in-
filtrates number theory (Chapter 13–Chapter 17).

• Finally, functions and limits will help us illuminate primes in depth, as
well as show us how the ideas of calculus really do show up in num-
ber theory quite naturally (Chapter 18–Chapter 24), concluding with an
introduction to the legendary Riemann Hypothesis in Chapter 25.

Let’s get ready for an exciting exploration of number theory!

1.4 Exercises
1. Prove some or all of the facts in Proposition 1.2.8.
2. Find a counterexample to show that when a | b and c | d, it is not

necessarily true that a+ c | b+ d.
3. Prove using induction that 2n > n for all integers n ≥ 0.
4. Prove, by induction, that if c divides integers ai and we have other integers

ui, then c |
∑n

i=1 aiui.

Exploring the conductor question is a fun way to do new math where you don’t
already know the answer!

5. Write up a proof of the facts from the first discussion about the con-
ductor idea (in Section 1.1) with the pairs {2, 3}, {2, 4}, and {3, 4}.

6. What is the conductor for {3, 5} or {4, 5}? Prove these in the same
manner as in the previous problem.

7. Try finding a pattern in the conductors. Can you prove something
about it for at least certain pairs of numbers, even if not all pairs?

8. What is the largest number d which is a divisor of both 60 and 42?
9. Try to write the answer to the previous problem as d = 60x + 42y for

some integers x and y.

CHAPTER 1. PROLOGUE 6

10. Get a Sage worksheet account somewhere, such as at https://cocalc.com

(CoCalc) or at a Sage notebook or Jupyterlab server on your campus, if
you don’t already have one.

11. Color the ‘Paint by Numbers’ Sunday comic5 from 2006.

Figure 1.4.1 FOXTROT © Bill Amend. Reprinted with permission of
ANDREWS MCMEEL SYNDICATION. All rights reserved.

1.5 Using Sage for Interactive Computation
This text is advertised as having interactive computation, but so far any com-
putation has been your own. How does digital computation (interactive or not)
fit in? We’ll skip ahead slightly here to see how this will work.

In the interactive version of this text, the areas below are called Sage cells,
or cells for short. Assuming you’re connected to the internet, this very first cell
will use SageMath (usually just called Sage) to check whether a given fraction
remains a fraction when reduced, or whether it reduces to an integer. Click
“Evaluate” to try it out.

38/19

2

Again, if you’re viewing this online, go ahead and try changing the numbers,
clicking the evaluate button again.

As we go through the text, you’ll see lots of opportunities to use Sage.
Sometimes I’ll give you the opportunity to learn a little bit about how to use
it in Sage notes, such as the following one.
Sage note 1.5.1 About Sage notes. Sage notes will teach you useful things
about basic programming, or more general facts about Sage and Python, the
computer language Sage is based on.

5Shareable version available online, in lower resolution, or see the online version of the
text for a non-shareable version in higher resolution.

https://cocalc.com
http://www.sagemath.org
http://www.python.org
https://licensing.andrewsmcmeel.com/features/ft?date=2006-04-09
http://math.gordon.edu/ntic/ntic/exercises-prologue.html#exercise-prologue-coloring
http://math.gordon.edu/ntic/ntic/exercises-prologue.html#exercise-prologue-coloring

CHAPTER 1. PROLOGUE 7

Let’s try another computational cell. We haven’t defined prime numbers
yet (see Chapter 6), but I figure you know what they are. Here you can check
whether an integer is prime.

is_prime (3169)

True

Sage note 1.5.2 Using commands in Sage cells. Assuming you are
using this book online, you can put any legitimate Sage command in the cells
above. (Try integrate(x^3,x) if you know some calculus.) Or you can use
these commands in your own Sage worksheet at your local Sage server or with
CoCalc, so that you can save your work!

If you are using an offline or hard copy version, I still highly recommend
sifting through some of the code and commands; much of it will enlighten the
reader. (Then try it out online or on your local computer!)

Finally, let’s test some conductor ideas using Sage. In the cell below, Sage
will automatically list all the nonnegative numbers up to n that can be written
as n = ax + by for nonnegative integers x and y. The default values are
a = 3, b = 4; you can experiment by changing one or both of these values.

@interact
def _(a=(3 ,[2..10]) ,b=(4 ,[2..10]) ,n=(20 ,[10..50])):

list_of_them=list(set([a*x+b*y for x in srange(n/a+1) for
y in srange(n/b+1)]))

list_of_them =[item for item in list_of_them if item <= n
]; list_of_them.sort()

pretty_print(html("The␣nonnegative␣integers␣up␣to␣$n=%s$␣
which␣can␣be"%(str(n))))

pretty_print(html("written␣as␣positive␣combinations␣of␣
$a=%s$␣and␣$b=%s$␣are:"%(str(a),str(b))))

print(list_of_them)

Notice that with the default values above we are definitely getting the same
answers as expected from our ‘pencil and paper’ experiments.

Finally, notice that the algorithm I used in the code is very naive – I just
listed all possible combinations under a certain size. It would be interesting to
use this to try to verify patterns you may have noticed about the precise size
of the conductor, and when it exists.

Summary: Prologue
After reminding ourselves of The Integers, this introductory chapter covers the
following main topics.

1. In Question 1.1.1 we introduce the notion of the conductor to get thinking
about nontrivial integer questions.

2. We review basic uses of the following principles:

• The Well-Ordering Principle
• Proofs by Induction
• Basic facts about Divisibility, of which we will especially use Propo-

sition 1.2.8

3. We get a brief look at where we are going in this text.

CHAPTER 1. PROLOGUE 8

Finally, after the usual Exercises, there are few notes on Using Sage for Inter-
active Computation.

Chapter 2

Basic Integer Division

In this chapter, we introduce some concepts of numbers which are familiar, but
key for our further study. In particular, we try to understand why they work.

• The division algorithm (Section 2.1),

• The greatest common divisor (Section 2.2), and

• The Euclidean algorithm (Section 2.3).

Then we’ll put them together with the Bezout identity (Section 2.4).

2.1 The Division Algorithm

2.1.1 Statement and examples
Let’s start off with the division algorithm. This is the familiar elementary
school fact that if you divide an integer a by a positive integer b, you will
always get an integer remainder r that is nonnegative, but less than b.

Equally important, there is only one possible remainder under these cir-
cumstances.
Theorem 2.1.1 Division Algorithm. For a, b ∈ Z and b > 0, we can
always write a = qb + r with 0 ≤ r < b and q an integer. Moreover, given
a, b there is only one pair q, r which satisfy these constraints. We call the first
element q the quotient, and the second one r the remainder.
Proof. The proof appears below in Subsection 2.1.2. ■

Finding q and r is easy in small examples like a = 13, b = 3.

We have 13 = 4 · 3 + 1 so q = 4 and r = 1.

For bigger values it’s nice to have the result implemented in Sage.

divmod (281376 ,29)

(9702 , 18)

We can check the correctness of the Sage output by multiplying and adding
back together.

9702*29+18

9

CHAPTER 2. BASIC INTEGER DIVISION 10

281376

Sage note 2.1.2 Counting begins at zero. There are several things to
note about this early computation. First, note that the answer to divmod came
in parentheses, a so-called tuple data type.

Second, there is another way to approach this computation, more program-
matically so that it’s easier to reuse. What do you think the [0] and [1]
mean?

divmod (281376 ,29) [0] * 29 + divmod (281376 ,29) [1]

281376

To access the first and second parts of the answer (the quotient and re-
mainder), we use square brackets, asking for the 0th and 1st parts of the tuple
(9702,18)! (This operation is called indexing.) In Python, the programming
language behind Sage (as in many other languages), counting begins at zero.

The discussion in the previous note actually turns out to be an enduring
argument in number theory, too. Do we only care about positive numbers, or
nonnegative ones as well? We saw this in the stamps example, since one could
send a package for free under certain circumstances (campus mail), but might
not care about that case. Similarly, are we required to use at least one of each
type of stamp, or is it okay (as in our problem) to not use one type?

2.1.2 Proof of the Division Algorithm
One neat thing about the division algorithm is that it is not hard to prove but
still uses the Well-Ordering Principle; indeed, it depends on it. The key set is
the set of all possible remainders of a when subtracting multiples of b, which
we call

S = {a− kb | k ∈ Z}.

(Note that the set looks the same if we add multiples of b, since k ∈ Z, but for
the purposes of exposition it is easier to think of it as subtraction.)

The object of main interest in the proof will be the nonnegative piece of
S which we will call S′ = S ∩ N. For example, if a = 13, b = 3, then S =
{. . . 19, 16, 13, 10, 7, 4, 1,−2,−5, . . .} while S′ = {. . . 19, 16, 13, 10, 7, 4, 1}.

Our strategy will be to apply the well-ordering principle to S′. (It is worth
thinking briefly about why both S and S′ are nonempty.) Give the name r to
the smallest element of S′, which must be writeable as r = a − bq (that’s the
definition of being an element of S′ ⊂ S, after all).

Now let’s briefly suppose by way of contradiction that r ≥ b. In that case
we could subtract b from r, and then r− b ∈ S′ as well. So r would not be the
least element of S′, which is a contradiction. Hence we know that r < b. (Note
that r is the smallest nonnegative number in S′, just as with our intuition
regarding remainders from school.)

We still have to show that r and q are the only numbers fulfilling this
statement. Suppose a = bq′ + r′ for some integers q′, r′ where 0 ≤ r′ < b;
clearly if r = r′ then we can solve a− bq = r = r′ = a− bq′ to get q = q′ (since
b > 0), so the only interesting case is if r ̸= r′. Without loss of generality, we
can assume r < r′.

In that case, a − bq = r < r′ = a − bq′, which can be rewritten as 0 <
r′ − r = b(q − q′). Since q, q′ ∈ Z, by Fact 1.2.2 q − q′ must be at least one if
it isn’t zero. But then b = b · 1 ≤ r′ − r = b(q − q′) or b ≤ r + b ≤ r′, which
contradicts 0 ≤ r′ < b. Thus q − q′ = 0 and hence q = q′ and r = r′.

CHAPTER 2. BASIC INTEGER DIVISION 11

It’s worth actually trying out the details of this proof with some a and b,
say with a = 26 and b = 3.

As a scholium (see Exercise 2.5.1) note that if b < 0 there can still be a
positive remainder, but here we would need 0 ≤ r < |b| in the theorem.

2.1.3 Uses of the division algorithm
It’s kind of fun to prove interesting things about powers using the division
algorithm, and likely you did in a previous course. For instance, there is an
interesting pattern in the remainders of integers when dividing by 4. If you
are online, evaluate the following Sage cell to see the pattern. (It’s also easy
to just get the remainders of the first ten or so perfect squares by hand.)

for i in [0..10]:
pretty_print(html("The␣remainder␣of␣{}␣squared␣with␣

respect␣to␣4␣is␣{}".format(i,divmod(i^2,4) [1])))

Sage note 2.1.3 Repeating commands for different input. The syntax
for i in [0..10]: just means we want to do the next command for integers
from 0 to 10. Such a repetition is called a loop.

Another way Python uses to generate the list of different input is the range
command; try substituting range(11) for [0..10] in the Sage cell above. Can
you discover what the difference is between these?

The rest of the command (all the percent symbols and so forth) is mostly
for correct formatting. That includes the indentation in the second line – an
essential part of Python and Sage.

This certainly provides strong numerical evidence for the following propo-
sition. But better than that will be the proof!
Proposition 2.1.4 A perfect square always leaves remainder r = 0 or r = 1
when divided by 4.
Proof. Using the division algorithm, we can write n = 4q + r. What happens
if we square it, (4q + r)2?

Algebraically this yields 16q2+8qr+ r2. Clearly this is a multiple of 4 plus
r2. So the only possible remainders of n are the remainders of r2, where r is
already known to be less than 4!

Now check these yourself to see that the only possibilities are the ones in
the statement of the proposition. ■

One cool thing about this proof is that if we just change the proof from
using n = (4q+ r)2 to one using n = (mq+ r)2, we can essentially do the same
thing for several divisions at once. If the number we divide by is m, then

(mq + r)2 = m2q2 + 2mqr + r2 = m(mq2 + 2qr) + r2,

hence all that matters for the final remainder is r2, since the rest is already
divisible by m.

But we know that there are only b possibilities for r, so it’s easy to check
all their squares. For m = 6, the following cell checks for you if you don’t want
to check them by hand.

for i in [0..5]:
pretty_print(html("The␣remainder␣of␣%s␣squared␣with␣

respect␣to␣6␣is␣%s"%(i,divmod(i^2,6) [1])))

CHAPTER 2. BASIC INTEGER DIVISION 12

This verifies that r = 0, 1, 3, 4 are the only possible remainders of perfect
squares when you divide by six.

2.2 The Greatest Common Divisor
It seems intuitive that of all the numbers dividing a number (the divisors of
the number), one is biggest. We can carry that idea to two numbers.

Definition 2.2.1 Common Divisors. If we consider the various divisors of
two numbers a and b, we say that d is a common divisor of a and b if d | a
and d | b. If d is the biggest such common divisor, it is called the greatest
common divisor, or gcd, of a and b, written d = gcd(a, b). ♢
Example 2.2.2 What are all the common divisors of 6 and 10? What is their
gcd? □
Remark 2.2.3 What is the greatest common divisor of zero and zero? By
definition, there is none (or it is infinity?). Some authors (such as [E.2.1])
simply don’t allow this case at all; others (like [E.2.4]) define it to be zero
without further comment. As for computation, both SageMath and Wolfram
Alpha apparently compute it to be zero (perhaps by The Euclidean Algorithm),
while one online calculator throws an error.

This text chooses to remain agnostic on this point. However, ring theory
and lattice theory both allow for an alternate definition which naturally yields
zero as the answer; either consult an abstract algebra text, or see all the answers
to this question at Mathematics StackExchange for some good fireside reading
after you do your homework for this section.

We now come to a great definition-theorem.
Theorem 2.2.4 Characterizing the greatest common divisor. Let a
and b be integers, not both zero. Then the greatest common divisor of a and b
is all of the following:

• The largest integer d such that d | a and d | b. (This is Definition 2.2.1.)

• The number achieved by applying the Euclidean algorithm (a repeated
division algorithm) to a and b. (See Section 2.3.)

• The smallest positive number which can be written as ax + by for some
integers x and y. (See Section 2.4 and Subsection 2.4.2.)

This is amazing, and the first real indication of the power of having multiple
perspectives on a problem. It means that the very theoretical issue of when a
gcd exists (and finding it) can be treated as a purely computational problem,
completely independent of finding divisors in the usual sense. And further,
there is a definition purely in terms of addition and multiplication, nothing
more complex.

If you need to actually calculate a gcd, you use the algorithm. If you want
to prove something about it that has to do with dividing, you use the original
definition. And if you need to prove something about it where division is hard
to use, you use the third characterization. This sort of idea will come up again
and again in this book – that having multiple ways to define something really
helps.

https://sagecell.sagemath.org/?z=eJxLT07RMNAx0AQACuICDA==
http://www.wolframalpha.com/input/?i=gcd(0,0)
http://www.wolframalpha.com/input/?i=gcd(0,0)
https://www.dcode.fr/gcd
https://math.stackexchange.com/questions/495119/what-is-gcd0-0
https://math.stackexchange.com/questions/495119/what-is-gcd0-0

CHAPTER 2. BASIC INTEGER DIVISION 13

2.3 The Euclidean Algorithm
The Euclidean algorithm says that to find the gcd of a and b, one performs
the division algorithm until zero is the remainder, each time replacing the
previous divisor by the previous remainder, and the previous number to be
divided (sometimes called dividend) by the previous divisor. The last non-zero
remainder is the gcd.

We’ll state and prove this momentarily (Algorithm 2.3.3). Let’s try it with
a reasonably sized problem.
Example 2.3.1 Let a = 60 and b = 42.

60 = 42 · 1 + 18

42 = 18 · 2 + 6

18 = 6 · 3 + 0

So gcd(60, 42) = 6. □
This procedure is named after Euclid because of Proposition VII.2 in Eu-

clid’s Elements. There is an amazing complete Java interactive implementation
of all the propositions, by David Joyce, whose version of this proposition in-
cludes some explanation of Euclid’s background assumptions. In particular,
Euclid basically assumes the Well-Ordering Principle, although of course he
didn’t think of it in such anachronistic terms.
Historical remark 2.3.2 Euclid’s Elements. Euclid, a mathematician in
Alexandria during the Hellenistic era, appears to have written the Elements as
a compendium of rigorous mathematical knowledge. In addition to being the
main geometry textbook in the Western and Islamic worlds for two millennia
(as late a teacher as Charles Dodgson a.k.a. Lewis Carroll extolled its virtues in
print in Euclid and His Modern Rivals), there are substantial number-theoretic
portions as well. No one really knows how much of the Elements is original
to Euclid, but the work as a whole is monumental and well-organized, despite
some well-known criticisms (see e.g. the discussion in [E.5.5]).

Try the algorithm on your own by hand for the gcd of 280 and 126. Or, for
even more practice, try it with gcd(2013, 1066) and then check your work with
Sage.

gcd (2013 ,1066)

1

Algorithm 2.3.3 Euclidean algorithm. To get the greatest common divisor
of a and b, perform the division algorithm until you hit a remainder of zero, as
below.

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3

· · ·
rn−3 = rn−2qn−1 + rn−1

rn−2 = rn−1qn + 0

Then the previous remainder, rn−1, is the greatest common divisor.

http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII2.html
http://aleph0.clarku.edu/~djoyce/java/elements
http://aleph0.clarku.edu/~djoyce/java/elements
https://books.google.com/books/about/Euclid_and_His_Modern_Rivals.html?id=rEUMAAAAYAAJ
https://books.google.com/books/about/Euclid_and_His_Modern_Rivals.html?id=rEUMAAAAYAAJ

CHAPTER 2. BASIC INTEGER DIVISION 14

Proof. First let’s see why this algorithm even terminates. The division algo-
rithm says each ri is less than the previous one, yet they may not be less than
zero. So let’s apply the Well-Ordering Principle to the set of remainders. This
set must have a least positive element, and will be the answer. Another way
to think about it is that since b is finite, there won’t be an infinite number of
steps.

Of course, that just gives a number, with no guarantee it has any connection
to the gcd. So consider the set of common divisors d | a and d | b. All such d
also divide

a− q1b = 1 · a+ (−q1) · b = r1

So these d also divide r2 = b− q2r1, and indeed divide all the remainders, even
rn−1 = rn−3 − qn−1rn−2. So all common divisors of a and b are divisors of
rn−1.

On the other hand, if d divides rn−1, it divides rn−2 = rn−1qn, and thus
divides rn−3 = rn−2qn−1 + rn−1, and so forth. Hence d divides a and b.

So the set of common divisors of a and b are equal to the set of divisors of
rn−1, so this algorithm really does give the gcd. ■

As you might expect, the proof makes more sense if you try it out with
actual numbers; for the theoretical view, see Exercise 2.5.14. Especially if you
can find a and b for which the algorithm takes four or five steps, you will gain
some insight.

2.4 The Bezout Identity

2.4.1 Backwards with Euclid
Now, before we get to the third characterization of the gcd, we need to be
able to do the Euclidean algorithm backwards. This is sometimes known as the
Bezout identity.
Definition 2.4.1 Bezout identity. A representation of the gcd d of a and
b as a linear combination ax + by = d of the original numbers is called an
instance of the Bezout identity. (This representation is not unique.) ♢

It is worth doing some examples1. Perhaps you already have gotten one,
probably by trial and error. For instance,

6 = −2 · 60 + 3 · 42.

The third characterization in Theorem 2.2.4 implies that doing this is al-
ways possible; gcd(a, b) = ax + by for some integers x and y. Doing the
Euclidean algorithm backwards is one way to obtain this.
Example 2.4.2 Sometimes it helps visually when starting to write the Euclid-
ean algorithm down one side of a table, and then go up the other side of the
table to obtain an instance of the Bezout identity.

Here’s an example with the gcd of 8 and 5; follow it from top left to the
bottom and then back up the right side. The middle column provides the
necessary rewriting.

1For convenience, all examples will be in the form d = xa + yb, putting the coefficients
first, even though we state this in the other order. The habit of using the letters a, b, d and
alphabetical order is too hard to break.

CHAPTER 2. BASIC INTEGER DIVISION 15

8 = 1 · 5 + 3 1 · 8− 1 · 5 = 3 1 = 2 · 3− 1 · 5 = 2 · (8− 1 · 5)− 1 · 5 = 2 · 8− 3 · 5
5 = 1 · 3 + 2 1 · 5− 1 · 3 = 2 1 = 1 · 3− 1 · 2 = 1 · 3− 1 · (5− 1 · 3) = 2 · 3− 1 · 5
3 = 1 · 2 + 1 1 · 3− 1 · 2 = 1 1 = 1 · 3− 1 · 2
2 = 2 · 1 + 0 Go up this column...

So 1 = 2 · 8− 3 · 5, or 2 · 8 + (−3) · 5. □
Example 2.4.3 Usually students need a couple of examples of this to get the
way this works, so here is another one. Let’s do it with the gcd of 60 and 42.

60 = 1 · 42 + 18 1 · 60− 1 · 42 = 18 6 = 1 · 42− 2 · 18 = 1 · 42− 2 · (60− 1 · 42)
42 = 2 · 18 + 6 1 · 42− 2 · 18 = 6 6 = 1 · 42− 2 · 18
18 = 3 · 6 + 0 Go up this column...

Simplifying 1 · 42 − 2 · (60 − 1 · 42) (the top line on the right), we get 6 =
3 · 42 + (−2) · 60 again. □

This question of the Bezout identity is implemented in Sage as xgcd(a,b),
because this is also known as the eXtended Euclidean algorithm.

xgcd (60 ,42)

(6, -2, 3)

Or, 6 = −2 · 60 + 3 · 42, once again.

Example 2.4.4 Try to get the xgcd/Bezout identity for gcd(135, 50) using
this algorithm. You should get 5 = 3 · 135 + (−8) · 50. Can you get another
one a different way?

Try the following Sage cell to check that it works.

xgcd (135 ,50) [1]*135 + xgcd (135 ,50) [2]*50

5

□
Sage note 2.4.5 Remind how to get list elements. Do you remember
what the [1] means? What do you think the [2] means in this context?
Example 2.4.6 Try to get the xgcd/Bezout identity for gcd(1415, 1735) using
this algorithm. Hopefully you get 5 = 103 · 1415+ (−84) · 1735, though it may
take a while! The previous example might help you on your way. □

Historical remark 2.4.7 Bezout and friends. While Étienne Bézout did
indeed prove a version of the Bezout identity for polynomials, the basics of using
the extended Euclidean algorithm to solve such equations was known in Europe
to Bachet de Méziriac (see Historical remark 3.5.2) about four hundred years
ago. However, the Indian mathematician Aryabhata about 1500 years ago in
his method later called the Kuttaka used essentially the same algorithm, in fact
in a manner more amenable to swift and accurate usage than the one we (and
most Western texts) use, with a view toward questions such as Theorem 3.1.2.

2.4.2 Proving the final characterization
The final characterization of the greatest common divisor (Theorem 2.2.4) is
that it is the least positive integer which can be written ax + by for integers
x, y. Let’s prove that now.

https://mathshistory.st-andrews.ac.uk/Biographies/Bezout/
https://en.wikipedia.org/wiki/Kuṭṭaka

CHAPTER 2. BASIC INTEGER DIVISION 16

First, we know there are some positive integers which can be written ax+by
(just use positive x, y, or negative ones if a or b are negative). So, by the Well-
Ordering Principle, we know there is a smallest such positive integer, which
we will call c = au+ bv. Let’s also designate the gcd of a and b to be d.

By Proposition 1.2.8, any integer which divides a and b divides any ax+by,
so it divides au+ bv = c. In particular, since d is a divisor of both a and b, it
must also divide c. So d ≤ c.

On the other hand, we know from the backward/extended Euclidean algo-
rithm/Bezout identity that d can be written d = ax′ + by′ for some integers x′

and y′. Since c is the smallest such (positive) integer, c ≤ d. Thus we conclude
that d = c.

2.4.3 Other gcd questions
We mentioned earlier there are many such linear combinations for any given
pair a, b. How might we find more than one such representation?
Example 2.4.8 Using Bezout to get another Bezout. We used the
backwards Euclidean algorithm to see that 6 = −2 · 60 + 3 · 42. Let’s use that
to get another.

• Since 6 is itself a divisor of both 60 and 42, let’s pick one (the smaller
one!), 42, and write it as 42 = 7 · 6.

• Then we can really write

42 = 7 · 6 = 7 · (−2 · 60 + 3 · 42),

since after all we just saw that was a way to represent 6!

• Now we plug this back into the original equation:

6 = −2 · 60 + 3 · 42 = −2 · 60 + 3 · (7 · 6)

= −2 · 60 + 3 · (7 · (−2 · 60 + 3 · 42))

If we simplify it out, that means 6 = −44 · 60+63 · 42, which is indeed correct!
□

So, substituting a Bezout identity into itself yields more and more such
identities. How many such identities are there? Is there a general form?

Another interesting question is that some gcds of large numbers are very
easy to compute. What makes finding gcd(42000, 60000) so easy? If you’re in
a classroom, this is a perfect time to discuss.

On a related note, if gcd(a, b) = d, could you make a guess as to a formula
for gcd(ka, kb) (for k > 0)? Can you prove it in Exercise 2.5.16? (Hint: here
is where our original definition or the Bezout version could be useful.)

2.4.4 Relatively prime
There is one final thing that the linear combination version of the gcd can
give us. It is something you may think is familiar, but which can arise very
naturally from the Bezout identity.

Consider the smallest possible greatest common divisor, which is one. Un-
der what circumstances would a and b have gcd(a, b) = 1? By our characteri-
zation, it is precisely when you can write ax+ by = 1 for some integers x and
y.

CHAPTER 2. BASIC INTEGER DIVISION 17

Think about this, though; if the gcd of a and b is 1, then we could write any
integer as a (linear) combination of a and b! This is a property I think people
would have come up with no matter how the development of mathematics had
gone; namely, identifying pairs of integers such that you can write any number
as a (linear) combination of them.

Definition 2.4.9 Relatively Prime. If the greatest common divisor of two
numbers is one, we call them relatively prime numbers or coprime numbers.

Later, we will need to have a term for the situation where, in a collection
of several integers, all possible pairs are relatively prime. We will call this
mutually coprime, coprime in pairs, or an analogous term. ♢
Proposition 2.4.10 Here are two interesting facts about coprime integers a
and b:

• If a | c and b | c, then ab | c.

• If a | bc, then a | c.
Proof. The first is not too hard to prove, if you think in terms of Bezout. It
does need a little cleverness.

• Remember that 1 = ax+ by for some x, y, by definition of being coprime.

• So c = cax+ cby.

• Now write c = kb and c = ℓa, and substitute them in the opposite parts
of the previous line.

• This gives c = (kb)ax+(ℓa)by, and ab definitely divides both parts of this,
so it divides the whole thing by our earlier proposition about divisibility.

We leave the second as an exercise (Exercise 2.5.19). ■
It’s also useful to try to find counterexamples! Can you find an example

where gcd(a, b) ̸= 1, a | c and b | c, but ab does not divide c? (See Exer-
cise 2.5.20.)

2.5 Exercises
1. Try stating and proving the division algorithm (Theorem 2.1.1) but for

b < 0.
2. Can you find an n such that the possible remainders of a perfect square

when divided by n are all numbers between zero and n − 1? If you can,
how many different such n can you find? If not, can you prove there are
none?

3. Write the gcd of 3 and 4 as a linear combination of 3 and 4 in three
different ways. (Hint: trial and error.)

4. You can define the gcd of more than two numbers as the greatest integer
dividing all of the numbers in your set. So, for instance, gcd(20, 30, 70) =
10. Calculate the gcd of some hard-looking sets of three numbers by listing
divisors.

With Sage you can calculate arbitrary gcds like this, so you can check
your work in this problem using the same command as before, but with
slightly different syntax.

gcd ([3800 ,7600 ,1900])

CHAPTER 2. BASIC INTEGER DIVISION 18

1900

5. Find the gcd of the four numbers 1240, 6660, 15540, and 19980 without
Sage.

6. Prove that gcd(a, a+ 2) = 1 if a is odd and gcd(a, a+ 2) = 2 if a is even.
7. Let a be a positive integer. What is the greatest common divisor of a and

a+ 1? Prove it.
8. Use the Euclidean algorithm to find the gcd of 51 and 87, and then to

write that gcd as a linear combination of 51 and 87.
9. Define the least common multiple of a and b to be the smallest positive

number which is divisible by both a and b. Prove that the least common
multiple of a and b is ab precisely when a and b are coprime.

10. Find the gcd of 151 and 187 using the Euclidean algorithm, then write the
gcd as a linear combination of these two numbers in two different ways.

11. Find the gcd of 500000001 and 5000001 in any way you see fit other than
asking someone else.

12. In the following interact you can explore the gcd of numbers of the form
5 · 10n + 1 for various n. Does the pattern you see continue? How would
you find a counterexample, how might you prove it?

@interact
def _(m=(3 ,[1..20]) ,n=(2 ,[1..20])):

pretty_print(html("The␣gcd␣of␣${}$␣and␣${}$␣is␣
${}$".format (5*10^m+1, 5*10^n+1,
gcd (5*10^m+1 ,5*10^n+1))))

13. Find the gcd of three four digit numbers, none of which is divisible by ten.
14. To make the proof of the Euclidean algorithm, Algorithm 2.3.3, very com-

plete, one would want to use induction to replace “and so forth” verbiage.
Do so for practice with induction.

15. For nonzero a, b, c, prove that if a and c are coprime, and likewise b and c
are coprime, then ab and c are coprime. (Hint: use the Bezout identity.)

16. If gcd(a, b) = d and k > 0 is an integer, prove a formula for gcd(ka, kb).
17. You probably know the Fibonacci numbers 1, 1, 2, 3, 5, 8, · · ·, where fn+2 =

fn+1 + fn and we number as f1 = 1, f2 = 1. Try applying the Euclidean
algorithm to a pair of consecutive Fibonacci numbers? As a function or
formula of n, how long does it take? (For a more general approach see
[E.2.1, Exercises 1.17-1.19].)

18. Try the above exercise again, but with a variant of the Fibonacci numbers
where fn+2 = fn+1 + 2fn. This would start 1, 1, 3, 5, 11, 21, · · ·.

19. Prove the second piece of Proposition 2.4.10 that if a and b are coprime,
and if a | bc, then a | c. (Hint: use the Bezout identity again. Later
you will have the opportunity to prove this with more powerful tools; see
Exercise 6.6.6.)

20. Find examples that contradict the conclusions of Proposition 2.4.10 if a
and b are not coprime (i.e. share a factor greater than 1).

21. Verify that gcd(a, b) = gcd(−a,−b). (Contributed by Shawn Feng.)

The next two exercises consider a related concept to relatively prime.

CHAPTER 2. BASIC INTEGER DIVISION 19

22. We discussed relatively prime numbers in this chapter. Write down
your own definition of a prime number. Then compare it with the
book, a few internet sources, or some other authoritative source. Should
1 be considered prime? What about −1?

23. Search books and/or the Internet and find at least three different
proofs that there is no largest prime number. (Ours, Theorem 6.2.1,
is the oldest one we know of.) You don’t have to understand all the
details; they should be fairly different from each other, though. Do
any of the proofs generate all primes in order?

Summary: Basic Integer Division
Here are some of the main results of this chapter.

1. The Division Algorithm is a foundational result.

• We use it immediately to prove a well-known fact in Proposition 2.1.4.
• Note that the proof in Subsection 2.1.2 uses the Well-Ordering Prin-

ciple.

2. We review Common Divisors and the greatest common divisor, introduc-
ing its characterization in Theorem 2.2.4.

3. The Euclidean algorithm is foundational for this task; see Example 2.3.1
for a good example.

4. Then we use the previous section’s work to prove the Bezout identity.

• We do several examples.
• Importantly, we use this notion to introduce the key concept of

Relatively Prime, and prove some facts about this concept.

Finally, we have Exercises.

CHAPTER 2. BASIC INTEGER DIVISION 20

Chapter 3

From Linear Equations to Geom-
etry

So far, we have mostly investigated topics that will seem familiar even to the
high school student; for instance, the gcd shows up in adding fractions with
unequal denominators.

What makes number theory so interesting is that even a slight change in the
questions we ask, or the way in which we approach them, can yield completely
unexpected insights.

In this section, we will begin this process by going from the simple ques-
tions we started with into more subtle ones, largely motivated by a surprising
connection with geometry.

3.1 Linear Diophantine Equations
The first goal for this chapter is to completely solve all linear Diophantine
equations (of two variables1). This is the question of finding solutions x, y ∈ Z
of equations of the generic form

ax+ by = c for given a, b, c ∈ Z.
Historical remark 3.1.1 Diophantine and his equations. These equa-
tions have been studied since the late Roman era, most notably by the (Greek
speaking) mathematician Diophantus, from whom we derive their name, though
we know little else about him. One of the most notable things about Diophan-
tus’ work is that it incorporates a proto-algebra which begins to use certain
Greek letters for an unknown – an advance which, unfortunately, did not go
anywhere for over a millenium.

While Diophantus studied much more complicated equations as well (as
we will see), methods for solving equations like 6x + 4y = 2 were pursued
throughout antiquity and the medieval period – see Historical remark 2.4.7.

There are several main cases involved in the solution, as we see in the
following theorem.
Theorem 3.1.2 Solutions of Linear Diophantine Equations. Given
integers a, b, c, we wish to find all integer solutions x, y to ax+ by = c.

Let d = gcd(a, b), unless a = b = 0 in which case let d = 0. We will consider
1Systems of equations with several variables have a very long pedigree in nearly every

culture we have documentation from; see Exercise 3.6.10 for just one exercise, and see
[E.5.3, Chapter 6] for some interesting historical examples, particularly the last couple.

21

http://www-history.mcs.st-and.ac.uk/Biographies/Diophantus.html

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 22

cases by ease of generating solutions.

1. When c is not a multiple of d (including if c ̸= d = 0), there is no
solution.

2. When a or b is zero (but not both) and the nonzero one divides c, there
are infinitely many solutions that require little work to obtain.

3. When a, b ̸= 0 and c = d, there are infinitely many solutions, but you
will need to first obtain one solution in order to generate the others.

4. When a, b ̸= 0 and c is a nontrivial multiple of d, there are infinitely
many solutions that are easiest to generate by means of a solution to
ax+ by = d.

Proof. The details are in the following subsections.
1. When c is not a multiple of d: Subsection 3.1.1

2. When a or b is zero: Subsection 3.1.2

3. When c = d: Subsection 3.1.3

4. When c is a nontrivial multiple of d: Subsection 3.1.4

You should definitely follow the steps with specific simple numbers to see how
each proof works. Examples 3.1.3 and 3.1.4 are good models. ■

3.1.1 If c is not a multiple of gcd(a, b)
When d ̸= 0, our previous theorems say that solving ax+ by = c is impossible.
Can you see why? For instance, try it out with a = 6, b = 9, and c = 5.

Reading the statement of Theorem 3.1.2 carefully shows that this case
includes the situation where a = 0 = b but c ̸= 0. It is also an easy exercise
to show this is impossible. You can provide full details of all these things in
Exercise 3.6.8. Don’t forget the division algorithm!

3.1.2 If a or b is zero
Suppose b = 0 – in which case gcd(a, b) = a. (Try a = 55 as an example.)

Then we are just solving ax = c, so the equation is true because we already
assumed that d = a | c. All pairs

(
c
a , y
)

with integer y are solutions.
If a = 0 the answer is analogous; write it down for yourself as practice!

3.1.3 If c = gcd(a, b)
Suppose a, b ̸= 0 and c actually is the gcd of a and b . . . then there is some
work to do. Follow along with a = 60, b = 42, and c = 6 if you wish.

Your first step should be to get that gcd d via the Euclidean algorithm.
Then you will be able to go backwards (i.e. using the Bezout identity 2.4.1) to
get one solution (x0, y0). That is important, since now at least one ax0+by0 = c
is known.

The next step is the last one; write down the entire solution set:

x = x0 +
b

d
n, y = y0 −

a

d
n for n ∈ Z !

There are three comments to make to finish the proof.

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 23

• First, look at the structure of the solutions. The constants a and b have
switched their ‘affiliation’ from x and y to y and x. Also note that x and
y have ± involved. It doesn’t really matter which is which (switch −n
for n to see why), but if they have the same sign it is wrong. (When in
doubt, try something and then check to see if the answers are right.)

• It’s easy to check that any particular solution works.

a

(
x0 +

b

d
n

)
+ b

(
y0 −

a

d
n
)
= ax0 +

abn

d
+ by0 −

abn

d

and ax0 + by0 = c by hypothesis.

• Why does this give all solutions? First note that since the only common
divisors of a and b are divisors of d, the integers b

d and a
d must be relatively

prime.
Now pick another solution x = x′, y = y′, and let’s show it has the desired
form. Start with

ax′ + by′ = c = ax0 + by0

and gather terms so that
a

d
(x′ − x0) = − b

d
(y′ − y0).

Since b
d divides the right side, it divides the left side as well. Now we use

Proposition 2.4.10 and the observation in the previous paragraph to see
b
d must divide the x′−x0 factor of the left-hand side, so that there exists
an integer k such that

x′ − x0 = k
b

d
, which means x′ = x0 + k

b

d
,

which is exactly what we just said was the form of all solutions.
Example 3.1.3 An easy example: 6x + 4y = 2. Trial and error tells us
that 6x+ 4y = 2 can be solved with x0 = 1, y0 = −1. Thus the full answer is

x = 1 +
4

2
n, y = −1− 6

2
n

which we may rewrite as

x = 1 + 2n, y = −1− 3n , n ∈ Z.

□

3.1.4 If c is a nontrivial multiple of the gcd
Finally, what if c is not the greatest common divisor but we still have solutions
because d | c? (Follow along in Example 3.1.4 if you wish.)

• First, we can write c = dm, where again d is the greatest common divisor.

• In Subsection 3.1.3 we just saw that there must be a solution for ax+by =
d. Take any solution (x0, y0) to this equation.

• By hypothesis, d = ax0 + by0. Now multiply this by m to obtain

c = dm = ax0m+ by0m = a(x0m) + b(y0m)

which shows x = x0m, y = y0m is a solution to the original equation
ax+ by = c.

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 24

• Finally, the surprise is that the full solution has the same form as in
Subsection 3.1.3:

x = x0m+
b

d
n, y = y0m− a

d
n

It is easy to check and the proof is very similar to the case c = d (see
Exercise 3.6.9). Intuitively, the reason you don’t need the m in the
fractions is because they will just cancel anyway.

Example 3.1.4 Try to do 15x− 21y = 6, a slightly harder one. (Hint: d = 3;
what are c and d? □

3.2 Geometry of Equations
But just proving things are true and using them isn’t enough. Why is the
theorem true, intuitively? I believe the right way to approach this is with
geometry, as in the following figure. Then try out the interactive cell below to
see how things change with different coefficients.

-10 -5 5 10

-10

-5

5

10

Figure 3.2.1 Solutions to 3x+ 2y = 10 with x, y ≤ 10

@interact
def _(a=slider (-10,10,1,6),b=slider (-10,10,1,4),

c=slider (-20,20,1,2),viewsize=slider (3,20,1,5)):
p = plot(-(a/b)*x+c/b,-viewsize ,viewsize ,

plot_points =200)
lattice_pts =[[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_lattice_pts = points(lattice_pts ,rgbcolor =(0,0,0),

pointsize =2)
if mod(c,gcd(a,b))==0:

line_pts = [coords for coords in lattice_pts if

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 25

a*coords [0]+b*coords [1]==c]
if line_pts ==[]:

plot_line_pts = Graphics ()
else:

plot_line_pts =
points(line_pts ,rgbcolor =(0,0,1),
pointsize =20)

pretty_print(html("Showing␣solutions␣to␣$%sx+%sy=%s$␣
in␣this␣viewing␣window"%(str(a),str(b),str(c))))

show(p+plot_lattice_pts+plot_line_pts ,
figsize =[5,5], xmin=-viewsize ,xmax=viewsize ,
ymin=-viewsize ,ymax=viewsize)

else:
pretty_print(html("The␣gcd␣of␣$%s$␣and␣$%s$␣is␣$%s$,␣

which␣does␣not␣divide␣
$%s$,"%(str(a),str(b),str(gcd(a,b)),str(c))))

pretty_print(html("so␣no␣solutions␣to␣
$%sx+%sy=%s$"%(str(a),str(b),str(c))))

show(p+plot_lattice_pts ,
figsize =[5,5],xmin=-viewsize ,xmax=viewsize ,
ymin=-viewsize ,ymax=viewsize)

The little gray dots in the graphic above are called the integer lattice;
this is the collection of all the intersections of the lines y = m,x = n for all
integers m,n. There are many mathematical lattices (many quite intimately
connected to number theory), but we will focus on this one in this text.

Definition 3.2.2 The integer lattice is the set of points (m,n) for m,n ∈ Z.
♢

In the graphic, for instance (−2, 3) is probably visible; on the other hand,
the point (−1, 1/2) should not have a little dot, because it doesn’t have integer
values.

This is a good occasion to remind the reader of some familiar terms and
notation.
Definition 3.2.3 We consider any ratio of integers p

q with q ̸= 0 to be a
rational number, with equivalent ratios such as 1

2 = 3
6 identified as in school

mathematics2. The set of all rationals is denoted Q. If a (real, R) number is
not writeable in these terms, it is called an irrational number. ♢

To return to the lattice, since ax+ by = c may be thought of as a line (in
fact, the line

y = −a

b
x+

c

b

with slope −a
b), we now have a completely different interpretation of the most

basic number theory question there is, the linear Diophantine equation. It is
simply asking, “When (for what a, b, c combinations) does the line hit this
lattice? If it does, can you tell me all intersections?” If you play around with
the sliders you will quickly see that things work out just as promised in the
theorems.

But let’s go a little deeper. There are three interesting insights we can get.

• First, Theorem 3.1.2 now expresses a very mysterious geometric idea,
depending on whether

gcd(a, b) | c
2That this is meaningful can be made rigorous using equivalence classes as we will do

with modular arithmetic in Proposition 4.3.2, but that is outside the scope of this course.

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 26

If so, then this line hits lots of the lattice points; if not, the line somehow
slides between every single one of them! You can check this by keeping
a, b the same and varying c in the interact above.

• Secondly, it makes the proof of why Theorem 3.1.2 gets all of the answers
much clearer. If you have one answer (for instance, (1,−1)) and go right
by the run and down by the rise in a

b (our example was a = 6, b = 4),
you hit another solution (perhaps here (−3, 5)) since it’s still all integers
and the slope was the line’s slope.
But wait, couldn’t there be points in between? Sure. So make a

b into
lowest terms (e.g. 3

2), which would be a/d
b/d . And this is the ‘smallest’ rise

over run that works to keep you on the line and keep you on integer
points.

• Third, it can help clarify the role of the solution which the Bezout identity
(extended Euclidean algorithm) gives for ax+by = c. Namely, as pointed
out in in a 2013 American Mathematical Monthly article by S. A. Rankin
[E.7.21], the “solution provided … lies nearest to the origin.” Try the
interactive cell at the beginning of this subsection to convince yourself of
this!

Although we won’t pursue it, there is a question which this formulation
in an online text brings up. Namely, given that the ‘line’s in question are
themselves only pixellated approximations whose coordinates may not satisfy
ax + by = c, what is the connection between the computer graphics and the
number theory? See How to Guard an Art Gallery [E.6.7], Chapter 4, for an
accessible take on this3 from a number-theoretic viewpoint, as well as Exer-
cise 3.6.23.

3.3 Positive Integer Lattice Points
Now that we have the geometric viewpoint, here is a more subtle question:

Question 3.3.1 Assume there exists a solution (hence infinitely many) to
ax+ by = c. How many such solution pairs (x, y) have x and y both positive?

□
This is similar to the conductor question. It is closely related to integer

programming, something with industrial applications.
3As well as several other topics in this text! But you’ll have to read it to find out which

ones.

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 27

1 2 3 4

1

2

3

4

5

6

Figure 3.3.2 Positive solutions to 3x+ 2y = 10

@interact
def _(a=slider (1,20,1,1), b=slider (1,20,1,1),

c=slider (1,20,1,4)):
ym = c/b + 1
xm = c/a + 1
p = plot(-(a/b)*x+c/b,-1,xm, plot_points = 200)
lattice_pts = [[i,j] for i in [0..xm] for j in [0..ym]]
plot_lattice_pts = points(lattice_pts ,rgbcolor =(0,0,0),

pointsize =2)
if mod(c,gcd(a,b))==0:

line_pts = [coords for coords in lattice_pts if
(coords [0]>0) and (coords [1]>0) and
(a*coords [0]+b*coords [1]==c)]

if len(line_pts)==0:
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' No␣positive␣lattice␣points␣

at␣all! '))
show(p+plot_lattice_pts , figsize = [5,5], xmin =

0, xmax = xm, ymin = 0, ymax = ym)
else:

plot_line_pts = points(line_pts , rgbcolor =
(0,0,1), pointsize =20)

pretty_print(html(' Solutions␣to␣
$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))

pretty_print(html(' Number␣of␣positive␣lattice␣
points␣=␣ ' + str(len(line_pts))))

show(p+plot_lattice_pts+plot_line_pts , figsize =
[5,5], xmin = 0, xmax = xm, ymin = 0, ymax =
ym)

else:
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' No␣positive␣lattice␣points␣at␣

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 28

all! '))
show(p+plot_lattice_pts , figsize = [5,5], xmin = 0,

xmax = xm , ymin = 0, ymax = ym)

Let’s explore this. How many such points are there in the following cases?
Draw pictures by hand, or use the interact above.

• x+ y = 4, x+ y = 5, x+ y = 6, . . .

• 2x+ y = 4, 2x+ y = 5, 2x+ y = 6, . . .

• 2x+ 2y = 4, 2x+ 2y = 5, 2x+ 2y = 6, . . .

• 3x+ y = 4, 3x+ y = 5, 3x+ y = 6, . . .

Can you get any good conjectures?

3.3.1 Solution ideas
If you think about the question a little more carefully together with the picture,
you may realize that we are really asking about how many integer lattice points
lie between the intercepts. So one way to think about an answer would involve
the distance between solutions.

To be concrete, let’s assume that the equation is ax+by = c, and gcd(a, b) =
1. Then, using our technique from last time, from the solution (x0, y0) we get
a new solution (x0 + b, y0 − a), so the distance between any two solutions is,
by the Pythagorean Theorem,√

[(x0 + b)− x0]2 + [(y0 − a) + y0]2 =
√
a2 + b2.

Our strategy is to ask:

• How many times does that distance fit between the intercepts of the line?

Does that strategy make sense? It doesn’t give an exact answer, but should
give a good ballpark estimate.

Let’s calculate these things. You may want to follow it a = 3, b = 2, c = 4.

• The intercepts are c
a and c

b , respectively.

• Using the Pythagorean Theorem again, we see that the whole length
available is √(c

a

)2
+
(c
b

)2
=

c

ab

√
a2 + b2.

• The ratio of this total length and the length between solutions is thus
c
ab .

That’s a nice pat answer. There are two problems with it, though!

1. There is no guarantee that c
ab is an integer! In fact, it usually won’t be.

For instance, with 2x + 3y = 10, 10
2·3 ≈ 1.67. So should the number of

points be bigger than or less than this?

2. Secondly, even so it’s not clear what the precise connection between c
ab

and the actual number of points is. 2x+3y = 5 has one, and 2x+3y = 7
has one, but 2x + 3y = 6 doesn’t. Yet c

ab is about equal to one for all
three of these. In fact, the number of points is thus not even monotone
increasing with respect to c increasing, which is rather counterintuitive.

We will have to deal with each of these situations.

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 29

3.3.2 Toward the full solution
We can deal with each of these problems. To do so, we introduce a new function:
Definition 3.3.3 Greatest integer function. The greatest integer function
(also called the floor function) is the function which takes a real number x and
returns the largest integer below it (or equal to it). We notate it ⌊x⌋. ♢
Example 3.3.4 A few examples should suffice to understand it:

⌊1.5⌋ = 1 , ⌊1⌋ = 1 , ⌊1.99⌋ = 1 , ⌊0.99⌋ = 0 , ⌊−.01⌋ = −1.

□
Now let’s use this to rectify our problems.

1. To take care of the integer problem, we will just consider n =
⌊

c
ab

⌋
, the

greatest integer function applied to c
ab .

2. Secondly, we simply recognize that there isn’t a nice formula. On average,
we should expect n lengths between integer points along the line segment
in question (and hence as many as n+ 1 lattice points, since a partition
of n intervals has n+ 1 endpoints associated to it).

Rather than give a general formula, we examine individual cases to show
what to expect. This applet can help supplement trying it by hand.

@interact
def _(c=[5..12]):

a = 2
b = 3
ym = c/b + 1
xm = c/a + 1
p = plot(-(a/b)*x+c/b,-1,xm, plot_points = 200)
lattice_pts = [[i,j] for i in [0..xm] for j in [0..ym]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
if mod(c,gcd(a,b))==0:

line_pts = [coords for coords in lattice_pts if
(coords [0]>0) and (coords [1]>0) and
(a*coords [0]+b*coords [1]==c)]

if len(line_pts)==0:
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' No␣positive␣lattice␣points␣at␣

all! '))
show(p+plot_lattice_pts , figsize = [5,5], xmin =

0, xmax = xm, ymin = 0, ymax = ym)
else:

plot_line_pts = points(line_pts , rgbcolor =
(0,0,1),pointsize =20)

pretty_print(html(' Solutions␣to␣
$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))

pretty_print(html(' Number␣of␣positive␣lattice␣
points␣=␣ ' + str(len(line_pts))))

show(p+plot_lattice_pts+plot_line_pts , figsize =
[5,5], xmin = 0, xmax = xm, ymin = 0, ymax =
ym)

else:
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 30

pretty_print(html(' No␣positive␣lattice␣points␣at␣
all! '))

show(p+plot_lattice_pts , figsize = [5,5], xmin = 0,
xmax = xm , ymin = 0, ymax = ym)

Let’s focus on the case where a, b > 0 are relatively prime, such as in the
graphic with 2x + 3y = c for various c. Naturally, if c < 6 in this specific
example, then n =

⌊
c
ab

⌋
= 0, so one might not expect many points. What

about in general?

1. The easiest case is when just one of the intercepts is a lattice point.
Beginning at that point, there is definitely room for the full n lengths to
appear, and you’re guaranteed to get n lattice points, because we just
said the other intercept isn’t a lattice point, so the nth one must appear
before that point. So the formula is just plain old

n =
⌊ c

ab

⌋
.

This will happen (where n = 1) with 2x+3y = 8 (or 9 or 10), for instance.

2. If neither c/a nor c/b is an integer, then you could get n or n+1 lattice
points. There’s no nice formula beyond this, and often examples will
be like 2x + 3y = 7 with just one lattice point as ‘expected’. When the
extra point ‘fits’ is in examples like the case 2x+3y = 11, where we have
11
2·3 −

⌊
11
2·3
⌋

very close to one, and you do get
⌊

11
2·3
⌋
+1 = 2 positive lattice

points here.

3. Finally, it’s also possible for ‘not enough’ lattice points to fit; for example,
2x + 3y = 12 jumps back down to

⌊
12
2·3
⌋
− 1 = 1 points! This situation

(not reaching n points) can occur when both the x- and y-intercepts
actually are lattice points, because the intercepts by definition do not
have positive coordinates. So if c/a and c/b are both integers, then we
get precisely

n− 1 =
⌊ c

ab

⌋
− 1

lattice points.

As a side note, the number of points not being a monotone nonincreasing
function of c should always be expected when c transitions to being a multiple
of ab, such as also from 2x+ 3y = 5 to 2x+ 3y = 6. In fact, since the closest
solution to the origin of ax + by = −1 must be no more than one half the
usual distance

√
a2 + b2 away (cf. also [E.7.21]), all (positive) solutions of

ax+ by = kab will yield (positive) solutions to ax+ by = kab− 1, as will one
of the intercepts. See Exercise 3.6.24 to fill in the details.

The excellent book The Geometry of Numbers [E.4.16, Section 2.2] gives
many more details. For instance, if gcd(a, b) ̸= 1, it is not too hard to show that
any such line with respect to lattice points is the same as a line a′x+ b′y = c′

for which gcd(a′, b′) = 1. Which line would that be?

3.4 Pythagorean Triples

3.4.1 Definition
There are a lot of other interesting questions that one can ask about pure
integers, and polynomial equations they might satisfy (so-called Diophantine

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 31

equations). However, answering many of those questions will prove challenging
without additional tools, so we will have to take a detour soon. But one
such question is truly ancient, and worth exploring more in this chapter, as a
representative of questions involving quadratic terms.

The question we will examine is also quite geometric. We just used the
Pythagorean Theorem above, but you’ll note that we didn’t really care whether
the hypotenuse was an integer there. Well, when is it? More precisely:
Question 3.4.1 When are all three sides of a right triangle integers? □
Definition 3.4.2 We call a triple of integers x, y, z such that x2 + y2 = z2 a
Pythagorean triple. ♢

There isn’t necessarily evidence that Pythagoras thought this way about
them. However, Euclid certainly did, and so will we. For that matter, we
should also think of them as x, y, z that fit on the quadratic curve x2+y2 = z2,
given z ahead of time.

Let’s try this out for a little bit – on paper or with this applet. When do
we get a triple? (Keep in mind that we will always expect the triple (z, 0, z)
and (0, z, z) where 02 + z2 = z2, but that’s not really what we are interested
in.)

@interact
def _(z=(2 ,[1..100])):

f(x,y)=x^2+y^2-z^2
max = z
p = implicit_plot(f,(x,-1,max),(y,-1,max),plot_points =

200)
lattice_pts = [[i,j] for i in [0.. max] for j in [0.. max]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
curve_pts = [coords for coords in lattice_pts if

f(coords [0], coords [1]) ==0]
if len(curve_pts)==0:

show(p+plot_lattice_pts , figsize = [5,5],
aspect_ratio =1)

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1),pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5,5], aspect_ratio =1)

3.4.2 Characterizing Pythagorean triples
When exploring, it can seem quite unpredictable for which z there exists a
Pythagorean triple! (We’ll return to that question later.) Let’s see what triples
are possible overall.

3.4.2.1 Preliminaries

First, it turns out we really only need to worry about the case when x, y, z are
mutually relatively prime (Definition 2.4.9).

Definition 3.4.3 A Pythagorean triple with x, y, z mutually relatively prime
is called a primitive Pythagorean triple. ♢

http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 32

Proposition 3.4.4 Any Pythagorean triple with two numbers sharing a factor
can be reduced to a primitive triple.
Proof. If x = x′a and y = y′a, for instance, then

x2 + y2 = (x′)2a2 + (y′)2a2 = z2

which means that a2 | z2, and hence that a | z as well. The other cases are
similar. (One can prove the last statement with the gcd and Bezout as well,
but I trust you believe it for now. See below in Proposition 3.7.1.) ■

So let’s consider just the case of primitive triples. In just a little while we
will discover we have the proof of a result, Theorem 3.4.6.

We can start with very elementary considerations of even and odd. By the
previous proposition, x and y can’t both be even.

I claim they can’t both be odd, either. For if they were, we would have
x = 2k + 1 and y = 2ℓ+ 1 for some integers k, ℓ, and then

(2k + 1)2 + (2ℓ+ 1)2 = 4
(
k2 + ℓ2 + k + ℓ

)
+ 2

But this contradicts Proposition 2.1.4 with respect to the remainder of a perfect
square when divided by four.

So we may assume without loss of generality that x is odd and y is even,
(which means z is odd).

3.4.2.2 An intricate argument

We have now reduced our investigation to the following case: we assume that
gcd(x, y, z) = 1, that x, z are odd, and that y is even. Now we will do a
somewhat intricate, but familiar, type of argument about factorization and
divisibility.

Let’s rewrite our situation as

y2 = z2 − x2.

The right-hand side factors as

z2 − x2 = (z − x)(z + x).

Certainly z − x and z + x are both even, so that z − x = 2m and z + x = 2n
for integer m,n. But since their product is a square (y2), then that product
2m · 2n = 4mn is also a perfect square. Since y is even, y = 2j for some j ∈ Z
and y2 = 4j2, so mn = j2 is a perfect square.

Let’s look at these mysterious factors m = z−x
2 and n = z+x

2 . Are they
relatively prime? Well, if they shared a factor, then x = n−m and z = m+ n
also share that factor. But gcd(x, z) = 1, so there are no such factors and

gcd
(
z − x

2
,
z + x

2

)
= gcd(m,n) = 1.

As a result, not only do we have j2 = mn, but actually m and n are relatively
prime!

At this point we need what may seem to be an intuitive fact about squares
and division; if coprime integers make a square when multiplied, then they are
each a perfect square. (See Proposition 3.7.2.) So m = p2 and n = q2 for some
integers (obviously coprime) p and q.

This clearly implies that j2 = p2q2, so y = 2pq. In addition, if we go back
to the definitions of m,n above, we obtain z − x = 2p2 and z + x = 2q2.

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 33

3.4.2.3 The punch line

Now we can put everything together. We begin with a useful definition.
Definition 3.4.5 We say two integers p, q have opposite parity if one is even
and the other is odd, and we say they have the same parity otherwise. ♢
Theorem 3.4.6 Characterization of primitive Pythagorean triples.
For a primitive triple x, y, z, we have

z = p2 + q2, x = q2 − p2, and y = 2pq.

Further, since x is odd, p and q must have opposite parity.
Algorithm 3.4.7 We can find all primitive Pythagorean triples by finding
coprime integers p and q which have opposite parity, and then using the for-
mula in Theorem 3.4.6. We can obtain all Pythagorean triples by multiplying
primitive triples by an integer greater than one.

It’s really worth trying to find these by hand; it gives one a very good sense
of how this all works.

Of course, you could generate some by computer as well …

n=10
Generators =[(p,q) for p in range(1,n) for q in range(p+1,n)

if (gcd(p,q)==1) and not (mod(p,2)==mod(q,2))]
for pairs in Generators:

x = pairs [1]^2- pairs [0]^2; y = 2*pairs [0]* pairs [1]; z =
pairs [0]^2+ pairs [1]^2

print(' %s␣squared␣plus␣%s␣squared␣is␣%s␣squared␣-␣
%s ' %(x,y,z,x^2+y^2==z^2))

3 squared plus 4 squared is 5 squared - True
15 squared plus 8 squared is 17 squared - True
...
15 squared plus 112 squared is 113 squared - True
17 squared plus 144 squared is 145 squared - True

Remark 3.4.8 One can find many infinite subfamilies of Pythagorean triples.
A nice brief article by Roger Nelsen [E.7.18] shows that there are infinitely
many Pythagorean triples giving nearly isosceles triangles (where the smaller
sides are just one unit different). What families can you find?

Similarly, there are other ways to get the entire family of Pythagorean
triples. Theorem 4 of [E.7.42] generates primitive triples via pairs a, b of odd
coprime positive integers; see Exercise 3.6.25.

3.4.3 Areas of Pythagorean triangles
3.4.3.1 Which areas are possible?

Historically, one of the big questions one could ask about such Pythagorean
integer triangles was about its area. For primitive ones, the legs must have
opposite parity (do you remember why?), so the areas will be integers. (For
ones which are not primitive, the sides are multiples of sides with opposite
parity, so they are certainly also going to have an integer area.)

So what integers work? You all know one such triangle with area 6, and
it should be clear that ones with area 1 and 2 can’t work (because the sides
would be too small and because 2, 1 doesn’t lead to a triple); can you find ones
with other areas?

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 34

n=10
Generators =[(p,q) for p in range(1,n) for q in range(p+1,n)

if (gcd(p,q)==1) and not (mod(p,2)==mod(q,2))]
for pairs in Generators:

x = pairs [1]^2- pairs [0]^2; y = 2*pairs [0]* pairs [1]; z =
pairs [0]^2+ pairs [1]^2

print(' The␣primitive␣triple␣%s␣gives␣a␣triangle␣of␣area␣
%s ' %((x,y,z),x*y/2))

The primitive triple (3, 4, 5) gives a triangle of area 6
The primitive triple (15, 8, 17) gives a triangle of area 60
...
The primitive triple (15, 112, 113) gives a triangle of

area 840
The primitive triple (17, 144, 145) gives a triangle of

area 1224

It is worth asking why there are no odd numbers in the list so far. In fact,
we can prove quite a bit about these things.

Remember that in a primitive triple, x and y can be written as x = q2− p2

while y = 2pq, for relatively prime opposite parity q > p. Then the area must
be

pq(q2 − p2) = pq(q + p)(q − p).

So can the area be odd? The following proposition helps answer this (Exer-
cise 3.6.15) and many other questions.

Proposition 3.4.9 In a primitive Pythagorean triple given by the formula in
Theorem 3.4.6, the area of the corresponding triangle is pq(q2−p2). In addition,
the four factors of the area

pq(q + p)(q − p)

must all be relatively prime to each other.
Proof. We already know that p and q are coprime, and that this is the correct
formula for the area.

The factors p and p + q must also share no factors, since any factor they
share is shared by (p+ q)− p = q, but gcd(p, q) = 1. The same argument will
work in showing that p and q − p are, as well as q and either sum.

If q + p and q − p share a factor, since they are odd it must be odd, and
it must be a factor of their sum and difference 2q and 2p. Since the putative
factor is odd, it is coprime to 2, and so we can use Proposition 2.4.10 to say
that it is a factor of both p and q, which is impossible unless said factor is 1.

■
So one could analyze a number to see if it is possible to write as a product

of four relatively prime integers as a starting point. For example, the only
way to write 30 in such a way (assuming no more than one of them is 1) is
30 = 2 ·3 ·5 ·1. Since q+p must be the biggest, we must set q+p = 5. Quickly
one can see that q = 3, p = 2 works with this, so there is such a triangle. (A
quick exercise is to determine the sides of this triangle.) See Exercise 3.6.16.

Trying to see if an integer is the area of a Pythagorean triangle turns
out to be a very deep unsolved problem. This linked news update from the
American Institute of Mathematics gives some background on the congruent
number problem, which asks the related question of which Pythagorean
triangles with rational side lengths give integer areas. This linked page in
particular is interesting from our present point of view.

http://www.aimath.org/news/congruentnumbers/
http://www.aimath.org/news/congruentnumbers/
http://www.aimath.org/news/congruentnumbers/ecconnection.html

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 35

3.4.3.2 Which areas are square?

But we can ask another question, which led Fermat (see Historical remark 13.0.4)
to some of his initial investigations into this theory.
Question 3.4.10 When is the area of a Pythagorean triple triangle a perfect
square? □

@interact
def _(n=20):

Generators =[(p,q) for p in range(1,n) for q in
range(p+1,n) if (gcd(p,q)==1) and not
(mod(p,2)==mod(q,2))]

list = []
for pairs in Generators:

x = pairs [1]^2- pairs [0]^2; y = 2*pairs [0]* pairs [1];
z = pairs [0]^2+ pairs [1]^2

if is_square(x*y/2):
pretty_print(html(' The␣primitive␣triple␣

$%s,%s,%s$␣gives␣a␣triangle␣of␣square␣area␣
$%s$ ' %(x,y,z,x*y/2)))

list.append ((x,y,z))
if not list:

pretty_print(html(r"No␣triangles␣of␣square␣area␣up␣
to␣$p,q\leq␣%s$!"%(n,)))

You’ll notice by the empty output that we don’t seem to be getting a lot
of these. In fact, none. What would we need to do to investigate this?

In the previous section, we noted that each of the factors in the area, pq(q2−
p2) = pq(q+ p)(q− p), are relatively prime to each other. So if the area is also
a perfect square, then since the factors are coprime, we use Proposition 3.7.2
again to see they themselves are all perfect squares!

Now we will do something very clever. It is a proof strategy, similar to
something the Greeks used occasionally, which Fermat used for many of his
proofs, called infinite descent. We are going to take that (hypothetical)
triangle, and produce a triangle with strictly smaller sides but otherwise with
the same properties – including integer sides and square area! That means
we could apply the same argument to our new triangle, and then the next
one … But the Well-Ordering Principle (Axiom 1.2.1) won’t allow infinite sets
of positive integers less than a certain number – which yields the name of
the proof technique! Then (by way of contradiction) the original triangle was
impossible to begin with.

So let’s make that smaller triangle!
Proposition 3.4.11 If a primitive Pythagorean triangle with sides x, y, z,
where the hypotenuse is z, has area a perfect square, we can create another
one of strictly smaller hypotenuse length.
Proof. We use the same notation as in Proposition 3.4.9. We know that q + p
and q − p are (odd) squares. Call them u2 and v2. That means that we can
write u and v as u+v

2 + u−v
2 and u+v

2 − u−v
2 (which are integers since u and v

are odd).
Letting a = u+v

2 and b = u−v
2 , we have that q + p = (a + b)2 and q − p =

(a−b)2. Then a little algebra (do it slowly if you don’t see it right away) shows
that q = a2 + b2 and p = 2ab. These are both squares, so a2 + b2 = q = c2 (!),
which defines a triangle with area ab

2 = 2ab
4 = p

4 , another perfect square.
Now let’s compare c and z. We have z = q2 + p2 =

(
c2
)2

+ p2 = c4 + p2, so

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 36

that unless p = 0, c is strictly less than z. But p = 0 doesn’t give a triangle at
all! So we have our strictly smaller triangle satisfying the same properties. ■
Corollary 3.4.12 No Pythagorean triangles can have area a perfect square.
Proof. If so, we can use the previous proposition infinitely often and violate
Axiom 1.2.1, a contradiction. ■
Corollary 3.4.13 No difference of nonzero perfect fourth powers can be a
perfect square. That is,

v4 − u4 = t2

cannot be solved in positive integers.
Proof. In the proof of the proposition, we really showed that there is no pair
p and q of (coprime) squares such that q2 − p2 is also a perfect square t2; that
is what we started with, after all. So, if p = u2 and q = v2 we have that

v4 − u4 = t2

is impossible. ■
In Exercise 3.6.17 you will use this to prove the famous first case of Fermat’s

Last Theorem: There are no three positive integers x, y, z such that

x4 + y4 = z4.

See also Subsection 14.2.2.

See [E.5.9] and nearly any generalist math journal for a lot more information
on Pythagorean triples; the search is the reward!

3.5 Surprises in Integer Equations
This chapter has discussed linear and quadratic Diophantine equations. As
you can see, even relatively simple questions become much harder once you
have to restrict yourself to integer solutions. And doing it without any more
tools becomes increasingly unwieldy.

But there is one final example of a question we can at least touch on.
Recall that Pythagorean triples come, at their heart, from the observation
that 32 + 42 = 52. This is an interesting coincidence of powers involving
nearby numbers, in this case perfect squares. So too, we can notice that 32

and 23 are only one apart, and 52 and 33 are only two units apart; a perfect
square and a perfect cube are close together.

As usual, we can think of this graphically, using the integer lattice.

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 37

-3 -2 -1 0 1 2 3
-6

-4

-2

0

2

4

6

Figure 3.5.1 Solutions to x3 = y2 − 1

@interact
def _(k=(-1 ,[-25..5])):

f(x,y)=y^2-x^3+k
p = implicit_plot(f,(x,-4,4) ,(y,-8,8),plot_points = 200)
lattice_pts = [[i,j] for i in [-4..4] for j in [-8..8]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
curve_pts = [coords for coords in lattice_pts if

f(coords [0], coords [1]) ==0]
if len(curve_pts)==0:

show(p+plot_lattice_pts , figsize = [5,5],
aspect_ratio =1)

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1),pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5 ,5])
if k>0:

pretty_print(html("Solutions␣of␣$x^3=y^2+%s$␣in␣this␣
viewing␣window"%(k,)))

if k<0:
pretty_print(html("Solutions␣of␣$x^3=y^2-%s$␣in␣this␣

viewing␣window"%(-k,)))
if k==0:

pretty_print(html("Solutions␣of␣$x^3=y^2$␣in␣this␣
viewing␣window"))

The general form x3 = y2 + k in the preceding interact can be known both
as as a Bachet equation or Mordell equation. We will use the latter for the
general form and reserve the former only for the special case k = 2, where a
cube and square are two apart.
Historical remark 3.5.2 Bachet de Méziriac. We will learn more about
Mordell in Section 15.3. André Weil in [E.5.8] describes “Claude Gaspard
Bachet, sieur de Méziriac” as a “country gentleman ... no mathematician [who
somehow] developed an interest in mathematical recreations”, but who in the
end provided “a reliable text of Diophantus along with a mathematically sound
translation and commentary.”

Just like triangles of Pythagorean triples, this equation is connected to

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 38

incredibly deep mathematics. The Bachet/Mordell equation connects directly
to objects called elliptic curves. Given their importance in cryptography
and theory, there is plenty of reason to study such equations; for instance,
see [E.4.19, Appendix A] for the connection between congruent numbers (and
hence Pythagorean triples) and elliptic curves. Studying them will take us too
far afield, unfortunately.

However, some equations of the form x3 = y2 + k are solvable by more ele-
mentary means. Here are some brief examples to whet your appetite; another
such is Proposition 7.6.3. See Section 15.3 for more details on this indepen-
dently interesting topic.
Historical remark 3.5.3 Bachet equation. We already saw that for
k = 2 we get the solution 25 + 2 = 27. The history is interesting; Bachet
himself, in his translation and commentary on Diophantus, talked about finding
rational solutions to what is now ‘his’ equation. Fermat asked the English
mathematician John Wallis (most famous for his infinite product for π and for
a nasty controversy with Thomas Hobbes) whether there were other solutions,
and implied there were no others. Euler proved this is the only solution, but
using some hidden assumptions so his proof was incomplete; see Fact 15.3.5.)
Example 3.5.4 When k = −1, Euler’s proof in 1738 that 9−1 = 8 is the only
nontrivial solution is correct, however4. He uses the same method of infinite
descent we saw in Proposition 3.4.11. (He even shows that there aren’t even
any other rational number solutions to x3 = y2 − 1, all in the midst of a paper
actually about demonstrating Exercise 3.6.17.) □

This is also related to a very old question which was called Catalan’s con-
jecture, yet again related to these funny little coincidences about powers of
nearby numbers. Try exploring the question with the Sage cell following it.
Question 3.5.5 Catalan’s Conjecture. Eight and nine are consecutive
perfect (nontrivial) powers. Are there any others? □

@interact
def _(end_range =10):

pretty_print(html("Solutions␣through␣numbers␣and␣powers␣
$%s$"%end_range))

print ([(x,p,y,q) for x in range(1,end_range) for y in
range(1, end_range) for p in range(2,end_range) for q
in range(2,end_range) if x^p+1==y^q])

Historical remark 3.5.6 Catalan’s conjecture – solved. This was called
Catalan’s conjecture because, as of 2002, the fact that there are no other such
powers is Mihailescu’s Theorem! The history of this question goes back to the
1200s and Levi ben Gerson. This article by Ivars Peterson and [E.4.18] have
nice overviews of many important pieces of its history, and Wolfram MathWorld
has an accessible introduction to the mathematics.

3.6 Exercises

For each of the following linear Diophantine equations, either find the form of
a general solution, or show there are no integer solutions.

1. 21x+ 14y = 147 2. 21x+ 14y = 146

4For a modern take, try [E.4.26, Problem 1.6 and Chapter 19].

https://en.wikipedia.org/wiki/Wallis_product
https://www.press.uchicago.edu/ucp/books/book/chicago/S/bo3640378.html
http://eulerarchive.maa.org/pages/E098.html
https://web.archive.org/web/20090219013305/http://www.maa.org/mathland/mathtrek_06_24_02.html
http://mathworld.wolfram.com/CatalansConjecture.html

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 39

3. 30x+ 47y = −11 4. 30x+ 47y = 2

5. 4x− 6y = 77 6. 4x− 6y = 78

7. Find all possible solutions to the question in Exercise 2.5.10, now that we
have Theorem 3.1.2.

8. Confirm all details in Subsection 3.1.1, including which theorem applies
and the case a = b = 0.

9. Check the details and complete the proof in Subsection 3.1.4.
10. Find all simultaneous integer solutions to the following system of equa-

tions. (Hint: do what you would ordinarily do in high school algebra or
linear algebra! Then finish the solution as we have done.)

x+ y +z =100

x+ 8y+50z=156

11. Compute the number of positive solutions to the linear Diophantine equa-
tion 6x + 9y = c for various values of c and compare to the three-case
analysis at the end of Subsection 3.3.2.

12. Explore the patterns in the positive integer solutions to ax+ by = c situa-
tion in Section 3.3. For sure I want you to do this for the ones I mention
there, but try some other values of c and see if you see any broader pat-
terns!

13. Prove that any line ax+by = c which hits the integer lattice but gcd(a, b) ̸=
1 is the same as a line a′x+ b′y = c′ for which gcd(a′, b′) = 1, and explain
why that means that without loss of generality Theorem 3.1.2 doesn’t
need any more explanations.

14. Find a primitive Pythagorean triple with at least three digits for each
side.

15. Use Proposition 3.4.9 to prove that a Pythagorean triple triangle cannot
have odd area.

16. Prove that 360 cannot be the area of a primitive Pythagorean triple tri-
angle.

17. Find a way to prove that x4 + y4 = z4 is not possible for any three
positive integers x, y, z. (Hint: use Corollary 3.4.13; this exercise needs a
little cleverness.)

18. We already saw that if x, y, z is a primitive Pythagorean triple, then ex-
actly one of x, y is even (divisible by 2). Assume that it’s y, and then
prove that y is divisible by 4.

19. Under the same assumptions as in the previous problem, prove that ex-
actly one of x, y, z is divisible by 3. (Combined with the previous exercise,
this proves that every area of a Pythagorean triple triangle is divisible by
6. Is it also true that exactly one of x, y, z is divisible by 5?)

20. A Pythagorean triple satisfies x2 + y2 = z2. Explore patterns for triples
of positive integers which satisfy x2 − xy + y2 = z2. If Pythagorean
triples correspond to right triangles, what sort of triangles do these triples
correspond to?

21. Find a (fairly) obvious solution to the equation mn = nm for m ̸= n. Are
there other such solutions?

22. Show that
gcd(x, y)2 = gcd(x2, xy, y2)

which we use in Proposition 3.7.2. You can try this using the set of divisors

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 40

definition of gcd, or using the definition gcd(a, b, c) = gcd(gcd(a, b), c).
23. Explore Bresenham’s algorithm in print or online. What is the connection

to this chapter? How do non-solutions to linear Diophantine equations
relate to actual solutions, in this context?

24. Assume you have relatively prime integers a, b > 0 and a positive inte-
ger k. Describe all k − 1 positive solutions to ax + by = kab, and use
Definition 2.4.1 to find k (positive) solutions to ax+ by = kab− 1.

25. Assume b > a are odd, coprime positive integers. Show that
(

b2−a2

2 , ab, b2+a2

2

)
is a primitive Pythagorean triple, and that all such triples are generated
this way. (See Remark 3.4.8.)

26. Cultures across Eurasia have variants of the ‘Problem of the Hundred Fowl’
(see among others [E.5.10, Chapter 15], [E.5.1, p. 176], and [E.5.11, Sec-
tion 1.1.1.3]). This one is from Abu Kamil5 (about 900 AD). Can you
find all solutions with positive integers? What if you generalize the prices
of the birds? (Finding a general solution was attempted – unsuccessfully
– by Chinese mathematicians for generations.)

Suppose ducks cost five coins each, chickens one coin each, but one
coin buys twenty sparrows. If you spend one hundred coins to purchase
one hundred birds, how many of each did you buy?

3.7 Two facts from the gcd
Here are two facts that seem really obvious but do need proofs. All can
be done just with the gcd, using no facts about primes from Chapter 6 as
would typically be done. Kudos go to users Math Gems and coffeemath at
math.stackexchange.com for most of these clever arguments. See this question
for Proposition 3.7.1 and this question for Proposition 3.7.2.
Proposition 3.7.1 When perfect squares divide each other. For inte-
gers a, z it is true that

a2 | z2 =⇒ a | z
Proof. First, let d = gcd(a, z). Then we can write z2 = a2 · k for some integer
k, and immediately write

(z′)2d2 = (a′)2d2k

for some integers z′ and a′, by definition of gcd. (That is, z = z′d and a = a′d.
Also note that z′, a′ are now relatively prime; it is not hard to prove using the
techniques of the previous chapter, or see Exercise 6.6.7.)

Cancelling the d2 (yes, we do assume this property of integers) yields

(z′)2 = (a′)2k.

Since gcd(a′, z′) = 1, we have a′x+z′y = 1 for some x, y ∈ Z; now we substitute
for 1 in a′ · 1 · x (!) to get

a′(a′x+ z′y)x+ z′y = 1

Now we have that a′2x2 + z′(a′xy + y) = 1, so that gcd((a′)2, z′) = 1 as
well. But of course a′ | (z′)2. Clearly if a positive number is a divisor, but
their greatest common divisor is 1, then that number is going to have to be 1

5In [E.5.3, Section 6-4] a similar example of Abu Kamil’s with five unknowns is given,
which he claimed had exactly 2676 solutions in positive integers; today such computations
are of high interest in computational geometry on polytopes.

http://math.stackexchange.com/users/23500/math-gems
http://math.stackexchange.com/users/30316/coffeemath
http://math.stackexchange.com/users/
https://math.stackexchange.com/questions/286099/
https://math.stackexchange.com/questions/286101/

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 41

by definition of divisors. So a′ = 1. (If a′ was negative, the same argument for
−a′ shows −a′ = 1, so really a′ = ±1.)

Hence a = a′d = ±d, which is a divisor of z, we have the desired result. ■
Proposition 3.7.2 When the product of coprime numbers is a square.
If we have integers m,n, j such that mn = j2 and gcd(m,n) = 1, then m and
n are also both perfect squares.
Proof. First, we will need a general fact about gcds:

gcd(x, y)2 = gcd(x2, xy, y2)

See Exercise 3.6.22.
We know that 1 = gcd(m,n) = gcd(m,n, j), so

m = m · gcd(m,n, j) = gcd(m2,mn,mj) = gcd(m2, j2,mj)

Now we use the fact, so that

m = gcd(m, j)2.

That’s a perfect square.
The same argument with n and j yields n = gcd(n, j)2. ■
(For more ‘traditional’ proofs, see Section 6.4.)

Summary: From Linear Equations to Geometry
This chapter contains a lot of interesting results about equations involving
integers, including a number of geometric interpretations.

1. In Solutions of Linear Diophantine Equations we solve all equations of the
form ax+ by = c in integers. There are several cases, the most important
being where c = gcd(a, b) in Subsection 3.1.3.

2. The next section reinterprets these results gometrically, using the integer
lattice.

3. Then we try to ask for solutions to ax + by = c where x, y are both
positive, continuing our geometric intuition, in Section 3.3.

4. Moving to equations with quadratic terms, we introduce the notion of
Pythagorean triples.

• We prove the Characterization of primitive Pythagorean triples.
• We also examine the possible areas of integer-sided right triangles in

Subsection 3.4.3, including the historically very important question
of whether such areas can themselves be a perfect square.

5. In the last main section, we start examining further interesting questions
such as the Bachet equation and Catalan’s Conjecture.

Finally, after a good selection of Exercises, we have proofs of two facts about
perfect squares using just the machinery available to us at this time.

CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY 42

Chapter 4

First Steps with Congruence

Our next big goal is a better notion of how to deal with divisibility and re-
mainders, one we are all familiar with. That is the notion of congruence!

We will begin by reviewing that notion, and start asking the kinds of ques-
tions that one will be able to ask with this notion.

4.1 Introduction to Congruence
Let’s start by a little calculation. What is the remainder of 25 when divided
by 6?

25 % 6

1

In general, the command x % m computes “x modulo m”, which is to say
the remainder of x when you divide by m.

An alternate way to do this is with the command mod(x,m).

mod (25 ,6)

1

In a moment this will be more desirable, but for now it is less so, because
it creates a different kind of Sage object.

Because of the division algorithm, we know that there is a unique such
remainder. If we call it r (so that r = x % m), then 0 ≤ r < m, which is
very important. However, lots and lots of different numbers can have the same
remainder:

[x % 6 for x in [1, 7, 13, 19, 25, -5, -11, 6001, -17]]

[1, 1, 1, 1, 1, 1, 1, 1, 1]

(See Sage note 4.6.2 for this type of list construction.)
In mathematics, what we often do in such a situation where structure is

shared is connect things with a relation.
A relation is a very general notion, and basically it exists once you define it;

however, we will not pursue this further. Our relation will be called congru-
ence, and it is massively important. It is also relatively new! We essentially
use the same definitions and notation that the great 19th-century German

43

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 44

mathematician C.F. Gauss (see Historical remark 14.1.3) came up with just
two centuries ago.
Definition 4.1.1 Congruence. We say that a number a is congruent to b
(another number) modulo n, or

a ≡ b (mod n),

precisely if n | (a− b). We call n, normally a positive integer greater than one,
the modulus. The noun form of the relationship is called congruence. ♢

Often we can prove a small helping statement, usually called a lemma.

Lemma 4.1.2 Congruence-Remainder. Saying a ≡ b (mod n) is exactly
the same thing as saying a and b leave the same remainder when divided by n.
Proof. We can sketch the proof. It is a good exercise (see Exercise 4.7.15) to
fill in the details.

• Write a = nq + r and b = nq′ + r′. (Why is this possible, what are the
various symbols?) Then there are two steps (why do they suffice?)

• First, if r = r′ then there is a k such that a− b = nk, which means a ≡ b
(mod n). (Why?)

• The other direction is showing if a− b = nk for some k ∈ Z, then r = r′.
This is a little harder; try thinking about getting the remainders on one
side, and what r ̸= r′ would imply with respect to n.

■
Example 4.1.3 In our case, saying 25 ≡ 1 ≡ −5 (mod 6) is the same as saying
25 = 4 · 6 + 1 and 1 = 0 · 6 + 1 and −5 = −1 · 6 + 1. □

It’s fun to use congruence as a conceptual assistant. Here are an example
of our previous thinking recast using congruence.
Example 4.1.4 Recall the fact about remainders when dividing by four, Propo-
sition 2.1.4. This is just saying that the only possibilities are

x2 ≡ 0 or 1 (mod 4)

Could you try to use this idea to think of possible last (decimal) digits of a
perfect square? Which modulus would be helpful? (See Exercise 4.7.11.)

What about cubes; what remainders are possible modulo 4? What last
digits are possible? □

4.2 Going Modulo First
Okay, that’s all fun. But we need power, too. Here’s an example of such power.
Even though I’m not physically present, I can do amazing computations! Let
me compute 21000000000 (mod 3)! I’ll do it instantaneously.

Ready for the answer? It’s 1!
Perhaps you don’t believe an absent author. We can check it with Sage:

%time 2^1000000000 % 3

1

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 45

Sage note 4.2.1 Timing your work. In a Sage worksheet, putting %time
before a command tells you how long it took. Putting %timeit instead runs the
command many times and gives a ‘best of’ timing. (This does not universally
work in the embedded cells in the web version of this book.)

Hmm, but that took more than a few milliseconds – strange that I could
do it so fast!
Sage note 4.2.2 Numbers too big for a computer. If I add one more
zero, it will throw a very nasty error, like MemoryError: failed to allocate
1250000024 bytes, because things are too big. We can quickly go beyond the
bounds of what our computers can do in number theory!

Now consider that I did this huge computation instantaneously in my head.
Surely I must be full of brains, like the Scarecrow in L. Frank Baum’s Oz
books?

Of course, the reason is not that I am clever, but that congruence can be
turned into arithmetic! Unlike the Wizard, I will give away my secret. I just
used the following useful property.

Fact 4.2.3 If a ≡ b (mod n), then am ≡ bm (mod n) no matter how huge m
is.
Proof. See Exercises 4.7.7 and 4.7.8. ■

Now I do my first congruence computation:

2 ≡ −1 (mod 3) and (−1)1000000000 = 1,

the latter like all even powers of negative one. Ta-dah!
What I’ve done is first think of the original number as in the congruence,

and then taken its power.
Sage can verify this approach is much faster, and even for much bigger

powers. Here we will need to use the mod(x,m) syntax:

print(mod(2,3) ^1000000000)
print(mod(2,3) ^1000000000000000000000000000030)

1
1

Even the presumptively very, very big latter computation should be as fast
as your internet connection.
Sage note 4.2.4 Give things names. We can use the print function as
above with print(mod(2,3)^1000000000) to show multiple computations in
a cell. Then again, it only prints them to the output, does not save them, and
typing print() a lot can get annoying.

So instead, we can assign our ‘modulo integer’ a name, like b, and then use
it to compute. This makes it easy to do lots of interesting tests.

b=mod (2000 ,31)
b,b^1000,b^2000,b^3000,b^4000

(16, 1, 1, 1, 1)

The command in the last line is what prints out in any Sage cell.
Sage note 4.2.5 Making tuples. In this case, we put commas between
things so that all of the stuff in the last row prints out. The output is in
parentheses because the commas create a tuple (a special Python way of making
a list with certain nice properties).

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 46

Sage note 4.2.6 Types matter. What was computed above is not a trick; I
definitely couldn’t do 20001000, or even 161000, in my head. How does Sage do
it? The answer lies in the kind of thing b really is, which confirms that Sage
is using modular numbers, not normal integers.

b=mod (2000 ,31)
b, type(b)

(16, <type
' sage.rings.finite_rings.integer_mod.IntegerMod_int ' >)

In Python, we can ask for the type of anything.In this case, we asked to
output b and then its type, which is definitely not an ordinary integer, and can
be manipulated much more efficiently.

The preceding notes were a lot of computer business, and especially the
last one may have seemed too technical. But if you just skipped it, consider
the main point; if the computer thinks it’s a good idea to just think of the
remainder before you do any arithmetic, maybe we should too.

4.3 Properties of Congruence
There are two main sets of propositions that make arithmetic with congruences
possible. The proofs are not hard, and you may skip them on a first reading.
Proposition 4.3.1 Congruence is an equivalence relation. Congruence
is reflexive, symmetric, and transitive, which are the conditions for it to
be an equivalence relation.

• For any a ∈ Z, a ≡ a (mod n).

• If a ≡ b (mod n), then b ≡ a (mod n).

• If it happens that both a ≡ b and b ≡ c (mod n), then a ≡ c (mod n) as
well.

See any intro-to-proof text for more background. For our purposes, this
means all the things you know are true about equality are also true about
congruence (with a particular modulus n picked, of course).
Proof. We will show each of the properties, leaving some pieces to the reader
(Exercise 4.7.9).

• (Reflexive) For any a ∈ Z, a ≡ a (mod n).

◦ The definition of congruence means we want to show n | (a− a).
◦ But a− a = 0. So we claim n | 0.
◦ Any questions?

• (Symmetric) If a ≡ b (mod n), then b ≡ a (mod n).

◦ For the reader!

• (Transitive) If it happens that both a ≡ b and b ≡ c (mod n), then a ≡ c
(mod n) as well.

◦ The definition of congruence means we want to show if n | (a − b)
and n | (b− c), then n | (a− c) as well.

◦ We use the definitions to see a − b = nk and b − c = nℓ for some
k, ℓ ∈ Z.

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 47

◦ Add these two equations to get a − c = n(k + ℓ), which is the
definition of n | (a− c).

■
Proposition 4.3.2 Congruence arithmetic is well-defined. Addition
and multiplication modulo n are well-defined. That is, if a ≡ c and b ≡ d
(modulo some fixed modulus n), then both of these congruences hold:

1. a+ b ≡ c+ d

2. ab ≡ cd
Proof. Let a ≡ c and b ≡ d (modulo some fixed n). We will prove that
a+b ≡ c+d and then leave the proof that ab ≡ cd the reader in Exercise 4.7.10.

• There must exist k and ℓ such that a = c+ kn and b = d+ ℓn.

• So a+ b = c+ kn+ d+ ℓn = (c+ d) + (k + ℓ)n.

• So a+ b and c+ d must have the same remainder modulo n.

• By definition then a+ b ≡ c+ d.

■
The impact of the previous result is that if I want to do a computation, I

can pick any number with the same remainder modulo n, and the computation
will get the same answer. (Hopefully I pick an easier number to work with!)
Here is an example.
Example 4.3.3 We collate examples of both propositions here. As an example
of what Proposition 4.3.1 implies, 2 ≡ 5 (mod n) is the same thing as saying
5 ≡ 2 (mod n). Then transitivity (and a careful use of contradiction) would
imply that if 2 ̸≡ 6 (mod n), then 5 ̸≡ 6 (mod n) either.

More interesting are examples of Proposition 4.3.2. A basic one is to replace
computing 2 ·2 ·2 ·2 modulo 3 by the choice −1 ·−1 ·−1 ·−1 instead, getting the
same answer (modulo 3). More impressive might be, instead of adding 16+ 15
modulo 17, to compute instead −1 + (−2) = −3 in the same modulus. □

It won’t always be that clear-cut, but that is the general idea.

4.4 Equivalence classes
Let’s make the previous discussion a bit more rigorous by formally breaking
up Z into disjoint subsets; by Proposition 4.3.2 we can pick any element of a
subset for computations.
Definition 4.4.1 Assume throughout that we have fixed a modulus n.

• We call any number congruent to a a residue of a.

• We call the collection of all residues of a the equivalence class of a.

• We denote this class by the notation

[a] = {all numbers congruent to a modulo n}

(Sometimes this is notated [a]n, but the modulus is nearly always evident
from the context.)

♢

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 48

Example 4.4.2 For instance, the equivalence class we began with in Sec-
tion 4.1 is of numbers congruent to 1 modulo 6, which is the set

[1] = {1, 7, 13, 19, 25,−5,−11, 6001, . . .}

perhaps better written as

{1 + 6n | n ∈ Z} = [1].

□
These congruence classes are an example of a more general construction.

Fact 4.4.3 Any set (not just Z) that has an equivalence relation on it can be
broken up into disjoint subsets called equivalence classes. It can be useful
to consider these classes as elements of a set of all such classes. Such a set of
subsets is called a partition.
Proof. We consider this to be background; see any intro-to-proof text. ■

For the relation of congruence modulo n, there are only finitely many classes
(since there are only n possible remainders in the division algorithm), which is
particularly convenient. The point is you can choose your favorite number in
an equivalence class to serve as a representative for all of them, including for
the purposes of basic arithmetic (by Proposition 4.3.2). Let’s briefly redo part
of Example 4.4.4 from this perspective.
Example 4.4.4 To compute 2 ·2 ·2 ·2 modulo 3, we can note that 2 ≡ −1 and
write

2 · 2 · 2 · 2 ≡ −1 · −1 · −1 · −1 ≡ 1,

which is that 16 ≡ 1 (mod 3). □
Let’s solve the ‘magic trick’ at the beginning of Section 4.2 using this con-

cept in a slightly different way.
21000000000 = (22)500000000 = 4500000000 ≡ 1500000000 = 1 mod (3).

Example 4.4.5 Here is something which is not a legal manipulation.

21000000000 ≡ 21 ≡ 2.

Even though 1000000000 ≡ 1 modulo 3, clearly the end result is wrong, because
21 ̸≡ 1 (mod 3), which we have now seen twice.

In general, we have only seen reduction modulo n in the base of a power;
nothing is said about the exponent! (Later, in Section 10.5, we’ll see how to
do reduction in the exponent under controlled circumstances – with a different
modulus, using Euler’s Theorem.) □

As you saw above, knowing the ‘right’ residue can be very helpful. Because
of this, we make two sets of them for general use.
Definition 4.4.6 We call a set of integers with precisely one for each equiva-
lence class a complete residue system or complete set of residues for a
given modulus.

Usually, we just use the ‘normal’ remainders; this is called the set of least
nonnegative residues.

Sometimes we use the set of least absolute residues, the collection of
representatives of each class which are closest to zero. ♢
Example 4.4.7 For n = 6, the set of least nonnegative residues is {0, 1, 2, 3, 4, 5},
representing the set of equivalence classes {[0], [1], [2], [3], [4], [5]}. They are easy
to think of and understand.

In the same case the least absolute residues are {−2,−1, 0, 1, 2, 3}, standing

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 49

in respectively for {[4], [5], [0], [1], [2], [3]}. We used these residues (for n = 3)
in Example 4.4.4. □

4.5 Why modular arithmetic matters
This has been fun and all. But why are we creating so much machinery? There
are two reasons.

The first is practical. Simply put, modular arithmetic makes it much easier
to solve certain otherwise very difficult problems about integers. The reason is
that we can reduce problems about the (infinitely many) integers to checking
whether things are possible when we look at the (finitely many) cases modulo
n. For instance, we can prove things like these statements without inequalities,
calculus, or graphs:

• “The polynomial x5 − x+ 2 has no integer roots”. (See Exercise 9.6.4)

• “The curve x3 = y2 − 7 has no lattice points”. (See Fact 15.3.3.)
The second reason for doing modular arithmetic is theoretical. We get a

new number system! (See Chapter 8.) It’s a number system which has new
problems, new solutions, and new things to explore. And that’s what we’ll be
doing from now on.

4.5.1 Starting to see further
In order to accomplish all these goals, we will take some time learning how to
do such computations. Here are two generic practical rules for using modular
arithmetic.

• First off, always first reduce modulo n, then do your arithmetic (add,
multiply, exponentiate). We have seen lots of examples of this.

• Secondly, always use the most convenient residue (recall Definition 4.4.6)
of a number modulo n.

Example 4.5.1 For example, to add [22]+ [21] modulo 23 it might be smarter
to use the residues −1 ∈ [22] and −2 ∈ [21]. The answer [−3] is of course the
same as [22 + 21] = [43] = [20] modulo 23.

mod (22 ,23)+mod (21 ,23)==mod(-3,23)

True

□
Sage note 4.5.2 Checking equality. Use the double equals sign == to check
if two numerical expressions are equal, not just = (which assigns a value to a
variable).
Here is a more involved example, which avoids the big numbers which would
otherwise occur to do a computation without assistance.

Example 4.5.3 Let’s calculate 420 (mod 6). First we will use least nonnegative
residues; write the justification for each step in the margin if you have a print
copy!

420 ≡ (42)10 ≡ 1610 ≡ 410 ≡ (42)5 ≡ 165 ≡ 45 ≡ (42)2 · 4 ≡ 42 · 4 ≡ 4 · 4 ≡ 4

On the other hand, we can avoid using numbers of absolute value bigger than
five if we carefully select least absolute residues where appropriate! Recall that

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 50

4 ≡ −2 (mod 6):

420 ≡ (−2)20 ≡ ((−2)2)10 ≡ 410 ≡ (−2)10 ≡ ((−2)2)5 ≡ 45 ≡ (−2)5

≡ ((−2)2)2 · (−2) ≡ 42 · (−2) ≡ (−2)2 · (−2) ≡ 4 · (−2) ≡ (−2) · (−2) ≡ 4.

□
There are a few things to be aware of when doing this, of course. To remind

you of a very important such caveat, recall Example 4.4.5; with exponentiation,
you can only replace the base with something in the same congruence class.
Using the language of Proposition 4.3.2, we say that [a]n is well-defined, but
there is no guarantee that a[n] makes any sense.
Example 4.5.4 Just to make sure you get this, on your own compare

23 (mod 5), 73 (mod 5), and 28 (mod 5), 78 (mod 5).

The second pair is quite different from the first pair. □

4.5.2 Taking powers
As one example of how modular arithmetic might matter a bit, let’s examine
the following algorithm for taking ridiculously high powers of numbers (modulo
n). We first need the following interesting fact.
Fact 4.5.5 For any integer a:

1. a2
1

= a2

2. a2
2

= (a2)2

3. a2
3

= (a2
2

)2

In general,
a2

n

=
(
a2

n−1
)2

That is to say, each “power of a to a power of 2” is the square of the previous
“power of a to the previous power of 2”.
Proof. What does a2

n even mean? By definition,

2n = 2n−1 · 2 = 2n−1 + 2n−1,

so a2
n is the same as

a2
n−1+2n−1

= a2
n−1

· a2
n−1

=
(
a2

n−1
)2

■
Example 4.5.6 In this case, it will be easier to do examples before stating the
algorithm. To compute x20, first we see that 16 is the highest power of 2 less
than 20.

• Compute x2 modulo n.

• Square that for (x2)2 = x22 = x4 (modulo n).

• Then square twice more for x23 = x8 and x24 = x16; we reduce modulo
n at each point.

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 51

Now write x20 as x to a sum of powers of 2;

x20 = x16+4 = x24+22 = x22 · x24

Then do this final multiplication modulo n as well. You might want to try it
to see you get the same thing. □
Example 4.5.7 Now let’s get really explicit, and calculate 223 (mod 11). First,

23 = 24 + 22 + 2 + 1, so 223 = 22
4

· 22
2

· 22 · 2.

Then get the powers of 2 needed:

22 ≡ 4 (mod 11),
(
22
)2

= 42 ≡ 5 (mod 11),(
24
)2

= 52 ≡ 3 (mod 11), and
(
28
)2

= 32 ≡ 9 (mod 11)

So we get, as a computation one can do completely without a calculator,

22
4

· 22
2

· 22 · 2 ≡ 9 · 5 · 4 · 2 ≡ 18 · 20 ≡ 7 · 9 ≡ 63 ≡ −3 ≡ 8 (mod 11)

mod (2,11)^23

8

□
Algorithm 4.5.8 In general, we can compute xk modulo n:

1. Write the exponent k =
∑ℓ

i=1 ki2
i, where each ki = 0 or 1. (This is

called the binary representation of k.)

2. Compute x2, x4, x8, and so forth as above, each time reducing modulo n.

3. Multiply
∏ℓ

i=1 x
ki2

i together as in the examples above. Obviously, if
ki = 0 (such as for i = 3 in the x20 example) you skip it, as it just
contributes one to the product.

Remark 4.5.9 Those interested in efficiency should note that this requires
roughly two times the number of binary digits of your number operations, or
about 2 log2(n) operations, as opposed to normal powers which might require n
operations; in addition, you only deal with numbers at most size n2, as opposed
to gigantic ones, when you mod out after each step, so it requires very little
memory.

4.6 Toward Congruences
Recall a question touched on in Example 4.1.4.
Question 4.6.1 What are the possible last digits of a perfect cube? □

We can think of this more systematically now. For instance, if the last digit
of x > 0 is 3, then x = 10m + 3 for some integer m. That is, [x] = [3] (mod
10). So the cube would look like

x3 = (10m+ 3)3 = 1000m3 + 900m2 + 270m+ 27 = 10(stuff + 2) + 7

This would presumably have last digit 7.
We can ask Sage to answer this for all possible last digits very quickly:

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 52

[mod(i,10)^3 for i in [0..9]]

[0, 1, 8, 7, 4, 5, 6, 3, 2, 9]

Sage note 4.6.2 List comprehensions. This programming structure is
known as a list comprehension. Think of it as set builder notation

{i3 (mod 10) | 0 ≤ i < 10}

That’s the set of all cubes modulo 10, generated by i from 0 to 9. (Sage
replaces [0..9] with the list of integers from 0 to 9.)

If you check, what this is doing is getting the (least nonnegative) residue
modulo 10 of the cube of every possible last digit. Notice that we also get every
possible last digit.

It’s possible to think of this more generally. Since we just said the last digit
is all we cared about, we could think of this as answering a related kind of
question. For all last digits d, is there an x such that the following works?

x3 ≡ d (mod 10)

Definition 4.6.3 Any (integer) equation with congruence in place of equality
is called a congruence. ♢

As a result, the previous calculation says that there is a solution to the
congruence x3 ≡ d (mod 10) for all possible d. Another way to say this is that
every number (equivalence class) modulo 10 has a cube root. For instance, the
cube root of [7] is [3].

This is definitely not true in Z; the usual cube root of 7 (where 7 ̸= [7]) is
not even rational! This exemplifies the following fact, which one could consider
a driving force in number theory research.
Fact 4.6.4 Things which are false for the integers might be true in modular
arithmetic.

However, a sort of converse is also worth thinking about, where I will leave
“things” vague for now.
Fact 4.6.5 Things which are true for the integers are normally true in modular
arithmetic.

Now let’s try the same question again, but with a different modulus.

[mod(i,4)^3 for i in [0..3]]

[0, 1, 0, 3]

This seems to imply that every equivalence class modulo 4 “has a cube root”
except [2].

This is suggestive, so maybe we can refine our generalized question.
Question 4.6.6 Given a modulus n and an integer d, identify whether there
are solutions to

x3 ≡ d (mod n).

Or, for what moduli does d have a cube root modulo n? □
Once we’ve opened things up to one such congruence, the sky’s the limit.

For instance, let’s take a slightly more complex quadratic. Over the integers,
there are only two solutions to x2 = x, the familiar x = 0 and x = 1. This
leads to another natural question we can ask in modular arithmetic.

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 53

Question 4.6.7 What are solutions to the congruence

x2 ≡ x (mod n)

for different moduli n? □
Sage can help us explore this sort of question, such as in the following

applet.

@interact
def _(n=(2 ,[0..100])):

list=[x for x in [0..n-1] if (mod(x,n)==mod(x,n)^2)]
pretty_print(html(r"The␣solutions␣to␣the␣congruence␣

$x^2\ equiv␣x$␣(mod␣$%s$)"%(n,)))
pretty_print(html("are␣"+str(list)))

Often, it seems we get the same answers as over the integers. But not
always! Can you try to conjecture for which n we do get the same answer?
(See Exercise 4.7.19.)

We begin to see that there are two aspects of solving congruences, which
will come up again and again for us.

• Solving a given congruence

• Figuring out for which moduli a congruence has solutions (or how many
or …)

Much of the course will return to these ideas; sooner, in Chapters 5 and 7, and
later in Chapter 17.

4.7 Exercises
1. Give the sets of least absolute residues and least nonnegative residues for

n = 21.
2. Prove that 13 divides 1456+1 and 431 divides 243−1 without a computer

(but definitely using congruence).

It is definitely worth while gaining intuition for modular manipulation by doing
a bunch of examples.

3. Compute 743 (mod 11) as in Subsection 4.5.2 without using Sage or
anything that can actually do modular arithmetic. (You should never
have to compute a number bigger than (11−1)2 = 100, so it shouldn’t
be too traumatic.)

4. Repeat Exercise 4.7.3, but with 625 (mod 11).
5. Repeat Exercise 4.7.3, but with 625 (mod 12). Why is this one easier?
6. Make up an exercise like Exercise 4.7.3 and dare a friend in class to

solve it. (Make sure you can solve it before doing so!)
7. Use the properties of congruence (in Proposition 4.3.2) or the definition

to show that if a ≡ b (mod n), then a3 ≡ b3 (mod n).
8. Use the properties of congruence (in Proposition 4.3.2, not the definition)

and induction to show that if a ≡ b (mod n), then am ≡ bm (mod n) for
any positive m.

9. Finish the details of proving Proposition 4.3.1, especially the second part
(symmetric).

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 54

10. Finish the details of proving Proposition 4.3.2.
11. Find and prove what the possible last decimal digits are for a perfect

square.
12. Prove that if the sum of digits of a number is divisible by 3, then so is the

number. (Hint: Write 225 as 2 · 102 + 2 · 10 + 5, and consider each part
modulo 3.)

13. Prove that if the sum of digits of a number is divisible by 9, then so is the
number.

14. For which positive integers m is 27 ≡ 5 (mod m)?
15. Complete the proof of Lemma 4.1.2 that having the same remainder when

divided by n is the same as being congruent modulo n.

Consider Example 4.5.4 in these three extensions.
16. Find some a and n such that an (mod 5) equals an+5 (mod 5), where

a ̸= 0, 1 and n ̸= 0.
17. Try to find some a and n such that an (mod 5) equals an+5 (mod 5),

where a ̸≡ 0, 1 and n ̸= 0.
18. Find some a and n such that an (mod 6) equals an+6 (mod 6), where

a ̸≡ 0, 1 and n ̸= 0. Then try to find an example where they are not
equal.

19. Explore, using the interact after Question 4.6.7 or ‘by hand’, for exactly
which moduli n the only solutions to x2 ≡ x (mod n) are x = [0] and
x = [1].

Summary: First Steps with Congruence
This chapter introduces the extremely important notion of congruence.

1. In Definition 4.1.1 we define a ≡ b (mod n), and immediately note in
Lemma 4.1.2 that it is the same thing as when two numbers have the
same remainder.

2. Before examining more formal properties of congruence, we use Sage to
confirm that it is much easier to be Going Modulo First when you try to
compute in a congruence.

3. We must then show that Congruence is an equivalence relation and that
Congruence arithmetic is well-defined, so that we are justified in such
computations modulo n.

4. Because any equivalence relation partitions its underlying set, we can talk
about the equivalence classes involved here, and about residue systems
that are convenient to compute with.

5. In the next section, we then see some practicalities:

• In various examples like 4.5.3 and 4.5.4 it becomes clear how to
conveniently compute powers in modular arithmetic (and what you
can’t do).

• The next subsection then shows how to be systematic about this
using binary numbers in Algorithm 4.5.8, including several examples.
The key is repeated squaring, explained in Fact 4.5.5.

6. Finally, in Section 4.6, many questions are raised that should motivate
why we would try to explore things that are like equations, but using
congruence (recall Definition 4.6.3).

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 55

As always, there are plenty of computational and theoretical Exercises.

CHAPTER 4. FIRST STEPS WITH CONGRUENCE 56

Chapter 5

Linear Congruences

There are many questions one can ask of the integers, and in the preceding ma-
terial we have already encountered many, especially those asking for solutions
of simple equations in one or two variables.

One can ask very similar questions (and many more) about the integers
modulo n. So we will focus on congruences, which are simply equations modulo
n (see Definition 4.6.3). To exemplify this, consider the following similar ideas:

• 2x+ 3y = 5 (solutions are pairs of integers)

• 2x + 3y ≡ 5 (mod 7) (solutions would be pairs of equivalence classes
[x], [y] modulo 7)

• 2x + 3y ≡ 5 (mod n) for any particular n (solutions would be triplets
[x], [y], n, since it would depend on n)

Try comparing solutions to these by hand; what is similar about them, what
is not?

In one sense the latter problems are a big improvement in the level of
difficulty. For instance, in the second one you just have to try x, y from 0 to 6
(the least nonnegative residues) in the congruence 2x+ 3y ≡ 5 (mod 7).

On the other hand, if the third congruence was modulo n = 10100, that
would be less desirable, especially if the techniques for Z proved not to be
useful with a congruence.

Finally, if we slapped an x2 in the middle of the congruence, it might
very hard indeed to solve quickly. So in this chapter, we will stay focused
on the simplest case, of the analogue to linear equations, known as linear
congruences (of one variable). This includes systems of such congruences
(see Section 5.3).

5.1 Solving Linear Congruences
Our first goal to completely solve all linear congruences ax ≡ b (mod n). The
most important fact for solving them is as follows.
Proposition 5.1.1 The linear congruence

ax ≡ b (mod n)

has a solution precisely when gcd(a, n) | b.

57

CHAPTER 5. LINEAR CONGRUENCES 58

Example 5.1.2 Before going on, test yourself by checking which of the follow-
ing four congruences has a solution and which ones don’t.

• 7x ≡ 8 (mod 15)

• 6x ≡ 8 (mod 15)

• 7x ≡ 8 (mod 14)

• 6x ≡ 8 (mod 14)

□
Proof of Proposition 5.1.1. The proof is pretty straightforward, as long as we
recall when linear Diophantine (integer) equations have solutions.

The following are clearly equivalent:

• Solutions x to ax ≡ b (mod n)

• Solutions x to n | ax− b

• Solutions x to ax− b = ny (for some y ∈ Z)

• Solutions x, y to ax− ny = b

And we know from Theorem 3.1.2 that this final equation has solutions precisely
when gcd(a, n) | b. ■

Just like in linear algebra or calculus, though, it’s not enough to know
when you have solutions; you want to actually be able to construct solutions.
If possible, one wants to construct all solutions. In this case, we can do it.
Proposition 5.1.3 If we can construct one solution to the linear congruence
ax ≡ b (mod n), we can construct all of them, and we know exactly how
many equivalence classes (or remainders) there are of these solutions, which is
d = gcd(a, n).
Proof. Consider the proof of Proposition 5.1.1 above. We don’t care about
y (other than that it exists, and it does). So if we have one solution to the
congruence, that is the same as having a solution x0, y0 to the equation ax −
ny = b.

But we already know what solutions to that look like, from Theorem 3.1.2.
Looking just at the x components, the solutions from e.g. Subsection 3.1.3
(using k since n is taken) are

x0 +
n

d
k k ∈ Z where d = gcd(a, n).

This argument also gives us the exact number of solutions (modulo n),
because letting k go from 0 to d− 1 will give all different solutions. ■
Example 5.1.4 Let’s solve

12x ≡ 15 (mod 21).

Here, gcd(a, n) = 3 so we will have 3 solutions (up to equivalence modulo 21),
all separated by n

d = 21
3 = 7.

We need one solution first. Trying by guess and check small values gives us

• 12(1) = 12 ̸≡ 15,

• 12(2) = 24 ≡ 3 ̸≡ 15,

• but 12(3) = 36 ≡ 15 (mod 21).

CHAPTER 5. LINEAR CONGRUENCES 59

So we may take x = 3 as our x0. Then we add 7 a couple times (mod 21) and
we see that x = [3], [10], [17] all work. (Or, if you prefer least absolute residues
(recall Definition 4.4.6), then x = [3], [10], [−4] work.)

Alternately,
3 + 7k, k ∈ Z

is the general solution. □
Remark 5.1.5 The previous example well illustrates that, while there are
infinitely many integers which may solve a congruence, we will usually only
consider the finitely many classes of solutions (or finitely many remainders, if
you like). However, it is easy to be sloppy and talk about one when you mean
the other, so be cautious.

5.2 A Strategy For the First Solution
The previous proposition always works. However, it can be very tedious to
find that first solution if the modulus is not small. This section is devoted to
strategies1 for simplifying a congruence so that finding such a solution is easier.
Fact 5.2.1 Strategies that work for simplifying congruences. We can
do two main types of simplification. First, there are two types of cancellation.

• If a, b, and n all are divisible by a common divisor, we can cancel that
divisor out (keeping in mind that we still will need our final solution to
be modulo n).

• If a and b share a common divisor which is coprime to the modulus, we
can cancel that divisor from a, b (only).

See Propositions 5.2.6 and 5.2.7 for precise statements and proofs.
Secondly, there are two counterintuitive operations that may lead to a sim-

pler congruence (using least nonnegative residues).

• We could multiply a and b by something coprime to n. If, after reducing
modulo n, that makes a or b smaller, then that was a good idea!

• We can add some multiple of n to b. Again, if that happens to make a
and (the new) b share a factor, then it was a good idea!

These four steps may be applied in any order, though typically the first two are
done as often as possible. See Example 5.2.5 for why coprime is necessary in
two of the steps.
Example 5.2.2 A big example. Let’s do a big problem exemplifying all
the strategies; we will break it up into possible steps you might do.

Solve 30x ≡ 18 (mod 33).

1. First, note that all three of the coefficients and modulus are divisible by
3. So right away we should simplify by dividing by 3. But keep in mind
that our final solution will need to be modulo 33, not modulo eleven! We
should still end up with gcd(30, 33) = 3 total solutions, and if we don’t,
we have messed up somewhere.

2. Now we have 10x ≡ 6 (mod 11). (Again, although this will have one
1The reader should note that we roughly follow [E.2.1, pp. 50-51] in this, but that an

alternate (or supplemental?) approach using the Bezout identity is followed in texts like
[E.2.4] or [E.2.13].

CHAPTER 5. LINEAR CONGRUENCES 60

solution modulo 11, we will need to get the other two solutions modulo
33.) Since 10 and 6 are both divisible by 2, and since gcd(2, 11) = 1, we
can divide the coefficients (not modulus) by 2 without any other muss.

5x ≡ 3 (mod 11)

3. So take 5x ≡ 3 (mod 11), and let’s try to replace 3 by another number
congruent to 3 modulo 11 which would allow me to use the above steps
again.

• I could try 3 + 11 = 14, but that gives

5x ≡ 14 (mod 11)

and 14 doesn’t share a divisor with 5 (from the 5x).
• If I try 3 + 22 = 25, giving

5x ≡ 25 (mod 11)

then 25 does share a divisor with 5.

4. Now I can go back and reduce 5x ≡ 25 (mod 11) to

x ≡ 5 (mod 11)

And that’s the answer!

5. Or is it? Remember in the first step that we started modulo 33, and that
all the answers will be equivalent modulo 11. So we see that

x = 5 + 11k for k ∈ Z

will be the answer, which is the three equivalence classes {[5], [16], [27]}.

Does it check out?

[mod (30*x,33) ==18 for x in [5 ,16 ,27]]

[True , True , True]

One final observation is that we avoided trial and error as long as possible.
At various points we could have done so, but x = 1 and x = 2 wouldn’t have
worked right away, and I am lazy… □
Example 5.2.3 Let’s finish the previous example again, but using the other
possible counterintuitive strategy. That was the trick to multiply a and b by
something which would reduce; ideally it would reduce [a] ≡ [1].

• We were at 5x ≡ 3 (mod 11).

• Multiplying a = 5 and b = 3 by 9, which is coprime to 11, gives us

45x ≡ 27 (mod 11).

• This reduces to x ≡ 5, and gives the same answer as before (provided we
remember to get all possible answers modulo 33).

□

CHAPTER 5. LINEAR CONGRUENCES 61

Example 5.2.4 Try completely solving one of the following two congruences
(Exercise 5.6.3) on your own now, before moving on. The rest of the Exercises
provide other interesting practice.

• 7x ≡ 8 (mod 15)

• 6x ≡ 8 (mod 14)

□
Example 5.2.5 Finally, let’s see examples of using the strategies poorly.

First, suppose 6x ≡ 12 (mod 4). Then we could divide all terms by 2,
yielding 3x ≡ 6 (mod 2), and then reducing everything modulo two we obtain
x ≡ 0, or that the solution is all even x. If we had instead canceled the 2 from
only the 6x ≡ 12 portion, we would have gotten 3x ≡ 6 (mod 4), which is
−x ≡ 2 or x ≡ 2 modulo four, which is only half of the true solutions.

As a similar example, suppose we want to solve 7x ≡ 7 (mod 12). If we
used cancellation the solution would obviously be x ≡ 1. Set this aside and
instead multiply 7x and 7 by 2 in order to obtain 14x ≡ 14 which simplifies to
2x ≡ 2 (mod 12), which now looks like an easy target for cancelling 2 from all
three numbers to obtain x ≡ 1 (mod 6), which is twice the true solutions.

The moral of the story is that while some structure is preserved when we
don’t stick to numbers coprime to the modulus, it’s very easy to remove or add
spurious solutions, so it must be avoided. □

Here are formal statements and proofs of the propositions we used.

Proposition 5.2.6 Canceling, Part I. If d ̸= 0, then ad ≡ bd (mod nd)
precisely for the same a, b, n as when a ≡ b (mod n).
Proof. Like many such proofs, you basically follow your nose.

First write ad ≡ bd (mod nd) as nd | ad− bd, or ad− bd = k(nd) for some
k ∈ Z. We rewrite this as d(a− b) = d(kn).

Since d ̸= 0, asserting d(a − b) = d(kn) is equivalent to saying a − b = kn,
which is of course by definition saying that a ≡ b (mod n).

Since all steps were equivalences, both statements are equivalent. ■
Proposition 5.2.7 Canceling, Part II. If d ̸= 0 and gcd(d, n) = 1, then
ad ≡ bd (mod n) precisely for the same a, b, n as when a ≡ b (mod n).
Proof. We already essentially know the direction when we assume a ≡ b
from Proposition 4.3.2. I’ll sketch the proof of the cancellation direction; see
Exercise 5.6.2 and Exercise 5.6.7.

• Use the definitions as above, starting with the ad situation.

• You should have that n divides some stuff, which is itself a product of d
and other stuff.

• We had a proposition somewhere about coprimeness and division; what
remains should yield us a ≡ b (mod n)

■

5.3 Systems of Linear Congruences
Here are three interesting problems which may seem totally unrelated at first.
Question 5.3.1 Can you find an answer to any or all of these by trial and
error?

• You have lots of volunteers at a huge campaign rally. Because you are

CHAPTER 5. LINEAR CONGRUENCES 62

very efficient at moving them, and you want to gauge how to group them
when dispatching them to different size venues, you line them up in rows.
You choose to group them by fives (with one left over), by sixes (two left
over), and by sevens (with three left over). How many helpers are there
total?

• You’re an ancient sky watcher, and you have discovered that three heav-
enly bodies come to the region of the sky you care about with great
regularity. Comet 1 comes every five years, starting next year. Comet 2
comes every six years, starting two years from now. Comet 3 comes every
seven years, starting three years from now. When will they all come in
the same year?

• You like math a lot. You want to know what integers x simultaneously
solve the following three linear congruences:

◦ x ≡ 1 (mod 5)
◦ x ≡ 2 (mod 6)
◦ x ≡ 3 (mod 7)

□

5.3.1 Introducing the Chinese Remainder Theorem
In Section 5.2, we were able to solve any one linear congruence completely. It’s
a good feeling.

But we know that this is a pretty restricted result. If you’ve had a course
in linear algebra, you’ve tried to solve big systems over the reals or complex
numbers; sometimes in real-life operations research problems, there can be
hundreds of thousands of linear equations to solve simultaneously!

It turns out this is true for modular arithmetic too, especially in encryption
standards. Can we solve a system of linear congruences? Of course, one could
ask a computer to do it by simply checking all possibilities.

@interact(layout =[[' a_1 ' , ' n_1 '],[' a_2 ' , ' n_2 '],[' a_3 ' , ' n_3 ']])
def _(a_1=(r ' \(a_1\) ' ,1), a_2=(r ' \(a_2\) ' ,2),

a_3=(r ' \(a_3\) ' ,3), n_1=(r ' \(n_1\) ' ,5),
n_2=(r ' \(n_2\) ' ,6), n_3=(r ' \(n_3\) ' ,7)):
try:

answer = []
for i in [1.. n_1*n_2*n_3]:

if (i%n_1 == a_1) and (i%n_2 == a_2) and (i%n_3
== a_3):

answer.append(i)
string1 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_1 ,n_1)
string2 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_2 ,n_2)
string3 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_3 ,n_3)
pretty_print(html("The␣simultaneous␣solutions␣to␣"))
pretty_print(html(string1+string2+string3))
if len(answer)==0:

pretty_print(html("are␣none"))
else:

pretty_print(html("all␣have␣the␣form␣"))

CHAPTER 5. LINEAR CONGRUENCES 63

for ans in answer:
pretty_print(html("$%s$␣modulo␣

$%s$"%(ans ,n_1*n_2*n_3)))
except ValueError as e:

pretty_print(html("Make␣sure␣the␣moduli␣are␣
appropriate␣for␣solving!"))

pretty_print(html("Sage␣gives␣the␣error␣message:"))
pretty_print(html(e))

As one might expect, this is not the most promising solution strategy. If you
dig into the code a bit you’ll see that many cases aren’t even treated properly,
which could be very tedious to catch.

However, in considering systems of congruences, there is a famous theorem.
Theorem 5.3.2 Chinese Remainder Theorem. Consider a general system
of k (linear) congruences:

• x ≡ a1 (mod n1)

• x ≡ a2 (mod n2)

• . . .

• x ≡ ak (mod nk)

where all the ni are mutually coprime. In this case, we have an algorithm for
solving the system.
Proof. This will be done in a completely constructive fashion in Subsec-
tion 5.4.1 and Algorithm 5.4.1. ■
Historical remark 5.3.3 Ancient Chinese work on remainders. This
kind of simultaneous solution was apparently first considered by the Chinese
mathematician Sun Tzu or Sun Zi, probably about the same time as the late
Greek mathematicians were coming up with what we now call Diophantine
equations. Individual cases of such systems were considered by several gen-
erations of both Chinese and Indian mathematicians. A very full solution
algorithm (see Subsection 5.5.1) was given by Qin Jiushao in the 13th century.
See [E.5.10, Part V] for a very comprehensive discussion.

The name comes from the provenance, and is often abbreviated CRT. Whether
any actual Chinese rulers used it to decide how many troops they had by lin-
ing them up in threes, fours, fives, etc. is questionable. However, many of the
example problems in Qin’s text mention divination, alignment of different cal-
endars, and the like, so we can assume such problems were of practical as well as
theoretical interest. Similar questions of astronomical/astrological importance
pepper the history of mathematics. See Exercise 5.6.22 and Exercise 5.6.23.

Finally, note that one can also go much further and do linear algebra modulo
n, and this is a lot of what modern cryptography is about, not to mention the
modern hard-core computational number theory for which Sage was largely
invented. We can’t do everything in this text, but you should be aware that
everything done in linear algebra has very interesting modulo n counterparts,
demonstrating again this book’s theme of number theory showing the unity of
mathematics.

5.3.2 The inverse of a number
To do justice to the proof of Theorem 5.3.2, we need a very useful preliminary
concept.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Sun_Zi.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Qin_Jiushao.html

CHAPTER 5. LINEAR CONGRUENCES 64

Definition 5.3.4 The Inverse of a Number. The inverse of a number a
modulo n is the least nonnegative solution of the congruence

ax ≡ 1 (mod n).

It is sometimes notated a−1. ♢
Example 5.3.5 For example, the inverse of 26 modulo 31 is the least nonneg-
ative solution of

26x ≡ 1 (mod 31).

This is called the inverse because you can think of the solution as being
equivalent to the idea of 1

26 , or 26−1, in the numbers modulo n = 31. □
Note that there is not always an inverse!

Question 5.3.6 Ponder these questions regarding inverses.
• What connection do a and n need if we expect there to exist an inverse

of a modulo n?

• How many inverses modulo n should a have, assuming it has one at all?

□
Example 5.3.7 As a first step, try to find inverses to all the numbers you can
modulo 10. Then do it again modulo 11. □

The following Sage command computes the “inverse of 26 modulo 31”.

inverse_mod (26 ,31)

6

Sage note 5.3.8 Getting interactive Sage help. You can look for more
information on Sage commands by using question marks. Try inverse_mod?
and inverse_mod?? in a notebook, command line interface, or CoCalc. (This
also should work as embedded in the web page in your text; let us know if it
doesn’t.)

The point is that the inverse is definitely something we can compute, just
by solving a linear congruence.

5.4 Using the Chinese Remainder Theorem
We will here present a completely constructive proof of the CRT (Theorem 5.3.2).
That is, we will not just prove it can be done, we will show how to get a solution
to a given system of linear congruences.

Keep in mind that this is a procedure that works. It may have a number of
steps, but its power is not to be underestimated. After some careful examples,
we’ll see some other uses.

5.4.1 Constructing simultaneous solutions
Remember that we are trying to solve the system of equations x ≡ ai (mod
ni). It is important to confirm that all ni are coprime in pairs (or that the
set of moduli is mutually coprime, Definition 2.4.9). Then the following steps
will lead to a solution. You will find basically this proof in any text; I use the
notation in [E.2.1], while that in [E.2.4] basically uses the letter m instead of
n.

CHAPTER 5. LINEAR CONGRUENCES 65

Algorithm 5.4.1 The following steps not only yield the solution, but mostly
indicate the proof as well.

1. First, let’s call the product of the moduli n1n2 · · ·nk = N .

2. Take the quotient N/ni and call it ci. It’s sort of a “complement” to the
ith modulus within the big product N .

3. Now find the inverse of each ci modulo ni. That is, for each i, find a
solution di such that

cidi ≡ 1 (mod ni)

Notice that this is possible. You can’t find an inverse modulo any old
thing! But in this case, ci is the product of a bunch of numbers, all of
which are coprime to ni, so it is also coprime to ni, as required.

4. For each i, multiply the three numbers ai · ci · di.

5. Now add all these products together to get our final answer,

x = a1c1d1 + a2c2d2 + · · ·+ akckdk.

What remains is to verify that this works. Go back to the last two steps.

• Let us evaluate each of the products in the penultimate step (indexed by
i) modulo the various nj. That looks bad, but most things cancel because
each cj is divisible by ni (except for ci itself).

◦ When i ̸= j, the product modulo ni is thus

ajcjdj ≡ 0 (mod ni).

◦ Otherwise we can use the definition of inverse, and the product is

aicidi ≡ ai · 1 ≡ ai (mod ni)

• To check the final step, for each ni, we can do the entire sum modulo ni.
The previous item shows

x ≡ 0 + 0 + · · ·+ ai + · · ·+ 0 (mod ni).

So the sum is definitely a simultaneous solution to all the congruences.

Finally, any other solution x′ has to still fulfill x′ ≡ ai ≡ x (mod ni), so
ni | x′ − x for all moduli ni. Since all ni are relatively prime to each other,
N | x′ −x too (if a | c and b | c and gcd(a, b) = 1, then ab | c). So x′ ≡ x (mod
N), which means x is the only solution modulo N !

Clearly this needs an example.
Example 5.4.2 A first CRT example. Let’s look at how to solve our
original system from Question 5.3.1 using this method. First we write our
simultaneous congruences:

• x ≡ 1 (mod 5)

• x ≡ 2 (mod 6)

• x ≡ 3 (mod 7)
We’ll follow along with each of the steps in Sage. First, I’ll make sure I

know all my initial constants (printing them to verify). This is step 1.

CHAPTER 5. LINEAR CONGRUENCES 66

n_1 , n_2 , n_3 = 5,6,7
a_1 , a_2 , a_3 = 1,2,3
N = n_1*n_2*n_3
print(n_1 , n_2 , n_3)
print(a_1 , a_2 , a_3)
print(N)

5 6 7
1 2 3
210

Next, I’ll put down all the ci, the complements to the moduli, so to speak.
Remember, ci = N/ni. This is step 2 above.

n_1 , n_2 , n_3 = 5,6,7
a_1 , a_2 , a_3 = 1,2,3
N = n_1*n_2*n_3
c_1 ,c_2 ,c_3 = N/n_1 ,N/n_2 ,N/n_3
print(c_1 ,c_2 ,c_3)

42 35 30

Now we need to solve for the inverse of each ci modulo ni. One could do
this by hand. For instance,

42d1 ≡ 2d1 ≡ 1 (mod 5) yielding d1 = 3, since 2 · 3 = 6 ≡ 1 (mod 5).

But that is best done on homework for careful practice; in the text, we might
as well use the power of Sage.

d_1=inverse_mod (42,5);
d_2=inverse_mod (35,6);d_3=inverse_mod (30,7)

print(d_1 ,d_2 ,d_3)

3 5 4

That was step 3. Now I’ll create each of the big product numbers, as well
as their sum, which is steps 4 and 5.

n_1 , n_2 , n_3 = 5,6,7
a_1 , a_2 , a_3 = 1,2,3
N = n_1*n_2*n_3
d_1=inverse_mod (42,5); d_2=inverse_mod (35,6);

d_3=inverse_mod (30,7)
print(a_1*c_1*d_1 , a_2*c_2*d_2 ,a_3*c_3*d_3)
print(a_1*c_1*d_1+a_2*c_2*d_2+a_3*c_3*d_3)

126 350 360
836

Of course, we don’t recognize 836 as our answer. But that is because the
solution is only unique modulo N :

n_1 , n_2 , n_3 = 5,6,7
N = n_1*n_2*n_3
print(N)
print(mod(836,N))

CHAPTER 5. LINEAR CONGRUENCES 67

210
206

Now we see our friend 206, as expected if you successfully tried Ques-
tion 5.3.1. □
Sage note 5.4.3 Printing it out. When using Sage cells, you might not
want only the things in the last line returned to you as output. You can use
the print function to get them to print out, as we have done in the preceding
example 5.4.2.

a,b,c = 1,2,3
print(a)
print(a,b,c)

1
1 2 3

This is actually capability in Python itself, not just Sage, so if you have
previous experience with Python (or perhaps other languages), it is very impor-
tant to note print() is a function. That means the thing to be printed must
be in parentheses, such as print(3). Previously (in Sage versions previous to
9.0, and anything else based on Python 2) syntax such as print 3 was allowed,
and experienced Sage users may need some time to adjust. If you are new to
Sage, no worries!
Example 5.4.4 Let’s try some more interesting moduli for an example to do
on your own. Can you follow the template?

• x ≡ 1 (mod 6)

• x ≡ 11 (mod 35)

• x ≡ 3 (mod 11)

□
Sage can also approach this in a similar way, as we saw earlier.

@interact(layout =[[' a_1 ' , ' n_1 '],[' a_2 ' , ' n_2 '],[' a_3 ' , ' n_3 ']])
def _(a_1=(r ' \(a_1\) ' ,1), a_2=(r ' \(a_2\) ' ,2),

a_3=(r ' \(a_3\) ' ,3), n_1=(r ' \(n_1\) ' ,5),
n_2=(r ' \(n_2\) ' ,6), n_3=(r ' \(n_3\) ' ,7)):
try:

answer = []
for i in [1.. n_1*n_2*n_3]:

if (i%n_1 == a_1) and (i%n_2 == a_2) and (i%n_3
== a_3):

answer.append(i)
string1 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_1 ,n_1)
string2 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_2 ,n_2)
string3 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_3 ,n_3)
pretty_print(html("The␣simultaneous␣solutions␣to␣"))
pretty_print(html(string1+string2+string3))
if len(answer)==0:

pretty_print(html("are␣none"))
else:

CHAPTER 5. LINEAR CONGRUENCES 68

pretty_print(html("all␣have␣the␣form␣"))
for ans in answer:

pretty_print(html("$%s$␣modulo␣
$%s$"%(ans ,n_1*n_2*n_3)))

except ValueError as e:
pretty_print(html("Make␣sure␣the␣moduli␣are␣

appropriate␣for␣solving!"))
pretty_print(html("Sage␣gives␣the␣error␣message:"))
pretty_print(html(e))

5.4.2 A theoretical but highly important use of CRT
The following proposition is an example of one of the many useful things we
can do with the CRT.
Proposition 5.4.5 Converting to and from coprime moduli. Suppose
that X ≡ Y (mod N), and N =

∏
mi, where gcd(mi,mj) = 1 for all i ̸= j.

Then we have two directions of equivalence between a congruence and a system
of congruences.

• Certainly if N divides X − Y , so does a factor of N , so X ≡ Y (mod
mi) for each of the relatively prime factors of N . Thus, solutions to the
“big” congruence are also solutions to a system of many little ones.

• But the CRT allows me to reverse this process. The moduli in question
are all coprime to each other, so if we are given a solution pair (Xi, Yi)
to each of the congruences

Xi ≡ Yi (mod mi)

then when combined they will give one (!) solution of

X ≡ Y (mod N)
As a result, any question about a congruence is really a question about

several congruences, but with smaller moduli (indeed, simpler moduli in a
specific sense; see Proposition 6.5.1 for a strong statement of this). We will use
this fact again and again in the remainder of the text, and it is a huge reason
why the Chinese Remainder Theorem is so intensely powerful.

5.5 More Complicated Cases
Solving linear congruences is a completely solved problem (up to computer
power). Although one does not usually cover all extensions in an introductory
course, the following subsections will introduce some, without full detail.

5.5.1 Moduli which are not coprime
What happens if, in a system of congruences, we don’t have the enviable situ-
ation where all the ni are relatively prime? Let’s go back to the interact from
before one last time, with some moduli which are not pairwise coprime, and
see if we get anything.

@interact(layout =[[' a_1 ' , ' n_1 '],[' a_2 ' , ' n_2 '],[' a_3 ' , ' n_3 ']])
def _(a_1=(r ' \(a_1\) ' ,1), a_2=(r ' \(a_2\) ' ,2),

CHAPTER 5. LINEAR CONGRUENCES 69

a_3=(r ' \(a_3\) ' ,3), n_1=(r ' \(n_1\) ' ,5),
n_2=(r ' \(n_2\) ' ,6), n_3=(r ' \(n_3\) ' ,7)):
try:

answer = []
for i in [1.. n_1*n_2*n_3]:

if (i%n_1 == a_1) and (i%n_2 == a_2) and (i%n_3
== a_3):

answer.append(i)
string1 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_1 ,n_1)
string2 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_2 ,n_2)
string3 = r"$x\equiv␣%s␣\text{␣(mod␣

}%s)$"%(a_3 ,n_3)
pretty_print(html("The␣simultaneous␣solutions␣to␣"))
pretty_print(html(string1+string2+string3))
if len(answer)==0:

pretty_print(html("are␣none"))
else:

pretty_print(html("all␣have␣the␣form␣"))
for ans in answer:

pretty_print(html("$%s$␣modulo␣
$%s$"%(ans ,n_1*n_2*n_3)))

except ValueError as e:
pretty_print(html("Make␣sure␣the␣moduli␣are␣

appropriate␣for␣solving!"))
pretty_print(html("Sage␣gives␣the␣error␣message:"))
pretty_print(html(e))

As previously mentioned, Qin discovered a very general method for getting
answers in this situation. From his method, he seems to have been aware that
an answer exists as long as gcd(ni, nj) divides ai−aj for all i and j, though he
did not explicitly state (and certainly did not prove) it. V.-A. Lebèsgue was
the first to rediscover this in the modern era, in 1859.

5.5.2 The case of coefficients
Another case is that of congruences not of the form x ≡ a (mod n), but of the
form Ax ≡ B (mod n). What can we say when there are coefficients for the
variable in our linear system?

If you have simultaneous congruences with coefficients,

Aix ≡ Bi (mod Ni)

then first write their individual solutions in the form x ≡ ai (mod ni). Then
you can use the CRT to get a solution of that system, which is also a solution
of the ‘big’ system.
Example 5.5.1 For instance, try now to solve this system:

• 2x ≡ 2 (mod 5)

• 5x ≡ 4 (mod 6)

• 3x ≡ 2 (mod 7)

Surprised? Don’t forget to get back to the original modulus! □
See also Example 6.5.2 for combining these ideas with those of Proposi-

tion 5.4.5.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Lebesgue_Victor.html

CHAPTER 5. LINEAR CONGRUENCES 70

5.5.3 A practical application
Finally, there is a practical application. Suppose you are adding two very large
numbers – too big for your computer! How would you do it? The answer is
one can use the CRT, in particular the ideas of Proposition 5.4.5.

• First, pick a few mutually coprime moduli smaller than the biggest you
can add on your computer.

• Then, reduce your two numbers x and y modulo those moduli and add
the two huge numbers in each of those moduli.

• Then the CRT allows you to put x+ y modulo each of the moduli back
together for a complete solution!

Needless to say, we won’t do an actual example of this. See [E.2.4, Chapter
3.3] for a basic example and a reference.

5.6 Exercises
1. Why do the latter two strategies in Fact 5.2.1 need no additional proof?
2. Complete the outline of the proof of Proposition 5.2.7, including “the

direction when we assume a ≡ b”.
3. Solve one or both of the congruences in Example 5.2.4.
4. In Proposition 5.1.1 and Proposition 5.1.3, we found solutions to ax ≡ b

(mod n) in the form of congruence classes modulo n. But since gcd(a, n) =
d is so important here, it could be worth asking about congruence classes
modulo n/d instead.

Well, for a general congruence ax ≡ b (mod n), how many congruence
classes (mod n/d) do we get? Prove it. (A good approach is to pick a
specific problem and try it, then see if you get the same answer in general.)

5. Answer the questions in Question 5.3.6.
6. Write down two linear congruences modulo n which do not have solutions

when n = 15, but do have solutions when n = 16. (You do not have
to solve them, but should explain how you know they do or do not have
solutions.)

7. Come up with a counterexample to Proposition 5.2.7 when gcd(d, n) ̸= 1.

For each of the following linear congruences, find all of its solutions.
8. 15x ≡ 9 (mod 25) 9. 6x ≡ 3 (mod 9)
10. 14x ≡ 42 (mod 50) 11. 15x ≡ 42 (mod 50)
12. 13x ≡ 42 (mod 50) 13. 980x ≡ 1540 (mod 1600)

14. Solve the simultaneous system below. ([E.2.1, Exercise 3.8])
• x ≡ 1 (mod 4)

• x ≡ 2 (mod 3)

• x ≡ 3 (mod 5)
15. Solve the simultaneous system below.

• x ≡ 2 (mod 3)

• x ≡ 4 (mod 5)

• x ≡ 6 (mod 13)

CHAPTER 5. LINEAR CONGRUENCES 71

16. Find an integer that leaves a remainder of 9 when it is divided by either
10 or 11, but that is divisible by 13.

17. When eggs in a basket are removed two, three, four, five, or six at a time,
there remain, respectively, one, two, three, four, or five eggs. When they
are taken out seven at a time, none are left over. Find the smallest number
of eggs that could have been contained in the basket. (Brahmagupta, 7th
century AD – and many other variations in other cultures)

18. Find a problem on the internet about pirates quarreling over treasure (or
monkeys over bananas) that could be solved using the CRT, and solve it.

19. Solve the system 4x ≡ 2 (mod 6), 3x ≡ 5 (mod 7), 2x ≡ 4 (mod 11).
20. Solve the congruence 5x ≡ 22 (mod 84).
21. Solve the simultaneous system x ≡ 4 (mod 6), x ≡ 7 (mod 15). Note that

this doesn’t fit our pattern, but you should still be able to solve this, since
there are only two congruences. (Hint: trial and error.)

22. Solve Master Sun’s only such problem: x ≡ 2 (mod 3), x ≡ 3 (mod 5),
x ≡ 2 (mod 7). (This same problem shows up again in Fibonacci’s Liber
Abaci.)

23. Solve one of Qin’s problems (adapted from [E.5.10, Chapter 22]). Does it
seem any more realistic than any ‘word problems’ you did in high school?

Thieves have stolen rice, measured in ge (today, about 100 milliliters),
from three identical full containers. The first thief stole all but one ge
from the first container with a ladle containing 19 ge; the second one left
fourteen ge after stealing with a shoe which could hold 17 ge; the third
left only one ge, using a bowl which held 12 ge. How much rice was lost,
and how much did each thief take?

Summary: Linear Congruences
In this chapter we begin the process of shifting from solving equations as ‘sen-
tences for equality’ to solving congruences as ‘sentences for congruence’. We
start with the simplest context, linear congruences.

1. In Proposition 5.1.1 and Proposition 5.1.3 we have a full characterization
of solutions to the basic linear congruence ax ≡ b (mod n).

2. To use the previous section in situations where a solution exists, we need
Strategies that work for simplifying congruences. The cancellation propo-
sitions 5.2.6 and 5.2.7 are key tools.

3. It is an ancient question as to how to solve systems of linear congruences,
and the Chinese Remainder Theorem is the prime tool for this. We also
introduce The Inverse of a Number in this section.

4. In the next section we then make this explicit in Algorithm 5.4.1, and
practice it. In the future the corollary Proposition 5.4.5 will prove very
useful.

5. In the last section there are several more advanced topics which we briefly
mention to inspire readers, but do not pursue – notably, Qin’s solution
for the situation when we have Moduli which are not coprime.

There are once again many Exercises, but it is worth mentioning that this is
a chapter where making up your own congruences (or systems of congruences)
is a great way to get extra practice.

CHAPTER 5. LINEAR CONGRUENCES 72

Chapter 6

Prime Time

Now it’s time to introduce maybe the most important concept in the whole
course. It’s one you are almost certainly already pretty familiar with. That is
the concept of prime numbers.

Although we’ll take a somewhat traditional route to introduce them, con-
sider what precedes this chapter. We attacked linear congruences as far as we
could via the concept of ‘relatively prime’/‘coprime’. But the thought should
be gnawing at us of whether there is something deeper than simply not shar-
ing factors other than one; what are the factors that are (or are not) shared in
the first place? As mathematicians, we always want to ask whether there is a
simpler notion available, or one that explains more.

We will see the fruit of this for linear congruences in Section 6.5, using the
most powerful tool in our arsenal, Theorem 6.3.2. But once we have unleashed
the power of primes, we will see and use them everywhere, such as in Chapters
22 and 12. Examining them more closely will lead to us some of the deepest
mathematics of the book in Chapters 21 and 25.

So let’s get started!

6.1 Introduction to Primes

6.1.1 Definitions and examples
Definition 6.1.1 A positive integer p greater than 1 is called prime if the
only positive divisors of p are 1 and p itself. ♢
Definition 6.1.2 If an integer n > 1 is not prime, it is called composite. ♢

The first few primes are 2, 3, 5, 7, 11, . . . That means 4, 6, 8, 9, 10, 12 . . . are
composite. But figuring out which numbers are prime is notoriously difficult,
to the point that educational websites sometimes offer tricky games with this
as the goal – try Is This Prime if you think you are good at it! Indeed, we will
spend significant time later on the question of deciding primality, such as in
Chapter 12 and Chapter 21. So below, we introduce a few Sage functions for
exploring the primes.

Here are answers to questions you might have about primes that Sage could
answer.

• Is a given number prime?

is_prime (6) # Is my number a prime?

73

https://isthisprime.com/game/

CHAPTER 6. PRIME TIME 74

False

• Is it at least a power of a prime?

is_prime_power (25) # Is my number a prime power?

True

• List some primes for me!

PR = prime_range (100) # What are all primes up to but
not including 100?

print(PR)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

• List the first n primes …

PFN = primes_first_n (100) # What are the first 100
primes?

print(PFN)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541]

• Give me prime factors.

What are the prime factors of a number?
factor(2 * 3 * (2*3+1) * (2*3*(2*3+1) +1) *

(2*3*(2*3+1) *(2*3*(2*3+1) +1)+1))

2 * 3 * 7 * 13 * 43 * 139

Sage note 6.1.3 Making comments. Sometimes we might want to have
notes about the code included without being actual code. In the Python lan-
guage, such comments must come after # signs.

6.1.2 Prime fun
Before getting to the serious material, let’s have a little fun to start us thinking
along the lines of what’s to come. For instance, did you ever try to see if there
was a formula for primes?

f(x)=x^2+x+41
@interact

CHAPTER 6. PRIME TIME 75

def _(n=(0 ,[0..39])):
pretty_print(html("Is␣$%s$␣for␣$x=%s$,␣which␣is␣$%s$,␣a␣

prime␣number?"%(f(x),n,f(n))))
print(is_prime(f(n)))

It looks like a simple polynomial can get the primes for us! Of course, I’m
cheating a little, as the next two sets of commands show.

f(x)=x^2+x+41
f(40)

1681

is_prime(f(40)),factor (1681)

(False , 41^2)

This example is due to Euler1. For this form of polynomial it is the best
known2, but you may have thought (based on the scanty evidence of this one
example) that one could eventually find a polynomial which just gives primes.
Quite the opposite is true!

Fact 6.1.4 There is no non-constant polynomial f(x) with integer coefficients
such that f(x) is prime for all integers x.
Proof. What is the reason no such polynomial can exist? It turns out to
be directly related to our previous work on congruences. Namely, if f(a) = p
for some a, then suppose b ≡ a (mod p). By well-definedness of addition and
subtraction, we then have f(b) ≡ f(a) (mod p) as well (since f is a polynomial!),
so

f(b) ≡ f(a) ≡ p ≡ 0 (mod p), which implies p | f(b).

Since we assume f(b) is actually prime, then f(b) = p as well.
But then the problem arises that

f(a) = f(a+ np) = p for all n ∈ Z,

which contradicts the well-known calculus fact that all non-constant polynomi-
als have limx→∞ f(x) = ∞ or −∞. So f must be constant. ■

It might be a big surprise to some readers to see that limits and calculus
can be used in number theory! It is nice to see it at such an early stage, but
there will be more later, such as in Chapters 24 and 20.

There are other single-variable polynomials that do happen to generate a
number of primes; an impressive one follows. Among other sites, Mathworld
has lots and lots more information.

g(x)=8*x^2 -488*x+7243
for n in [0..30]:

print(g(n),is_prime(g(n)))

7243 True
6763 True
6299 True
5851 True

1See [E.4.26, Chapter 11] or [E.4.8, Section 1.8] for a connection to Remark 13.3.4.
2See references in the previous footnote.

http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html

CHAPTER 6. PRIME TIME 76

...
43 True
-37 False
-101 False
-149 False
-181 False
-197 False

One can ask the opposite question of finding functions which do not make
many primes. The same website mentions the following polynomial, which
takes an astounding long time to generate even two primes.

h(x)=x^6+1091
for n in [0..3906]:

if is_prime(h(n)):
print ((n,h(n)))

(0, 1091)
(3906 , 3551349655007944406147)

Finally, it is an important (and, to me, somewhat frightening) fact that
Fact 6.1.4 is not true for systems of multivariate polynomials; that is, some
such systems have only prime output for integer input. See e.g. Wikipedia for
the astounding details, including a polynomial inequality that generates only
primes.

6.2 To Infinity and Beyond

6.2.1 Infinite primes
At this point it’s a good idea to mention that the search for 100, or 1000, or
however many prime numbers is not hopeless! That is the content of Euclid’s
famous theorem on the infinitude of the primes (Elements Proposition IX.20).

Strictly speaking, he proves that no matter what n is, there is always a
bigger prime p > n. This is not the same as proving there is an actual “infinitely
large set of primes” in the sense of Cantor’s infinite cardinalities! But we still
say there are infinitely many prime numbers.

As usual, Joyce’s web version of the original is a great resource. There are
many proofs3 of this theorem, some of which would be corollaries of theorems
later in this text. Most use some form of proof by contradiction, but there
are exceptions, such as Saidak’s proof [E.7.22], which we will mention again in
Section 21.1 (see also Exercise 21.5.3). One notable proof by Furstenberg uses
point-set topology, though this has been interpreted in a non-topological way
as well. There is even a proof using regular languages/expressions ([E.7.39])
suitable for use in an upper-level computer science course on computational
models.

Here is a slightly modernized version of Euclid’s proof.
Theorem 6.2.1 Infinitude of Primes. There is no upper bound on the size
of the collection of prime numbers.
Proof. Suppose that we have found exactly n > 0 prime numbers, p1, p2, . . . , pn.
Find the smallest positive integer N which is a multiple of all of these simul-
taneously (we know at least one such number exists, since you could multiply

3So many that it is hopeless to keep up with all of them. I have a stack of recent proofs
in my office I originally intended to occasionally add to the references, but it quickly grew
out of proportion to other topics in the book!

http://en.wikipedia.org/wiki/Formula_for_primes#Formula_based_on_a_system_of_Diophantine_equations
http://www.claymath.org/euclid/index/book-9-proposition-20
http://www-history.mcs.st-andrews.ac.uk/Biographies/Cantor.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html
https://primes.utm.edu/notes/proofs/infinite/Saidak.html
https://en.wikipedia.org/wiki/Furstenberg's_proof_of_the_infinitude_of_primes
http://www.idmercer.com/monthly355-356-mercer.pdf

CHAPTER 6. PRIME TIME 77

them all together).
Then either N + 1 is prime, or it is not4. If N + 1 is prime, then it is

certainly different from the others, so we have increased the size of the set of
primes.

If on the other hand N +1 is not prime, then it has some nontrivial factor;
in fact, it has a prime divisor p. (This distinction does actually require proof,
and is Euclid’s Book 7, Proposition 31, but we will let it follow immediately
from Theorem 6.3.2 instead.) We claim p is not one of the pi already known.

If it were, then if p is a divisor of both N and N + 1, which means it is a
divisor of 1 (see Exercise 2.5.7). This is absurd (ἄτοπον, literally ‘out of place’).
Can you recall why?

So p is not one of the original list, and is prime, so we have found a larger
list than before. ■

There are two things worth pointing out about this proof. First, Joyce
points out that Euclid doesn’t bother to mention that N is in fact the prod-
uct of the primes in question. If one didn’t have the concept of primality,
and instead started with a set of mutually coprime positive integers (recall
Definition 2.4.9) then an analogous proof would show the (weaker but still
interesting) result that there is no upper bound on the size of such a set.

Secondly, as is typical, Euclid only proves this with a small n, rather than
with some modern stand-in for infinity like ellipses. See Figure 6.2.25. Those
interested in math history will be interested in how Wallis used this to his
advantage in the Hobbes-Wallis controversy.

Figure 6.2.2 Part of proof of Euclid IX.20 (Image courtesy of the Clay Math-
ematics Institute. No commercial use allowed.)

6.2.2 The sieve of Eratosthenes
Much later in the text we will talk some about efficient ways to tell if a number
is prime, or even to generate new prime numbers (see Chapter 12, for example).
For now, we will use something usually known as the Sieve of Eratosthenes.
Algorithm 6.2.3 Sieve of Eratosthenes. To check whether a number n > 1
is composite or prime, it suffices to divide by all primes p ≤

√
n. Anything that

isn’t divisible by these is prime.
4Euclid used line segments to indicate magnitudes, including integer ones like what we

call N + 1. So this claim looks like ὁ δὴ ΕΖ ἤτοι πρῶτός ἐστιν ἢ οὔ in the original, where EZ
is the line segment.

5See the Clay Math Institute website for more images from this manuscript, held at the
Bodleian, which is well over a millennium old.

http://www.maa.org/publications/maa-reviews/squaring-the-circle-the-war-between-hobbes-and-wallis
http://www.claymath.org/euclid/index
http://www.claymath.org/euclids-elements
http://www.bodleian.ox.ac.uk/bodley

CHAPTER 6. PRIME TIME 78

Proof. If n is not prime (composite), we can write n = de for integers d and e
both strictly between 1 and n. If both d, e >

√
n, then

n = de >
(√

n
)2

= n,

a contradiction. ■
This is indeed an algorithm, because it provides a specific procedure to

identify primes up to a specific limit.
Example 6.2.4 To get all prime numbers up through 100, it suffices to remove
any numbers divisible by 2, 3, 5, or 7, as

√
100 < 11. □

Historical remark 6.2.5 Eratosthenes. Eratosthenes was a contemporary
of Archimedes, and no slouch. He is best known for estimating the size of the
Earth fairly accurately, amazingly so for the time. (Along the way, that puts
the lie to those who would claim everyone thought the earth was flat until
Columbus.)

Finding tighter results, like the smallest prime above a certain number,
requires more advanced techniques like the ones in Section 12.2. An interest-
ing, but completely impractical, fact (see [E.7.34]) is that the smallest prime
exceeding n is the smallest nontrivial divisor of n!n!n! − 1.

6.3 The Fundamental Theorem of Arithmetic

6.3.1 Preliminaries and statement
Our biggest goal for this chapter, and the motive for introducing primes at this
point, is the Fundamental Theorem of Arithmetic, or FTA. It should probably
be called the Fundamental Theorem of Number Theory, but in older usage one
said “arithmetic”, and the name has stuck.
Definition 6.3.1 A factorization of an integer is a way of writing it as a
product of integers. This nearly always refers to one of two things, which are
mentioned explicitly if there is danger of ambiguity:

• A product of prime numbers is called a prime factorization.

• A product into positive powers of (distinct) primes is called a prime
power factorization.

♢
Theorem 6.3.2 Fundamental Theorem of Arithmetic. The following
are true:

• Every integer N > 1 has a prime factorization.

• Every such factorization of a given n is the same if you put the prime
factors in nondecreasing order (uniqueness).

More formally, we can say the following. Any positive integer N > 1 may
be written as a product

N =

n∏
i=1

pi

of primes, and further, if we can write a different such product

N =

m∏
j=1

qj

CHAPTER 6. PRIME TIME 79

then m = n and a reordering of the qj will make them the same as the pi.
Proof. We will prove this in Subsection 6.3.2. ■
Example 6.3.3 For instance:

• 30 = 2 · 3 · 5

• 24 = 2 · 3 · 2 · 2 = 2 · 2 · 2 · 3

Clearly (from normal experience) the only possible factorizations than these
would just put the primes in a different order. Why doesn’t this work for
N = 1? (See Exercise 6.6.24.) As it happens, Euclid did not even consider one
to be a number in the same sense as the others; see Joyce’s commentary. □
Example 6.3.4 Usually we will implicitly assume the primes are in nonde-
creasing order, and write 32 instead of 3 · 3 (with the primes now necessarily
in increasing order), so the following notation is common to express a prime
power factorization:

N =

n∏
i=1

peii .

Sometimes when the context is clear, one can even write N =
∏

p or N =
∏

pe.
Using the same numbers as in the previous example:

• 30 = 21 · 31 · 51

• 24 = 23 · 31

□
Example 6.3.5 Just to get this down, practice writing the following as a
product of such prime powers.

• N = 12100

• N = 1250

• N = 3072

See Exercise 6.6.14. □

6.3.2 Proof of the FTA
This theorem is quite old, and of course Euclid has a nice proof of it, along
with various lemmata (the plural of lemma, though I’ll also use “lemmas” in
this text) that he needs to get there. The key ingredients are:

• If a number is prime, that is the prime factorization.

• If a number is composite, then it is by definition divisible by some smaller
positive number other than one. (Euclid used the stronger fact that it is
divisible by a prime in his proof of Infinitude of Primes.)

• This process can be continued, but only finitely often.

• Any other way in which you can write the same number as a product of
primes is just a reordering of the one obtained in the previous step.

The last step requires the following lemma, which is Euclid’s Book 7, Propo-
sition 30.
Lemma 6.3.6 If a prime p divides a product ab, then p divides at least one of
a or b.

https://mathcs.clarku.edu/~djoyce/java/elements/bookVII/defVII1.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX14.html
http://www.duden.de/rechtschreibung/Lemma
http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII30.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII30.html

CHAPTER 6. PRIME TIME 80

Proof. Left to reader in Exercise 6.6.3; this is very closely related to Proposi-
tion 2.4.10. ■
Corollary 6.3.7 If a prime p divides a finite product of numbers, then p divides
at least one of them, i.e.

p

∣∣∣∣∣
ℓ∏

k=1

ak implies p | ak for at least one k

Proof. By induction, left to reader in Exercise 6.6.4. ■
Okay, now we need the details.

Proof of Theorem 6.3.2. Let’s use induction on the size of N . So our base case
is N = 2, which is of course prime so it has (the) unique factorization 21.

For the induction step, first suppose we have proved that all numbers up
to N can be written as a product of primes (uniquely or not). Then we look
at N + 1 to continue the induction.

• If N + 1 is prime, that is its prime factorization, as with 2.

• If not, then by definition N + 1 is composite, so N + 1 = ab, where
1 < a, b < N + 1. (Note why a, b are smaller! Recall the proof of the
Sieve 6.2.3.) In this case, by the induction hypothesis, a and b have prime
decompositions

∏
pi and

∏
qj , since they are less than N + 1 but not 1,

and so N + 1 =
∏

pi
∏

qj .

By induction, this shows that a prime factorization exists for all numbers up
to N + 1. It remains to be shown that such a factorization is unique.

So first rewrite our factorization in a given order (such as nondecreasing):

N + 1 =
∏

pi, pi ≤ pi+1.

Now let’s look at another possible representation, possibly with different primes:

N + 1 =
∏

qj .

At this point we need Corollary 6.3.7. By assumption, p1 divides N + 1.
Hence, by the corollary, p1 divides at least one of the qj . But the only positive
divisors of a prime are itself and 1, and p1 is prime (not one), so p1 = qj .

Cancel these from both products to get two different representations of (the
integer) N+1

p1
as a product of primes. By the induction hypothesis, since this

number is less than N + 1, these representations are unique up to reordering,
so multiplying both by p1 to get N + 1 must also be unique up to reordering.

By induction, we are done. ■
Two comments about this proof are in order. First, some students may

wonder about this induction proof, because in the induction hypothesis we do
not simply assume a single N has a (unique) factorization (as in Example 1.2.4),
but that all n ≤ N do. But this is just an artifact6 of the statement we are
proving. The logical induction statement is not that “N has a factorization”,
but that “all numbers less than N have a factorization”.

Second, if you are familiar with other algebraic structures, it is very impor-
tant to note that other algebraic systems may not have unique factorization
into primes, or even have a notion of prime elements! Even some structures
very similar to the integers fail this; many interesting examples of this are just
beyond the level of this course. For those who must know what this means
now, try Exercise 6.6.30.

6In my view, there is no pedagogical need for a separate notion of ‘strong induction’.

CHAPTER 6. PRIME TIME 81

6.4 First consequences of the FTA
The impact of the FTA is so great, I cannot overstate its significance. This
section collates a few examples, but you will see similar ones throughout the
text, as well as in the next section, when we connect the theorem back to
congruences.

Most importantly, lots of theorems now have reasons, not just proofs. This
distinction is an important point about mathematics! The difference boils
down to the fact that gcd(a, b) = 1 can be interpreted as saying a and b do
not share any common prime factors. You will (re)prove a few things in the
Exercises 6.6 to try this insight out. Here is a first example to give the feel.

Example 6.4.1 If a | c, b | c, and gcd(a, b) = 1, then a =
∏

pi and b =
∏

qj
but none of the pi can be any of the qj (or the gcd would include that prime).

Since by the FTA c =
∏

rekk , where the rk are distinct, the pi must be some
of the collection of rks and the qj must be some of the rest, so that

∏
piqj still

divides c.
So if a | c, b | c, and gcd(a, b) = 1, then ab | c, which is part of Proposi-

tion 2.4.10. □
As another example, the proofs from Section 3.7 become far simpler. We

can prove Proposition 3.7.1 here, and save Proposition 3.7.2 for Exercise 6.6.12.

Example 6.4.2 Let’s show that a2 | z2 implies a | z.
Solution. To begin, let’s write a =

∏
pe. Then

a2 =
∏

pe ·
∏

pe =
∏

pe+e =
∏

p2e

Similarly,
z =

∏
qf implies z2 =

∏
q2f

If these two numbers divide each other, then we can separate the product by
each prime, so that for each p,

p2e | q2f

for some q; in fact we must have q = p for each such case7. But then p2f =
p2ep(2f−2e) and this can be viewed as 2e ≤ 2f , so e ≤ f as well.

This is true for all the primes p dividing a, so pe | pf = qf for all such p;
multiplying these together shows that

a =
∏

pe

∣∣∣∣∣ ∏ pf

∣∣∣∣∣ ∏ qf = z

as desired. □
The reader should note that for such proofs, the implicit use of Corol-

lary 6.3.7 is crucial along with the FTA.
Nearly as important, computing many kinds of things becomes easier. If

we let a =
∏n

i=1 p
ei
i and b =

∏n
i=1 p

fi
i , where it’s possible that ei or fi is zero

at times, then we can often get formulas for various combinations of a and b.
Definition 6.4.3 Given two numbers x ≤ y, we let the maximum and min-
imum be defined by

max(x, y) = y and min(x, y) = x

7To be pedantic, the set of prime factors q of z2 contains the set of prime factors p of a2.

CHAPTER 6. PRIME TIME 82

with an obvious extension to a min or max of a set consisting of more than two
numbers. ♢

Then we have formulas of the following kind.
Example 6.4.4 Product formula:

ab =

n∏
i=1

pei+fi
i

Greatest common divisor formula:

gcd(a, b) =
n∏

i=1

p
min(ei,fi)
i

Determining a quotient formula, assuming b | a, is Exercise 6.6.8:

a/b =

n∏
i=1

p???i

□
Another use of the FTA is to help us do in a systematic way results that

were probably first obtained by extremely ad-hoc methods. As an example, it
is likely that you have seen a proof that

√
2 is irrational, and it probably used

mostly the concept of “evenness”. But we can prove that
√
m /∈ Q (for m not

an integer perfect square) in a very similar fashion.
Most deeply, it gives us a canonical way to describe every integer in terms

of simpler integers, and gives a measure of simplicity. We’ll exploit this some
much later, such as in Chapter 24.

Next are some ways to calculate these concepts in Sage. Simply replace the
numbers below with ones you are interested in.

prime_divisors (693)

[3, 7, 11]

factor (693)

3^2 * 7 * 11

Note that the first of these functions gives just a list of the prime divisors,
while the second one gives the full prime power factorization.

Finally, let’s note that depending on the context, we might not need the
full power of the computational and theoretical tools in this section. To demon-
strate that, let’s introduce some useful additional notation.

Definition 6.4.5 For p prime, we say that pk ∥ n precisely when pk | n but
pk+1 does not divide n. ♢
Definition 6.4.6 We write n! for the product of the integers from 1 to n,
called n factorial. ♢
Example 6.4.7 We can demonstrate these by saying 52 ∥ 75 and 6! = 720. □

The prime factorization of a number can now separately give useful infor-
mation about it.
Example 6.4.8 How many final zeros does twenty factorial have?
Solution. Either by hand or with help, we can see what the biggest powers

CHAPTER 6. PRIME TIME 83

of 2 and 5 in 20! are.

factor(factorial (20))

2^18 * 3^8 * 5^4 * 7^2 * 11 * 13 * 17 * 19

Since 218 ∥ 20! and 54 ∥ 20!, we can conclude that 20! ends with exactly 4
zeros merely from the prime factorization, which we could certainly get without
multiplying it out (though in this case Sage does that first).

We can check this result:

factorial (20)

2432902008176640000

□

6.5 Applications to Congruences

6.5.1 Factoring the modulus
The reason the fundamental theorem is so useful for congruences is that prime
powers (for different primes) are automatically relatively prime to each other.
So in using the Chinese Remainder Theorem (Theorem 5.3.2) we don’t have a
spend time looking for coprime factors; we can just factor into prime powers
using the Fundamental Theorem of Arithmetic. So here is a useful repositioning
of Proposition 5.4.5.
Proposition 6.5.1 Converting to and from prime powers. Suppose that
X ≡ Y (mod N), and N =

∏
peii . Then we have an equivalence between this

congruence and a related system of congruences.
• Certainly if N divides X−Y , so does every factor of N , so X ≡ Y (mod

peii) for each of the prime power factors of N . (Once again, solutions to
the “big” congruence are also solutions to a system of many little ones.)

• Conversely, the prime powers in a factorization are all coprime to each
other, so if we are given a solution pair (Xi, Yi) to each of the congruences

Xi ≡ Yi (mod peii)

then when combined they will give a solution of

X ≡ Y (mod N).
That means that any question about congruences is really a question about

systems of congruences modulo prime powers. We will use this fact again and
again in the remainder of the text, and it is a huge reason why the CRT is so
intensely powerful.

Similarly, referring to Subsection 5.5.2, what if one has one complicated
congruence with coefficients and a composite modulus N?

Ax ≡ B (mod N)

Just take N = pe11 · · · pekk and then solve all the congruences Ax ≡ B (mod peii)
first. Then use the Chinese Remainder Theorem to ‘patch’ them together for
a final solution. This is a little tedious, but certainly doable.

CHAPTER 6. PRIME TIME 84

Example 6.5.2 Let’s solve the following congruence using the method in the
previous paragraph:

21x ≡ 33 (mod 180).

Here are some steps:
• Create the individual congruences

• Solve them

• Put them back together

□

6.5.2 Moduli that are prime powers
When it comes to linear congruences, these consequences of the Chinese Re-
mainder Theorem and Fundamental Theorem of Arithmetic suggest that we
reconsider the prime power case with a more subtle tool. Assume that in
solving a bunch of congruences

x ≡ aj (mod nj)

we would like to start by solving congruences

x ≡ aj (mod pe)

where pe divides nj .
The general approach, then, is to first solve modulo p, in the hope that this

could lead to a solution modulo pe. Consider the following extended example,
divided into two parts.
Example 6.5.3 Prime Power Congruences. One reason we might want
to solve such a congruence is for finding an inverse (recall Definition 5.3.4) for
various purposes, so suppose we want to find the inverse of 4 modulo 49 = 72.
That is solving 4x ≡ 1 (mod 49).

First, let f(x) = 4x− 1. The only solution of 4x ≡ 1 (mod 7) is clear; it is
x = [2]. How might we get solutions (mod 49) from this? We delineate relevant
steps.

• First, any solution of 4x ≡ 1 (mod 72) is also a solution of 4x ≡ 1 (mod
7). So x ≡ 2 + 7k (mod 49) for some k, since [2] = {2 + 7k | k ∈ Z}.

• Plugging 2 + 7k in the original congruence yields

4x ≡ 4(2 + 7k) ≡ 4 · 2 + 4 · 7k ≡ 1 (mod 49),

or, rearranging (but keeping everything unmultiplied),

1− 4 · 2 ≡ 4 · 7k (mod 72).

• Now, we know that 7 | 1 − 4 · 2, because we already know that 2 solved
our original congruence:

1 ≡ 4 · 2 (mod 7).

So we can cancel out 7 from the entire congruence (as in Proposition 5.2.6)
to get that

1− 4 · 2
7

≡ 4k (mod 7).

This simplifies to −1 ≡ 4k (mod 7).

CHAPTER 6. PRIME TIME 85

• By inspection −1 ≡ 4k has the solution k ≡ 5 (mod 7). Using this k and
plugging it back in to get a solution to 4x ≡ 1 (mod 72), we get

2 + 7k = 2 + 7 · 5 = 37 (mod 72)

as the solution.

And indeed 4 · 37 = 148 ≡ 1 (mod 49). □
Example 6.5.4 Let’s do it all again, more tersely, to get an inverse modulo
73, i.e. a solution to 4x ≡ 1 modulo 73 = 343.

• I already know that [37] is the solution to 4x ≡ 1 (mod 72). That means
that a solution to 4x ≡ 1 (mod 73) must look like 37 + 72ℓ (for some
integer ℓ).

• Plugging this in gives me 4(37 + 72ℓ) ≡ 1 (mod 73), which rearranges to

4 · 72ℓ ≡ 1− 4 · 37 (mod 73).

• Since we know that 37 solves 4x ≡ 1 (mod 72), that means (by definition
of congruence) that

72 | 1− 4 · 37,

so we can divide “all three sides” of the last congruence by 72, which
yields

4ℓ ≡ 1− 4 · 37
72

≡ −147

72
≡ −3 ≡ 4 (mod 7).

• Solving this yields ℓ ≡ 1 (mod 7), so

x ≡ 37 + 72 · 1 ≡ 86 (mod 343).

And a quick check shows 4 · 86 = 344 ≡ 1 (mod 343) works. □
You can do this as often as you like, and (properly interpreted) it will yield

all solutions of your congruence modulo pe, one step at a time. We’ll see a
generalization of this in Section 7.2.

6.6 Exercises
1. A number such as 11, 111, 1111 is called a repunit. Clearly eleven is a

prime repunit. Find two more, say how you found them, and how you
confirmed they are prime. (Bonus: Do the same exercise in a base other
than decimal – or unary or binary!)

2. Find the prime numbers less than 100 using the Sieve of Eratosthenes
(6.2.3). Make sure you actually draw it! Every math student should do
this once, and only once.

3. Prove Lemma 6.3.6; if a prime p divides a product ab, then p divides at
least one of a or b.

4. Prove Corollary 6.3.7; if a prime p divides any finite product of numbers,
then p divides at least one of them.

5. Assuming that gcd(a, b) = 1, a | c, and b | c, then ab | c as well, using the
FTA. (This was proved earlier without it; see Proposition 2.4.10.)

6. Prove that if gcd(a, b) = 1 and a | bc then a | c as well, using the
FTA. (This was proved earlier without it; see Exercise 2.5.19 and Propo-

CHAPTER 6. PRIME TIME 86

sition 2.4.10.)
7. Prove using the FTA that if gcd(a, b) = d then gcd

(
a
d ,

b
d

)
= 1.

8. Assuming a =
∏n

i=1 p
ei
i , b =

∏n
i=1 p

fi
i , and b | a, find a formula to fill

in the questions marks and prove it using the Fundamental Theorem of
Arithmetic:

a/b =

n∏
i=1

p???i

9. How would you describe a factorization of a rational number? Do you
think you could extend the Fundamental Theorem of Arithmetic to this
case? If so, how? If not, why would it not be appropriate?

10. Show that if a and b are positive integers and a3 | b2, then a | b.
11. Show that if pa ∥ m and pb ∥ n, then pa+b ∥ mn.
12. Prove Proposition 3.7.2 using the FTA; if gcd(m,n) = 1 and mn is a

perfect square, then so are m and n.
13. By hand, find the prime factorizations of 36, 756, and 1001. Use these to

find the gcd of each pair of these three numbers.
14. Do the prime factorizations in Example 6.3.5.
15. By hand, find the gcd of 22 · 35 · 72 · 13 · 37 and 23 · 34 · 11 · 312.
16. By any method you like, find the prime factorizations of 224−1 and 108−1,

as well as their gcd.

In the next few exercises, recall the definition of least common multiple (or lcm)
from Exercise 2.5.9.

17. Find the pairwise least common multiples in Exercises 6.6.13–6.6.15.
18. Find a formula for the lcm using Theorem 6.3.2 by filling in the ques-

tion marks:
lcm(a, b) =

n∏
i=1

p???i

19. Prove that if a, b > 0 then gcd(a, b)lcm(a, b) = ab using the FTA.

Here are a few other interesting results that can be shown using prime factor-
izations as in Section 6.4.

20. Is it possible for n! to end in exactly five zeros?
21. Find a proof that

√
2 is irrational, and show exactly where it uses

the Fundamental Theorem of Arithmetic (or how it avoids using it).
Explain whether or not a similar proof to the one you found would
work for showing

√
3 and

√
6 are irrational.

22. Show that log10(5) is irrational.
23. Show that 32/3 is irrational.

24. How would Theorem 6.3.2 fail if we allowed n = 1 to have a prime factor-
ization? What if we allowed 1 as a prime number?

25. Prove that the only solutions of x2 ≡ x (mod p) are x = [0] and x = [1], if
p is a prime. (Refer to Question 4.6.7; this and the next exercise answer
Exercise 4.7.19.)

26. Try to decide for exactly which composite moduli n the previous question
is true. (Refer to the interact in Question 4.6.7; this and the previous
exercise answer Exercise 4.7.19.)

CHAPTER 6. PRIME TIME 87

27. Find solutions to 3x − 4 ≡ 0 (mod 25) and (mod 125) using the method
in Subsection 6.5.2, starting with modulus five.

28. Find solutions to 4x−1 ≡ 0 (mod 121) and (mod 1331) using the method
in Subsection 6.5.2, starting with modulus eleven.

29. Fill in the details of Example 6.5.2.
30. Let Z[

√
−5] be the set of all numbers of the form a + b

√
−5 for a, b ∈ Z.

Find two factorizations of N = 6 in this set (known as a ring), for which
none of the factors are ±1, nor for which any two factors differ by a
(multiplicative) factor of ±1.

Summary: Prime Time
We can’t wait any longer! In this chapter we talk all about prime numbers.

1. First, we define prime and composite numbers in Definition 6.1.1 and
Definition 6.1.2. There is a lot of Prime fun to be had trying to find
formulas for primes, or using Sage to compute.

2. The foundational result enabling the rest of our usage of primes is Euclid’s
proof of Infinitude of Primes, and the Sieve of Eratosthenes is a practical
way to use this knowledge.

3. We define prime factorization in Definition 6.3.1. Then the great theo-
rem saying this is both always possible and unique is the Fundamental
Theorem of Arithmetic. Some of the details of its proof are important
on their own, such as Corollary 6.3.7.

4. The following section gives many formulas that come directly as First
consequences of the FTA.

5. Finally, we make explicit the procedure for Converting to and from prime
powers in solving congruences, along with several interesting examples
such as Example 6.5.3 and Example 6.5.4.

In the Exercises, the ones that practice the conceptual basis of the Fundamental
Theorem of Arithmetic are the best.

CHAPTER 6. PRIME TIME 88

Chapter 7

First Steps With General Con-
gruences

One can say a lot more about solving congruences. However, congruences also
play a crucial role in solving all manner of other number-theoretic problems.

In this chapter we collate a significant number of interesting results that the
congruence framework affords us. Among them are some of the most important
results we have access to at this early stage, including Fermat’s Little Theorem
and Lagrange’s Theorem on polynomials.

7.1 Exploring Patterns in Square Roots
Just as in high school algebra one moved from linear functions to quadratics
(and found there was a lot to say about them!), this is the next natural step in
number theory. We will focus on congruences. We haven’t abandoned integers!
But it turns out that questions about quadratic polynomials with integers are
much, much harder, and are better pursued after studying the relatively simple
(and computable) cases of quadratic congruences. Much later, we will return
to a full investigation of this.

You may recall that we looked at one particular quadratic congruence in
Question 4.6.7 and Exercise 4.7.19, and saw that the solution depended at
least partly on the modulus in Exercises 6.6.25 and 6.6.26. So we will examine
these slightly simpler-sounding questions keeping in mind the structure of the
modulus, not so much the actual answers.
Question 7.1.1 Consider the following questions, even if the term ‘square
root’ seems a bit odd right now.

• For what prime p does −1 have a square root?

• For what integers n does 1 have more square roots than just ±1?

□
As we will precisely define in Definition 13.3.1, these questions are equiva-

lent to the following quadratic congruence questions.

• Is there a solution to

x2 ≡ −1 (mod p) or x2 + 1 ≡ 0 (mod p) ?

89

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 90

• Are there more than the two obvious solutions to

x2 ≡ 1 (mod n) (or equivalently x2 − 1 ≡ 0 (mod n))?

Let’s look at each of these in turn. If you are online, you may use the
following interacts, but they are merely an aid. It is quite possible to use
pencil and paper to explore these as well.

• An interact for which primes −1 has a square root:

@interact
def _(p=(13, prime_range (10 ,100))):

pretty_print(html("Values␣of␣x^2+1␣mod␣%s"%(p,)))
pretty_print(html(""))
for m in [0..p-1]:

pretty_print(html(r"$%s^2+1\ equiv␣%s\text{␣
(mod␣}%s)$"%(m,mod(m,p)^2+1,p)))

pretty_print(html(""))

• An interact for when 1 has more square roots than just ±1 – a rather
tricky question:

@interact
def _(n=(12 ,[10..100])):

pretty_print(html("Values␣of␣x^2-1␣mod␣%s"%(n,)))
pretty_print(html(""))
for m in [0..n]:

pretty_print(html(r"$%s^2-1\ equiv␣%s\text{␣
(mod␣}%s)$"%(m,mod(m,n)^2-1,n)))

pretty_print(html(""))

What do you get? See Exercise 7.7.1. To keep track of results, writing ideas
in the margin of a physical book or in a small text document on a computer
are both awesome.

7.2 From Linear to General
In this section, we will take two ideas we already used with linear congruences,
and see how they can be modified to apply in any polynomial situation. (Note
that, as in Fact 6.1.4, we only consider polynomials with integer coefficients.)

7.2.1 Combining solutions
One of the most important things we can do is study congruences with prime
(power) modulus, because we can combine their solutions to get solutions for
any congruences when we combine the Chinese Remainder Theorem and Fun-
damental Theorem of Arithmetic (recall Proposition 6.5.1). Even more inter-
estingly, we can combine the numbers of solutions.

Informally, if you want to get the total number of solutions of a polynomial
congruence, just write the modulus as a product of prime powers n =

∏k
i=1 p

ei
i ,

find out how many solutions the congruence has with each prime power mod-
ulus, then multiply those numbers for the total number of solutions.

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 91

Example 7.2.1 For instance, if f(x) ≡ 0 has 2 solutions modulo 3, 1 solution
modulo 5, and 3 solutions modulo 7, it would have 2 ·1 ·3 = 6 solutions modulo
105 = 3 · 5 · 7. □

We will state this for the general case of a coprime factorization of n, though
again the prime power factorization is usually the most useful.
Fact 7.2.2 Let n1, n2, · · · , nk be a set of k mutually coprime moduli. Suppose
that for some polynomial f(x) you know that there are Ni (congruence classes
of) solutions to

f(x) ≡ 0 (mod ni).

Then the congruence

f(x) ≡ 0

(
mod

k∏
i=1

ni

)
has

k∏
i=1

Ni total solutions.

Proof. For all i, among the Ni solutions to the ith congruence choose a solution
ai, so that

f(ai) ≡ 0 (mod ni).

Since the moduli ni for these congruences are coprime, we can use the Chinese
Remainder Theorem to obtain one number a such that a ≡ ai (mod ni) for all
i.

Since (integer) polynomials are exclusively made up of addition and multi-
plication on integers, and addition and multiplication are well-defined, we also
have f(a) ≡ f(ai) ≡ 0 (mod ni), so as promised we have a solution

f(a) ≡ 0

(
mod

k∏
i=1

ni

)
.

Each such set of ai will yield a solution, and if {ai}ki=1 ̸= {bi}ki=1 then if aj ̸≡ bj
(mod nj) they certainly are not equivalent modulo

∏k
i=1 ni either.

Now multiply how many solutions there are for each ni to get the total
number of combinations of solutions. If there are Ni solutions modulo ni, we
would get

∏k
i=1 Ni. There aren’t any additional answers, because any answer

to the ‘big’ congruence automatically also satisfies the ‘little’ ones; if
∏k

i=1 ni |
f(a), then certainly ni | f(a) as well. ■

7.2.2 Prime power congruences
We have already discussed prime power congruences in Subsection 6.5.2. Re-
call that in Examples 6.5.3 and 6.5.4 we took the (obvious) solution of 4x ≡
1 (mod 7) (namely, x = [2]), and got solutions (mod 49) and even (mod 343)
from it relatively easily.

But that is essentially the same as asking for solutions to 4x − 1 ≡ 0, a
linear congruence. Let’s see if we can generalize this method for more general
polynomial congruences.

The key was taking the already known fact 7 | 1− 4 · 2 and then cancelling
out 7 from the entire congruence to get that

1− 4 · 2
7

≡ 4k (mod 7).

We were able to solve the resulting congruence −1 ≡ 4k (mod 7), which had
solution k ≡ 5 (mod 7). Finally, we plugged that back in to get a solution to
4x ≡ 1 (mod 72), which was

2 + 7k = 2 + 7 · 5 = 37 (mod 72)

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 92

as the solution.
Can we use this approach to get solutions to more advanced congruences

as well, like the simple quadratics we’ve started exploring in this chapter? The
answer is yes, with a minor caveat. The preceding discussion was just a basic
form of the following.
Theorem 7.2.3 Hensel’s Lemma. For p prime and e ≥ 2, suppose you
already know a solution equivalence class xe−1 (mod pe−1) of the (polynomial)
congruence

f(x) ≡ 0 (mod pe−1)

Assume the technical condition that gcd(p, f ′(xe−1)) = 1. Then there is also a
solution1 to

f(x) ≡ 0 (mod pe)

of the form
xe = xe−1 + kpe−1

where k satisfies
f(xe−1)

pe−1
+ k · f ′(xe−1) ≡ 0 (mod p).

Proof. If p and f ′(xe−1) are relatively prime, then by Proposition 5.1.1 any
linear congruence of the form f ′(xe−1)k ≡ b (mod p) with coefficient a =
f ′(xe−1), unknown k, and known b can be solved (uniquely modulo p, given
the gcd condition). Since xe−1 is a known zero of f(x) for modulus pe−1, we
know that as an integer (not modulo anything) pe−1 | f(xe−1).

This means that − f(xe−1)
pe−1 exists in Z, so if we set b = − f(xe−1)

pe−1 there will
indeed be a solution k to the congruence f(xe−1)

pe−1 + k · f ′(xe−1) ≡ 0 (mod p).
Then the only question becomes why xe = xe−1 + kpe−1 is actually a solution
to f(x) ≡ 0 (mod pe).

To see this, think of f as a polynomial with terms of the form cix
i, e.g.

f(x) =
∑n

i=0 cix
i. Then f(xe−1 + kpe−1) can be expanded out term-by-term

in the following form:

f(xe) = f(xe−1 + kpe−1) =

n∑
i=0

ci(xe−1 + kpe−1)i.

Let’s break this down on a term-by-term basis in the sum. Each term will
look like

ci(xe−1 + kpe−1)i = cix
i
e−1 + ci(x

i−1
e−1 · kpe−1) · i+ terms with at least p(e−1)2.

Since e ≥ 2 in this context, the extra terms (from Taylor or binomial series2)
involving p(e−1)2 will be divisible by at least pe and hence be trivial in that
modulus. Thus, each term in the sum will be equivalent to

cix
i
e−1 + ci · ixi−1

e−1 · kpe−1 (mod pe).

Now add up the terms of the sum for all i to find out something about
f(xe). Summing up the cix

i
e−1 will give us f(xe−1), while summing up ixi−1

e−1

is adding terms that look like the derivative of polynomials, so the sum of
ci · ixi−1

e−1 · kpe−1 yields f ′(xe−1) · kpe−1. Summarizing this paragraph,

f(xe) ≡ f(xe−1) + f ′(xe−1) · kpe−1 (mod pe).

By hypothesis pe−1 | f(xe−1), and obviously pe−1 | f ′(xe−1) · kpe−1 and pe;
so by necessity pe−1 | f(xe) as well. Now recall Proposition 5.2.6, where we

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 93

are allowed to cancel a nonzero divisor from “all three sides” of a congruence.
Then we have that

f(xe)/p
e−1 ≡ f(xe−1)

pe−1
+ f ′(xe−1) · k (mod p);

but the right-hand expression is divisible by p by our original hypothesis, so
f(xe)/p

e−1 ≡ 0 (mod p). Using Proposition 5.2.6 again we multiply everything
by pe−1 and obtain

f(xe) ≡ 0 (mod pe)

as desired. ■
Historical remark 7.2.4 Hensel’s Lemma. The German mathemati-
cian Kurt Hensel was a grandson of the famous pianist and composer Fanny
Mendelssohn; he was apparently the first one to use the term Fermat’s Little
Theorem for the result we will see in Theorem 7.5.3. The lemma as presented
here is only the finite case of his use of it to develop the p-adic numbers, which
one may think of power series expansions of modular arithmetic. See [E.2.15]
for a good project introducing them.

Let’s use Hensel’s Lemma to take solutions to x2+1 ≡ 0 (mod 5) and turn
them into solutions modulo 25 and 125. By inspection, the solutions to this
congruence modulo 5 are [2], [3] (or [±2]).

Example 7.2.5 First let’s tackle x2 + 1 ≡ 0 (mod 25). By the preceding
remark and the lemma, solutions modulo 25 will look like 3 + k · 5 or 2 + k · 5.
Further, f ′(x) = 2x, so for either solution modulo 5 the technical derivative
condition is met.

Let x1 = 3. Then the condition for k is

f(x1)

5
+ k · (2x1) ≡ 0 (mod 5)

which simplifies to 2 + 6k ≡ 0, which solves to k ≡ −2 ≡ 3. Then our solution
to the congruence modulo 25 would be

x2 = x1 + 3 · 5 ≡ 3 + 3 · 5 ≡ 18 (mod 25)

And indeed 182 + 1 = 325 is divisible by twenty-five.
Now try the same procedure with x1 = 2 to get the solution x2 ≡ 7 in

Exercise 7.7.3. (If you get stuck, see Example 16.1.3.) □
Example 7.2.6 We can try the same process with e = 3. Taking (from the
previous example, or the affiliated exercise) x2 ≡ 7 yields, as a condition for k,

72 + 1

25
+ 2 · 7k ≡ 0 (mod 5).

This reduces to 14k ≡ −2 (mod 5), which gives k = 2. Indeed,

x3 = x2 + 2 · 52 ≡ 7 + 2 · 52 = 57

yields
572 + 1 = 3250 ≡ 0 (mod 125).

It’s good practice to try the same process with x1 = 18 instead in Exercise 7.7.3.
□

1Given these conditions, it will be the only one of this form.
2One way or another one of these series will have to enter in, unfortunately; [E.2.1, Sec-

tion 4.3] has more of a binomial theorem-esque treatment, while [E.2.13, Theorem 4.7] and
[E.5.1, Theorem 6.2] more explicitly invoke Taylor series.

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 94

This is a very powerful technique. What is most interesting is that this is
even interpretable as Newton’s method in calculus. How? Note that the result
above can be rearranged as

xe = xe−1 −
f(xe−1)

f ′(xe−1)

since pe−1 | f(xe−1) and the technical condition is tantamount to saying
f ′(xe−1) has an inverse. (Unlike in the Newton case, it is also possible for
there to be solutions here if gcd(p, f ′(xe−1)) ̸= 1, but only if f(xe−1)

pe−1 itself is
also divisible by p. We omit details of this case, which then yields additional
solutions for each successive e.)

If you didn’t notice this, don’t feel bad! When we had the linear congruence
f(x) = 4x − 1 in Examples 6.5.3 and 6.5.4, the derivative was just f ′(x) = 4
and it was not at all obvious that anything more than a trick was involved.
Still, it’s another fascinating place where ideas from calculus can invade the
world of number theory.

7.3 Congruences as Solutions to Congruences
We need to start applying these ideas more. In Section 7.1 we explored the
number of solutions to x2 − 1 ≡ 0 (mod n) for arbitrary n. It should be clear
we expect at least two solutions once we move past the trivial case n = 2, but
why are there sometimes more?

Could we ever get a comprehensible answer to that question? Online, try
the following interact to see if you find any patterns.

@interact
def _(n=(12 ,[10..110])):

counter = 0
pretty_print(html("Values␣of␣x^2-1␣mod␣%s"%(n,)))
pretty_print(html(""))
for m in [0..n]:

pretty_print(html(r"$%s^2-1\ equiv␣%s\text{␣(mod␣
}%s)$"%(m,mod(m,n)^2-1,n)))

if mod(m,n)^2 -1==0:
counter += 1

pretty_print(html(""))
pretty_print(html(r"There␣are␣$%s$␣solutions␣to␣

$x^2-1\ equiv␣0$␣(mod␣$%s$)."%(counter ,n)))

Since x2−1 is a polynomial, our knowledge of Fact 7.2.2 suggests we should
try to answer this by looking at different prime power moduli first, then mul-
tiply the answers.

The key idea we will use is this. For a prime p,

p | x2 − 1 = (x− 1)(x+ 1) implies x ≡ ±1 (mod p).

More generally, pe | (x−1)(x+1) implies p divides x−1 or x+1. So we should
just look at various pe.

If p is odd (and hence greater than two), the two possibilities p | x − 1
and p | x + 1 are mutually exclusive, so all the factors of p in pe divide the
same factor of x2 − 1. So pe | (x + 1) or pe | (x − 1) are the only possibilities
(x ≡ [±1]) and there are two solutions.

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 95

However, if p = 2 then simultaneously having 2 | x − 1 and 2 | x + 1 is
definitely possible, so there could be more than two solutions. We examine
three cases.

• We know that ±1 are still the only solutions modulo 22 and 21. In the
latter case +1 ≡ −1, so then there is actually only one solution.

• However, modulo 23 it’s possible that 2 | (x+1) and 22 | (x− 1), or vice
versa, so that 22 ± 1 = 3, 5 are also solutions to the congruence.

• When the modulus is a higher power of 2 this sort of thing can happen,
too. For instance, when e = 5 one could have 2 | (x+1) and 24 | (x− 1).
However, it’s not possible that 22 | (x + 1) and 23 | (x − 1) because
numbers two apart can’t both be divisible by four. So the only other
possibility is that 2 | (x+ 1) and 2e−1 | (x− 1), or vice versa, which is a
total of four solutions. (See Exercise 7.7.15 to confirm these do all give
solutions.)

That means we get a very intriguing answer.
Fact 7.3.1 Let k be the number of different odd primes that divide n. Consider
the congruence x2 − 1 ≡ 0 (mod n). Then:

• There are 2k solutions if n is odd.

• There are 1 · 2k = 2k solutions if n is divisible by 2 but not by 4.

• There are 2 · 2k = 2k+1 solutions if n is divisible by 4 but not by 8.

• There are 4 · 2k = 2k+2 solutions if n is divisible by 8.
Proof. Use Fact 7.2.2 and the argument above. ■

What does this have to do with the title of this section? Let’s recast the
result.
Fact 7.3.2 We can list all possible solutions to x2 − 1 ≡ 0 (mod n) based on
k, the number of odd primes that divide n, and based on the equivalence class
of n modulo 8.

• There are 2k solutions if n ≡ 1 (mod 2), or when n ≡ 1, 3, 5, 7 (mod 8).

• There are 2k solutions if n ≡ 2 (mod 4), or when n ≡ 2, 6 (mod 8).

• There are 2 · 2k = 2k+1 solutions if n ≡ 4 (mod 8).

• There are 4 · 2k = 2k+2 solutions if n ≡ 0 (mod 8).
This is only the first of many such results.

7.4 Polynomials and Lagrange’s Theorem
We’ve seen several times in this chapter that although one can have theorems
of various kinds for congruences, polynomials seems to behave very nicely –
even to the point of allowing us to prove statements about the integer output
of polynomials!

At the same time, it’s clear that for good behavior, there is no substitute
for prime moduli; the results in the previous sections really confirm this. So
how can we combine polynomials and prime modulus? The answer was given
by Joseph-Louis Lagrange.
Theorem 7.4.1 Lagrange’s Theorem for Polynomials. If p is prime
and f(x) is a degree d, integer coefficient, non-trivial polynomial (i.e. f not

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 96

identically zero or with all coefficients divisible by p), then there are at most d
congruence classes of solutions of f(x) ≡ 0 modulo p.
Proof. This proof is fairly detailed, so feel free to try it out with specific
numbers. It proceeds via induction on the degree d of the polynomial.

First, consider the case where there are no solutions to f(x) ≡ 0 (mod p).
Then there is nothing further to prove, since 0 ≤ d for any polynomial. This
actually proves a base case, for if the degree is d = 0 then f(x) = c for c ̸= 0.
(If c = 0 we have the trivial polynomial, which is the excluded case.)

For another base case, suppose that the degree d = 1. Then we have
ax + b ≡ 0 (mod p), which is the same as ax ≡ −b (mod p). In this case
gcd(a, p) = 1 and there is exactly one solution by Proposition 5.1.3 (if ax + b
is actually going to have a linear term, otherwise p | a).

Now we’ll use some induction. Let’s assume that all polynomials with
degree e less than d have at most e solutions modulo p, and try to examine a
generic polynomial f of degree d:

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0.

We already dealt with the case where f has no solutions, so assume further
that f(b) ≡ 0 (mod p) for at least one congruence class [b]. Consider the
following expansion of f(x)− f(b):

f(x)− f(b) ≡ f(x) ≡(
adx

d + ad−1x
d−1 + · · ·+ a1x+ a0

)
−
(
adb

d + ad−1b
d−1 + · · ·+ a1b+ a0

)
=

ad
(
xd − bd

)
+ ad−1

(
xd−1 − bd−1

)
+ · · ·+ a1(x− b)

Now recall the factorization3(
xk − bk

)
= (x− b)

(
xk−1 + · · ·+ bk−1

)
.

Apply it to the previous formula to factor our x− b:

(x− b) · (A bunch of other Stuff) .

Note that “Stuff” is strictly of degree less than d.
Now we can write f(x) ≡ 0 in two ways, recalling that f(b) ≡ 0:

• f(x) ≡ 0

• f(x) ≡ f(x)− f(b) ≡ (x− b) · Stuff(x)

Therefore
f(x) ≡ (x− b) · Stuff(x) ≡ 0 (mod p)

implies that p divides the product of x − b and the stuff. Crucially, by
Lemma 6.3.6 we know p divides one of these two factors.

Since the “Stuff” function must be a polynomial of degree less than d, there
are at most d−1 solutions to it modulo p if p divides “Stuff”. If p divides x− b
instead, that is only one more solution for f(x), so there are a total of at most
d solutions available for f(x), including x ≡ b.

Finally, f(x) was an arbitrary polynomial of degree d, so the induction
statement is proved, and by induction, the theorem works for any non-trivial
polynomial. ■

We just saw this result isn’t true for general moduli. In Fact 7.3.1 we got
3We could have used this to prove Fact 4.2.3. See also Exercise 7.7.6.

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 97

as many as 2k+2 solutions to x2−1 ≡ 0 for moduli that looked like 8p1p2 · · · pk.
We would expect only two with Lagrange’s Theorem for Polynomials!

But there cannot be more than two solutions to the x2±1 problems modulo
a prime. If we find two solutions, we have all of them. This proves to be
quite useful to keep things from going crazy when we are trying to investigate
congruences; if we keep the modulus prime, we will be okay.

Of course, not every polynomial has the full number of solutions that The-
orem 7.4.1 allows; consider xn ≡ 0 (mod p). We might not even get two
in interesting instances of a quadratic polynomial; for example, x2 + 1 ≡ 0
doesn’t have a solution modulo three (just try all three options to check). The
following interact investigates this a bit more.

@interact
def _(n=(13, prime_range (100))):

counter = 0
pretty_print(html("Zero␣values␣of␣x^2+1␣mod␣%s"%(n,)))
pretty_print(html(""))
for m in [0..n-1]:

if mod(m,n)^2+1==0:
pretty_print(html(r"$%s^2+1\ equiv␣%s\text{␣

(mod␣}%s)$"%(m,mod(m,n)^2+1,n)))
counter += 1

pretty_print(html(""))
pretty_print(html(r"There␣are␣$%s$␣solutions␣to␣

$x^2+1\ equiv␣0$␣(mod␣$%s$)."%(counter ,n)))

Maybe it’s not so surprising that sometimes x2 + 1 ≡ 0 has no solutions,
since x2 +1 = 0 doesn’t have any real solutions either. Could there be connec-
tions or parallels between these cases?

7.5 Wilson’s Theorem and Fermat’s Theorem
Polynomials aren’t the only types of formulas we will see. Here, we introduce
two famous theorems about other types of congruences modulo p (a prime)
that will come in very handy in the future.

7.5.1 Wilson’s Theorem
Theorem 7.5.1 Wilson’s Theorem. If p is a prime, then

(p− 1)! ≡ −1 (mod p),

where the exclamation point here indicates the factorial.
Proof. If p = 2 this is very, very easy to check. So assume p ̸= 2, hence p − 1
is even. Now we will think of all the numbers from 1 to p − 1, which will be
multiplied to make the factorial. (We will put the example p = 11 in bullets
to help follow.)

For each n such that 1 < n < p − 1, we know that n has a unique inverse
modulo p. Pair up all the numbers between (not including) 1 and p− 1 in this
manner.

• If p = 11, we pair up (2, 6), (3, 4), (5, 9), and (7, 8).

Then multiplying out (p−1) factorial, we can reorder the terms using the pairs,

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 98

and notice much cancellation:

(p− 1)! ≡ 1 · 2 · 3 · · · (p− 2) · (p− 1) ≡ 1 · a · a−1 · b · b−1 · · · (p− 1)

≡ 1 · 1 · 1 · · · 1 · (p− 1) ≡ (p− 1) ≡ −1 (mod p)

• For instance, if p = 11, we pair up

10! ≡ 1 · 2 · · · 9 · 10 ≡ 1 · (2 · 6) · (3 · 4) · (5 · 9) · (7 · 8) · 10

which simplifies to

10! ≡ 1 · 1 · 1 · 1 · −1 (mod p)

Beautiful!
The only loose end is that perhaps some number pairs up with itself, which

would mess up that all the numbers pair off nicely. However, in that case, a2 ≡ 1
(mod p), so by definition p | (a− 1)(a+1); since p is a prime greater than two,
it must divide one (and only one) of these factors (recall Lemma 6.3.6). In
these cases a ≡ 1 or a ≡ p− 1. But we were not pairing off 1 or p− 1, so this
can’t happen. ■

Exercise 7.7.7 is to show that the conclusion of Wilson’s theorem fails for
p = 10. That is, that (10 − 1)! ̸≡ −1 (mod 10). So does it work or not for
other moduli?

@interact
def _(n=range_slider (2,100,1,(3,9))):

for modulus in [n[0]..n[1]]:
pretty_print(html(r"$(%s-1)!\equiv␣%s$␣(mod␣

$%s$)"%(modulus ,
mod(factorial(modulus -1),modulus), modulus)))

Remark 7.5.2 See Exercise 7.7.11 once you have explored this for a while.
For nice combinatorial proofs, see Subsection 7.8.2 or [E.7.27]. If you are really
curious, see Wikipedia or Alexander Walker’s blog for a generalization due to
Gauss; a somewhat different approach to generalization is taken in [E.7.28].

7.5.2 Fermat’s Little Theorem
If one explores a little with powers of numbers modulo p a prime, one usually
notices some pattern of those powers. This is the best-known, and soon we’ll
reinterpret it in a powerful way.

Theorem 7.5.3 Fermat’s Little Theorem. If gcd(a, p) = 1 for p a prime,
then

ap−1 ≡ 1 (mod p).
Proof. Sketch of proof (to fill in, see Exercise 7.7.10):

• If gcd(a, p) = 1 and p is prime, show that {a, 2a, 3a, . . . , (p − 1)a, pa} is
a complete residue system (mod p).

◦ That is, show that the set {[a], [2a], [3a], . . . , [pa]} is the same as the
complete set of residues {[0], [1], [2], . . . , [p− 1]}, though possibly in
a different order.

• If p is prime and p does not divide a, show that

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) (mod p).

https://en.wikipedia.org/wiki/Wilson%27s_theorem#Gauss%27s_generalization
https://awwalker.com/2017/02/05/a-generalization-of-wilsons-theorem-due-to-gauss/

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 99

• Now use Wilson’s Theorem and multiply by −1.

■
Like with most important theorems, there are many other ways to prove

it as well; in Section 7.8 we’ll provide a counting-based proof. See [E.7.40] for
an analysis of interrelationship with a focus on mechanizing proof. We’ll see a
more abstract approach after we introduce the concept of groups in Chapter 8;
see Exercise 9.6.2.

So despite the innocuous appearance of this result as a corollary of another
theorem, do not be fooled; it is incredibly powerful. As an example, it pro-
vides the primary tool in Fermat’s proof that 237 − 1 is not prime4; imagine
discovering this factorization by hand!

print (2^37 -1)
print(factor (2^37 -1))

137438953471
223 * 616318177

7.6 Epilogue: Why Congruences Matter
Although we will spend some significant time working on solving congruences,
I don’t want to lose sight of deeper questions. To see how congruences help
address them, recall the search in Section 7.1 for primes p such that

x2 ≡ −1 (mod p)

has a solution. The table given by the following interact is organized a little
more; if online, try to find a pattern in which p yield solutions and which do
not.

import itertools

@interact
def _(n=20):

yeslist =[]
nolist =[]
for p in prime_range (3,n):

res = 0
for res in [0..p]:

if mod(res ,p)^2+1 == 0:
yeslist.append(p)
break

else:
nolist.append(p)

t = [[' exist ' , ' do␣not␣exist ']] + [[a,b] for (a,b) in
itertools.zip_longest(yeslist ,nolist)]

for item in t:
for i in range(len(item)):

if item[i] is None:
item[i]= ' '

pretty_print(html(r"Solutions␣to␣$x^2\ equiv␣-1$␣(mod␣
p)␣for␣$2\le␣p␣\le␣%s$:"%n))

pretty_print(html(table(t, header_row = True , frame =

4For more on this story see [E.5.8, page 57]; for more on this type of number see Defini-
tion 12.1.6.

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 100

True)))

Question 7.6.1 Do you see a pattern related to some kind of congruence?
(This one should be more apparent than in Section 7.3; see also Exercise 7.7.12.)

□
The reason I point this kind of thing out is not just because I can, but

because it shows simple congruence patterns can have a big result. We will
prove a result about integers, assuming something about congruences.

Recall our brief search through Mordell/Bachet curves in Section 3.5. Let’s
look at the particular case x3 = y2 − 7.

-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

-15 -10 -5 5 10 15

-30

-20

-10

10

20

30

-40-30-20-10 0 10 20 30 40

-80

-60

-40

-20

0

20

40

60

80

Figure 7.6.2 Solutions of x3 = y2 − 7 in several viewing windows
It’s amazing how the curve slips between every integer lattice point… So it

seems that a perfect square can’t ever be exactly seven more than a perfect
cube. Is this true? Here’s where congruences come into play.
Proposition 7.6.3 Showing a Mordell curve has no integer point.
There are no integers x, y such that x3 = y2 − 7, so there are no integer points
on this curve.

As a prefatory note, this proof will depend upon the results of our explo-
ration at the beginning of this section. We will eventually prove these conjec-
tures in Fact 13.3.2, which will allow us to claim full proof of this statement
in Fact 15.3.3. However, you may want to try to find an “elementary” proof
of the conjecture in Exercise 7.7.12.
Proof of Proposition 7.6.3. For convenience, we will rewrite x3 = y2 − 7 as
y2 = x3 + 7. To begin the proof, first consider the case where x is even. Then
2 | x, so 8 | x3. That means y2 ≡ 7 (mod 8).

[i^2 for i in Integers (8)]

[0, 1, 4, 1, 0, 1, 4, 1]

Unfortunately, the only perfect squares mod (8) seem to be 0, 1, and 4. So
this is not possible.

What about if x is odd? Then y must be even, since x3 and 7 are odd. So
let’s examine whether x ≡ 1 (mod 4) or x ≡ 3 (mod 4), the next two options.

• If x ≡ 3 (mod 4), then x3 ≡ 27 ≡ 3 (mod 4), so x3 + 7 ≡ 10 ≡ 2 (mod
4). But we already know from earlier that perfect squares are only 0 or
1 modulo 4, so that’s not possible.

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 101

• So it must be the case that x ≡ 1 (mod 4).

Now we do a tricka like that of completing the square:

y2 = x3 + 7 ⇒ y2 + 1 = x3 + 8 ⇒ y2 + 1 = (x+ 2)(x2 − 2x+ 4)

Let’s analyze this carefully in the following argument.

• If x ≡ 1 (mod 4), then x+ 2 ≡ 3 (mod 4).

• So not only is x + 2 an odd number, but also it must be divisible by a
prime q of the form 4n+3. (Otherwise all its primes look like 4n+1 ≡ 1,
the product of which would also be ≡ 1 (mod 4).)

• If q divides x+2, it (naturally) divides (x+2)(x2 − 2x+4) as well. But
if it divides (x+2)(x2 − 2x+4), it must then divide y2 +1, since they’re
equal.

• However, our exploration at the start of this section suggested that a
prime of the form 4n+ 3 can’t divide y2 + 1!

• So, assuming it is true that only primes of the form 4n + 1 can divide
perfect squares plus one (y2+1), then x ≡ 1 (mod 4) doesn’t work either.

■
aDavenport in [E.4.10] and Conrad credit this proof to the same Lebèsgue mentioned in

the rediscovery of Qin’s generalized Chinese Remainder Theorem in Subsection 5.5.1.

Enough said; congruences are amazingly powerful.

7.7 Exercises
1. Before reading beyond Section 7.1, pick one of these, and really do some

exploration and write about it. See Section 7.6 for another interactive
applet for the first question.

• Do exploration to try to find a criterion for which primes p there
are square roots of −1. You will have to examine primes less than
10 by hand to make sure you are right!

• Do exploration to find out anything you can about how many square
roots of 1 there are for a given n.

2. Figure out how many solutions x2 ≡ x (mod n) has for n = 5, 6, 7, and
then compute how many solutions there are modulo 210.

3. Finish finding the solutions to the congruences in Examples 7.2.5–7.2.6.
Do you notice anything about the answers that suggests a shortcut for
finding these particular additional solutions?

4. Find all solutions to x2 + 8 ≡ 0 (mod 121) using the method above in
Theorem 7.2.3.

5. Solve f(x) = x3 − x2 + 2x+ 1 ≡ 0 (mod 5e) for e = 1, 2, 3.
6. Use summation notation to properly prove(

xk − bk
)
= (x− b)

(
xk−1 + bxk−2 + · · ·+ bk−1

)
.

7. Show that the conclusion of Wilson’s Theorem fails for p = 10, and check
that it holds for p = 11 by computing 10! and then reducing.

http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/mordelleqn1.pdf

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 102

8. Suppose we have the same setup as in Wilson’s Theorem, modulo a prime
p. What is the value of (p− 2)! as a function of the modulus?

9. Use Fermat’s Little Theorem to help you calculate each of the following
very quickly:

• 512372 (mod 13)

• 34443233 (mod 17)

• 123456 (mod 23)
10. Prove Fermat’s Little Theorem using the steps in Theorem 7.5.3 (a stan-

dard one in many texts), or any way you would like.
11. Prove that Wilson’s Theorem always fails if the modulus is not prime.

Hint: use the fact that the modulus n then has factors m other than 1 or
n.

12. Prove that it is impossible for p | x2 + 1 if a prime p has p ≡ 3 (mod 4) –
that is, if p is of the form 4n+ 3. (Hard5.)

13. Prove that x2 + y2 = p has no (integer) solutions for prime p with that
same form 4n+ 3.

14. Show that y2 = x3 + 999 has no (integer) solutions (See [E.2.13, Chapter
10 Review Exercise 5], Exercise 15.7.7). You may assume Fact 13.3.2.

15. In solving x2 − 1 ≡ 0 (mod 2e) for e > 3 for Fact 7.3.1, find the exact
form of the two solutions other than ±1.

7.8 Counting Proofs of Congruences
Some number theoretic results require essentially no number theory for their
proof, but may be tackled using basic ideas from combinatorics, the discipline
of counting well. The essential idea in all of these types of proofs is to find
two (or more) ways to count something you care about; with skill (or luck),
equating these will lead to an algebraic formula that might be quite challenging
to verify with mere manipulation. Although in this text we do not really
address partitions, additive number theory, or other beautiful combinatorial
elements of the discipline, it is worth showing two classic proofs, by counting
pictures, of the classic theorems in Section 7.5. Both appear in [E.2.11], where
I learned of them, though they are both significantly older. In this section, I
will try to put them in a unified context in an attempt to lend insight.

7.8.1 Counting motivation
In both cases we will have a natural question about objects situated on a
circle, which may be naturally rotated by 2π/n radian (or 360/n degrees).
Since such an object will certainly look the same after doing this rotation n
times (2π/360°), we can call this a n-action, and call the initial rotation a basic
n-rotation6.

In particular, we will want to look at classes of such objects that share
some obvious similarity when rotated in this fashion. As an example, consider
configurations of n equally spaced points around a circle, two separate pairs

6If you absolutely must know, see [E.2.13, Theorem 4.12] or [E.5.1, Theorem 8.6] for a
somewhat more general statement proved using Fermat’s Little Theorem, which [E.2.13] later
uses to prove Proposition 7.6.3.

6This notation is not standard, and is only for use in this section.

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 103

of which are connected by a line segment. You can think of this as ways of
cutting a round birthday cake, using two cuts going between n equally-spaced
candles along the edge7. Figure 7.8.1 shows a few examples for n = 7; notice
how the two cuts on the left are rotations of each other, while the others clearly
are not.

Figure 7.8.1 Several configurations of two lines on a 7-point circle
Now consider any object of this type, and suppose the object looks the

same after some smallest nonzero number k ≤ n of basic n-rotations8. Then of
course that will still be the case after another k of them, and so forth for any
multiple km of k. But we also know that after n basic n-rotations the object
is the same.

Now use the Division Algorithm. We have that n = kq + r for some
0 ≤ r < k. Since we just noted the object is the same after kq basic n-
rotations, then applying just r of them must also bring it back to its original
configuration as well – except we said r < k, which is impossible by hypothesis
unless r = 0. So k must be a proper divisor of n.

That this is possible can be noted in Figure 7.8.2, where the left-hand cuts
would now be preserved by a mere k = 3, not only n = 6, basic 6-rotations.

7I don’t recommend using this at an actual party, since the three or four pieces will likely
be quite unequal in size and shape.

8That such a number exists is guaranteed by the Well-Ordering Principle as usual.

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 104

Figure 7.8.2 Several configurations of two lines on a 6-point circle
But when n = p is prime, there are no proper divisors except 1 itself! So

the only configurations which could be rotated non-trivially would be ones that
are identical under any number of basic p-rotations at all.

Finally, that means that all the configurations which cannot be rotated non-
trivially must generate p different configurations when rotated – configurations
which are necessarily different from any others’ rotations, so that they partition
the set of all the configurations. This yields the key fact we will use in both
proofs.
Fact 7.8.3 If p is prime, then the set of configurations which change non-
trivially under a basic p-rotation can be divided into subsets, each of size p. So
p divides the size of this set.

7.8.2 The combinatorial proofs
Solomon Golomb provided the following creative proof of Fermat’s Little The-
orem as a classroom note9 in [E.7.41]. The proof is of the statement in the
form we will see later in Exercise 9.6.3:

ap ≡ a (mod p).

It has been reused in many texts and spread throughout the internet as the
‘pearl’ or ‘necklace’ proof10.
Combinatorial proof of Theorem 7.5.3. Suppose that at each of p equally spaced
points around a circle we have a different color bead, with a colors available.
“Since each of the beads can be chosen” in a different ways, there are ap possible
colorings.

However, if we use only one color of bead, then that coloring doesn’t change
9Thanks to JSTOR, you can access the original publicly at https://www.jstor.org/

stable/2309563. On a side note, it is amazing today to think that a professor at MIT was
the editor of the classroom notes section of the Monthly in 1956. Times have changed.

10It is worth noting that the case n = 2 may be thought of stating a fact about musical
chords on a p-note scale; see this excellent introduction if you know a little group theory.

https://www.jstor.org/stable/2309563
https://www.jstor.org/stable/2309563
https://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 105

under a basic p-rotation. So the total number of relevant configurations in
Fact 7.8.3 is ap − a, which implies that p | ap − a or

ap ≡ a (mod p).

■
Over a century ago, Robert Carmichael (whom we will meet again in Defin-

ition 12.2.9) gave the following very interesting proof11. As Golomb points out
in his article, it is of a very similar nature to the previous one, which motivates
the unified presentation here.
Combinatorial proof of Theorem 7.5.1. We start with Carmichael’s introduc-
tion.

Let p points be distributed at equal intervals on the circumference
of a circle. The whole number of p-gons which can be formed by
joining up these p points in every possible order is evidently

1

2p
p(p− 1) · · · 3 · 2 · 1.

Indeed, if we start by picking one of p starting points on the circle, then there
are p! ways to join the rest in some order, but we then need to divide by the
number of starting points of such a configuration, as well as the two directions
we could have chosen to start. Further, to use Fact 7.8.3 we need to subtract
the ones like the one on the left in Figure 7.8.4, of which there are p−1

2 since
from a starting point that is the number of distances (right or left) one can
go to the next point (and from then on it continues identically so that any
rotation will keep it unchanged).

Figure 7.8.4 Connecting 7 points on a circle various ways
So we have that

1

2p
p(p− 1)(p− 2) · · · 3 · 2 · 1− 1

2
(p− 1) ≡ 0 (mod p);

multiplying by two and simplifying yields

(p− 1)!− p+ 1 ≡ 0 (mod p)

which immediately implies

(p− 1)! ≡ −1 (mod p)

as desired. ■
11The textbook it occurs in is now available freely via Project Gutenberg of Wilson’s

Theorem.

http://www.gutenberg.org/ebooks/13693

CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES 106

Remark 7.8.5 For those who know a little graph theory, this proof may be
streamlined. The number of directed cyclic graphs on these points is (p − 1)!,
and similarly there would be exactly p− 1 directed cyclic graphs which remain
unchanged under a basic p-rotation.
Remark 7.8.6 As a note to instructors, though we do not define group actions
in this text, of course a n-action is really a Zn-action, using the terminology
of Definition 8.1.1. Indeed, these computations are all just special cases of the
Burnside Lemma/Cauchy-Frobenius Theorem, but without the annoyance of
having to actually compute very many fixed points, and without the bother of
determining the number of orbits.

These are certainly not the only combinatorial proofs of congruences. See
[E.7.27] for a recent proof of Wilson’s Theorem using two different ways of
counting the functions of the set {1, 2, . . . , p} onto itself. Like many presenta-
tions of these two theorems, it uses Fermat’s Little Theorem to prove Wilson’s
Theorem, rather than the other way around as we did it in Section 7.5.

Golomb only asks what we (and [E.2.11]) show explicitly; where did we use
that p is prime? It is of course in the division algorithm, when finding how
many basic n-rotations suffice to preserve the figure. The beauty of the proofs
in this section is that they rely directly only on the division algorithm and
primality, nothing more.

Summary: First Steps With General Congruences
Although we cannot as easily fully solve more general congruences than linear
ones, there are many useful and elementary results to explore.

1. As a prelude, we explore Question 7.1.1 about when we have square roots
of ±1, modulo n.

2. Can we use some of the methods from linear congruences for polynomials?

• We can combine solutions to polynomials in a similar way to the
Chinese Remainder Theorem (Fact 7.2.2).

• In Hensel’s Lemma we see how to use a solution modulo a prime
power to create a solution modulo a higher power of the same prime.

3. A key approach in solving congruences is to remember that the nature of
the solutions may also be expressed in terms of a congruence. Fact 7.3.2
is a first good example of this, giving a complete analysis of square roots
of one.

4. We next see in Lagrange’s Theorem for Polynomials that when our mod-
ulus is prime, solutions of polynomials are limited more closely by our
previous experience.

5. Two towering theorems giving theoretical tools to harness more complex
congruences are Wilson’s Theorem and Fermat’s Little Theorem.

6. Finally, we explore Mordell curves again in an effort to motivate a deeper
understanding of Epilogue: Why Congruences Matter.

The Exercises focus on polynomial congruences, but include a little practice
of Fermat’s Little Theorem. After this we have alternate combinatorial proofs
provided of Fermat’s Little Theorem and Wilson’s Theorem; see especially the
section on Counting motivation.

https://mathworld.wolfram.com/Cauchy-FrobeniusLemma.html

Chapter 8

The Group of Integers Mod-
ulo n

This chapter does not do any number theory, per se. Yet it is at the heart of
the text. We introduce two powerful methods to deal with integers modulo n
– visualizing them graphically, and the language of group theory.

There is no prerequisite in either case; do not feel worried if you have not
encountered algebraic structures like groups before. We will only take and
introduce what we need, and refer back to fundamental properties often.

8.1 The Integers Modulo n

8.1.1 Definition
It is time for us to finally define what we have been working with for quite a
while now.
Definition 8.1.1 Integers Modulo n. For a positive integer n, the set of
equivalence classes of integers modulo n is called the integers modulo n. We
denote it Zn. That is,

Zn = {[0], [1], [2], · · · , [n− 2], [n− 1]}.

In the case where n = p is a prime, we usually write Zp. (For those who have
had an abstract algebra course, this may be different notation than you have
used, but we will consistently use this one.) ♢

This friendly number system will become a good acquaintance, if not friend,
throughout the rest of the course. We’ll explore it soon, but first let’s see some
of the basic properties.

As it turns out, Zn has several very interesting properties. Like all of our
number systems in this class, you can add and multiply elements of Zn (we
call something like that a ring). This is true because of our earlier proof of
well-definedness for addition and multiplication in Proposition 4.3.2.

As a first step in visualizing, we can make an addition table. (See Fig-
ure 8.1.2 or the interact after it.) This is not very interesting. But in some
sense, it is interesting that it isn’t interesting. Does that make any sense?

107

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 108

+ [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

Figure 8.1.2 Addition table for Z3

@interact
def addition_table_(n=(11 ,[2..50])):

P=[[mod(a,n)+mod(b,n) for a in [0..n-1]] for b in
[0..n-1]]

pretty_print(html("The␣addition␣table␣for␣modulus␣
$%s$"%(n,)))

pretty_print(html(table(P, header_row = True , frame =
True)))

The top row and left column may be considered as a list of a and b. Any
ideas about patterns here?

It’s also possible to make a multiplication table. (See Figure 8.1.3 or the
interact after it.) This makes things a little more interesting.

× [0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]

Figure 8.1.3 Multiplication table for Z3

@interact
def _(n=(11 ,[2..50])):

P=[[mod(a,n)*mod(b,n) for a in [0..n-1]] for b in
[0..n-1]]

pretty_print(html("The␣multiplication␣table␣for␣modulus␣
$%s$"%(n,)))

pretty_print(html(table(P, frame=True)))

Again, notice that the columns and rows are both from 0 to n − 1; this is
standard. For now we’ll usually just use the set of least nonnegative residues
to represent Zn; recall that this is {[0], [1], [2], . . . , [n− 2], [n− 1]}.

Are there any patterns you notice here?
There is at least one observation that is curious. For some moduli, the only

zeros are where we expect them, in the top row and left column. For others,
they are in other spots.

8.1.2 Visualization
What’s even better is to see this visually! I still can’t get over how easy it is
for me to do this in Sage (and other math programs), such as in the following
graphic and interact. It is so cool that my (non-mathematician) wife says,
“What’s that – it’s neat!” I wish more people could experience this joy of
beauty in math.

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 109

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 8.1.4 Colored multiplication table for n = 7

@interact
def multiplication_table_plot(n=(7 ,[2..50])):

P=matrix_plot(matrix(n,[mod(a,n)*mod(b,n) for a in
srange(n) for b in srange(n)]),cmap= ' jet ')

show(P,figsize =7)

How does one interpret this graphic? The a row and b column give the
color corresponding to a · b (mod p). That means the first (0th) column is the
color for a · 0 = 0 and the second (1st) column gives the colors of each element
a · 1 = a of Zn. Since zero times anything is zero, that gives us a lot of that
color (deep blue in the default) along two edges.

Can you see the difference between prime and composite moduli better
now?

8.1.3 Inverses
Let’s focus on the tables/graphs for when n = p a prime. There’s at least one
interesting observation we can make about them. Every row and every column
(other than the ones corresponding to 0) has the entry 1 in it. (That’s the
deepest nonzero blue in the default coloring.)

You can’t necessarily say this about other numbers, so let’s translate this
into notation.
Fact 8.1.5 When p is prime, every nonzero element of Zp has an inverse.
Proof. If gcd(a, n) = 1, then ax ≡ b (mod n) has a unique solution in Zn. So
if n = p is prime, then gcd(a, p) = 1 always, except for a ≡ 0.

Now we let b = 1, and finding x becomes the same as finding the inverse
number of a (recall Definition 5.3.4). So for prime moduli, every non-zero
element has a unique inverse in Zp. ■

(In algebraic nomenclature, this means Zp is a field, yet another example
of bizarre but fun math terminology.)

What was the command again to get an inverse?

inverse_mod (26 ,31)

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 110

6

It turns out there is an even easier way to get at this in Sage than the one
I used last time! In retrospect, it makes sense.

c = mod (26 ,31)
c^-1

6

c = mod (26 ,31)
c*c^-1

1

Go back to the graphics or tables. Can you “see” that there is (exactly one)
inverse for every non-zero element of Zp?

8.2 Powers
Let’s continue to restrict ourselves to looking at Zp, the integers modulo some
prime p, for a bit longer. This will enable us to get a little more detailed in our
exploration. We eventually want to explore solutions to congruences modulo
primes and prime powers.

Let’s begin by exploring powers. Powers are particularly important, since
polynomials are constructed from them. The following interact allows explo-
ration of powers an modulo p for various primes p and bases a. Notice I have
not yet brought in the colors.

@interact(layout =[[' p ' , ' a ']])
def _(p=(7, prime_range (50)),a=(3 ,[0..50])):

b=mod(a,p)
top=ceil (2*p/10) *10
pretty_print(html("If␣we␣look␣at␣some␣of␣the␣powers␣of␣

$%s$"%(a,)))
pretty_print(html("modulo␣the␣prime␣$%s$,␣we␣get:"%(p,)))
pretty_print(html(""))
for m in [0.. top]:

pretty_print(html(r"$%s^{%s}\equiv␣%s\text{␣(mod␣
}%s)$"%(a,m,b^m,p)))

pretty_print(html(""))

Do you see any patterns? It’s probably a little early to try to come up with
potential theorems, but there should be at least some patterns you see. Do
you maybe even see any theorems we have already proved in here?

One of the biggest patterns is hard to see in this format, but is the simplest.
Given a prime p, you should get get the same answers for a ≡ a′ (mod p).
(Recall this fact was the core of the proof of Fact 6.1.4.) So we should really
just restrict ourselves to looking at 0 ≤ a < p.

8.2.1 Returning to visualizing
Still, this is a lot of data to assimilate. Is there some way to think about it
differently?

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 111

This next interact is super-cool, because it combines the short, color-coded
format with the much less familiar material of powers.

0 2 4 6 8 10

1

3

5

7

9

1

3

5

7

9

Figure 8.2.1 Colored table of powers modulo n = 11

import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator , FuncFormatter
@interact
def power_table_plot(p=(11, prime_range (100) [2:])):

mycmap = plt.get_cmap(' gist_earth ' ,p-1)
myloc = IndexLocator(floor(p/5) ,.5)
myform = FuncFormatter(lambda x,y: int(x+1))
cbaropts = { ' ticks ' :myloc , ' drawedges ' :True ,

' boundaries ' :srange (.5,p+.5,1)}
P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in range(1,p)

for b in srange(p)]), cmap=mycmap ,colorbar=True ,
colorbar_options=cbaropts , ticks=[myloc ,myloc],
tick_formatter =[None ,myform])

show(P,figsize =6)

The default coloring needs some explanation, as they are not the same as in
the previous example. The a row and b column gives the color corresponding
to ab (mod p), where the colors are given by the colorbar on the right. From
this we see that the first (0th) column is all the color for a0 = 1, and the second
(1th) column gives the colors of each element a1 = a of Zp. For instance, since
34 ≡ 4 (mod 7) in the initial example, it has the color of the color corresponding
to 4.

(As far as I know, this representation first appears in Wagon and Bressoud’s
excellent computational number theory text [E.4.7]. The PascGalois project
has related visualizations.)

Sage note 8.2.2 Colorful options. If you don’t like the colors, you can
change the word in the quotes in the command mycmap = plt.get_cmap(...)
(currently 'gist_earth'); for instance, 'gray' gives a grayscale plot, which is
most appropriate for certain vision-impaired users. Some others you could try
are 'Oranges' or 'hsv' or … Well, see the next Sage cell if you really want to
know all of them!

for c in colormaps:
print(c)

http://www.pascgalois.org/

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 112

Blues
BrBG
BuGn
...
tab20b_r
tab20c_r

What color patterns can you see here? To say it another way, what potential
theorems do you see? (Again, do you see any that we already have discussed?)

In a classroom or self-study situation, I strongly recommend thinking about
this until coming up with some nice potential theorem regarding whether there
are any patterns in ab (mod p) that hold for all p or all a or all b, or some-
thing.

8.3 Essential Group Facts for Number Theory
Many of the bookkeeping issues which arise in number theory can be made
much easier by changing our language and introducing a small amount of ab-
straction. That abstraction is the concept of group. These notes will introduce
this concept in the most basic way possible, with only the minimum needed to
translate many difficult arguments into simpler language.

8.3.1 Step-by-step notions to the definition
We will take an approach that starts with the familiar and adds properties
until we reach our goal.

8.3.1.1 Sets

Sets are just what you think. They are collections of (mathematical) stuff.
In our uses of groups, we will exclusively be concerned with sets that are

collections of numbers, like P , the set of primes, and Z, the set of integers,
or Zn, the set of equivalence classes of integers modulo n. But it’s helpful to
think more generally.

8.3.1.2 Binary operations

A binary operation is a set with a multiplication table on it. That’s it.
Usually books call it ∗ or something like that, and then define a binary

operation on the set S to be a function from S × S to S.

• Usually this would be (say) normal addition or multiplication on numbers,
though it could also be subtraction.

• On the other hand, if S is the set of continuous functions on R, the
operation could be composition of functions, f ◦ g.

Notice that if our set is Q and our operation is division, we don’t have a
full table. The essential thing is that it’s a set with a table or rule for the
operation.

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 113

8.3.1.3 Closed operations

A binary operation is called closed if you don’t get anything outside the set
with your operation. This is important because it’s easy to break this.

• If you are adding two positive numbers, for instance, you always get a
new positive number.

• Is this still true if you subtract two positive numbers from each other?

• This also can happen with division, right? You have to look at Q, and
then you have to be careful because of the previous point.

• For a more complicated example, let S be the set of 2x2 matrices with
determinant 1; if you add two of them, your determinant might change
a lot.

• On the other hand, if you multiply two such matrices, you’re golden; the
determinant will still be 1.

8.3.1.4 Associative operations

An operation is associative if it doesn’t matter how you put parentheses in.
This is not an algebra course, so I won’t harp on this – everything we do

will satisfy it in obvious ways. But it’s worth noting that exponentiation is not
associative, so it’s not a trivial condition.
Example 8.3.1

2(2
3) = 28 = 256 but (22)3 = 43 = 64.

□

8.3.1.5 Identity

Much more important is whether your operation has an identity element.
You have seen this many times before in addition and multiplication.

a+ 0 = a = 0 + a and a · 1 = a = 1 · a.

When we turn this into abstract math, we say that an identity for a general
operation ∗ on a set S is an element, conveniently called e, which has the very
nice property that if you ∗ by it, you get the same thing back.

• That is, e ∗ a = a = a ∗ e for any a ∈ S.

• The identity matrix under matrix multiplication is another example.

• By the way, if there is an identity, there’s only one, which is sometimes
useful to know.

Example 8.3.2 Here is a more interesting example. Let your set be the set of
all rotations of a square which leave it facing the same way. That is, rotation by
90 degrees to the left, 180 degrees right, etc. (Think of a child’s block sorter.)

• The binary operation combining two (possibly different) rotations would
be to first do one rotation, and then the other one.

• Then an identity element e of this is just to leave the block alone!

This is sort of weird at first, but an extremely important example. □

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 114

8.3.1.6 Inverses

Almost there! Let’s keep thinking about that last example. Say I turn the
block 90 degrees to the right, then I realize I made a horrible mistake and
want to get back to the original position. Is there anything I can do, short of
buying a new square block?

Of course there is! Just turn it back 90 degrees to the left. So if I call the
first move 90R and the second one 90L, I can say that 90R ∗ 90L = e, since
the net effect is the same.

Generalizing this, if a is an element of your set S and there is another
element a′ such that

a ∗ a′ = e = a′ ∗ a,
then we call a′ an inverse of a.

• The absolute prototype of this is negative numbers. That is, for any
number n, if you add −n, then you get zero!

• The same thing happens a lot; for matrix multiplication, the inverse
matrix would be the operation inverse.

• For rational numbers (not including zero, of course), the reciprocal would
be the multiplicative inverse.

But notice that in both of these cases not every mathematical object has an
inverse with respect to every operation! A matrix with determinant zero does
not have an inverse matrix. In Q under multiplication, zero has no inverse.

8.3.2 What is a group?
Definition 8.3.3 Group. If a set and binary operation on that set is closed
and associative with identity and inverses for every element, we call that set a
group. ♢
Example 8.3.4 The most excellent examples of this are the following:

• R,Q,Z under addition with zero as identity

• The sets R and Q except zero (written as R\{0} and Q\{0}, respectively)
under multiplication with 1 as identity

• Zn under addition with [0] as identity. For example, in Z3, every element
has an inverse; [0]′ = [0], [1]′ = [2], and [2]′ = [1], because [0] + [0] =
[0] = [1] + [2].

□
Remark 8.3.5 If we are talking about any old group, we just call it G.

Also, after a while, it gets boring to always type ∗, and instead we just use
normal multiplication notation, writing x ∗ y = xy.
Example 8.3.6 A preview of what’s to come. We noted that Q \ {0}
is a group under multiplication, with 1 as the identity. Is there something
analogous for Zn?

Indeed there is, and we will see it soon. But notice that things will be more
complicated.

• For instance, in Z3, both [1] and [2] have multiplicative inverses (in fact,
themselves), so Z3 \ {[0]} is a (multiplicative) group, just like Q \ {0}.

• But in Z4, both [0] and [2] do not have multiplicative inverses, so it would
not make sense to say that Z4 \ {[0]} is a group.

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 115

That extra complication is one reason we need to think hard about these things!
□

8.3.3 Properties of groups we will need
The reason for introducing groups in a course which does not presume previous
exposure to algebra is that is just makes things simpler. We will start here
with familiar facts in a new guise, and then work our way to some facts which
will prove invaluable.

8.3.3.1 Solutions to equations

Since a group has inverses, we can solve very simple ‘linear’ equations in them.
This is stated as

a ∗ x = b is solved by x = a′ ∗ b (= a−1 ∗ b).

For instance, over R, a+ x = b always has a solution for any real numbers
a, b. We just take x = (−a)+b, where −a is the inverse for the group operation
of a (as mentioned above).

More important to us is the fact that in Zn, there are solutions. The
operation is still +, so we have a + x ≡ b mod(n) solved by x ≡ ((−a) + b)
mod(n).

This doesn’t seem much more interesting, but you will see soon why this
concept is so important.

8.3.3.2 Inverses of product

We can give a formula of sorts for the inverse in any group; see Exercise 8.4.8.

Fact 8.3.7 The inverse of ab is b−1a−1.
Proof. First, b−1 and a−1 exist, so (b−1)(a−1) exists. Next, if ab · x = 1, then

(b−1a−1)(ab)x = (b−1a−1) · 1 = b−1a−1;

we use associativity to simplify

(b−1a−1)(ab)x = (b−1)(a−1a)bx = (b−1 · 1 · b)x = 1 · x = x,

which gives x = b−1a−1.
(Keep in mind that in our main example ab ·x ≡ 1 is the notion of equality

we are using in finding and using these inverses.) ■

8.3.3.3 Finite groups

A group can have finitely many or infinitely many elements. Most of our normal
ones, such as Z,Q,R, matrix groups, are infinite.

But the ones we’ll use in this text will mostly have finitely many elements.
This is because we are counting each equivalence class, like [0], [1], [2] in (mod
3) arithmetic, as just one element.

A group with finitely many elements is called, unimaginatively, a finite
group.

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 116

8.3.3.4 Order of a group

Definition 8.3.8 The number of elements of a finite group is called the order
of the group.

For any old group G, we use |G| as notation for its order. ♢
Example 8.3.9 So if we are talking about Z3, it has 3 elements, so it has
order 3 (unsurprisingly) and we write |Z3| = 3. □

8.3.3.5 Order of an element

This is a tougher concept. Suppose you have some element, such as [1] ∈ Z3. If
you just keep adding [1] to itself, eventually you get back to zero, right? After
all,

[1] + [1] + [1] ≡ [0] (mod 3).

Take a finite group G with order |G| = n. We will bring the concept of
order to elements, not just groups.

First, list all elements of the group:

{e = x1, x2, . . . , xn}

Now let’s take an element x, and start operating on it by itself. What I mean
by this is listing x, x∗x = x2, x3, (Don’t be confused by the power notation
alternating with addition notation; Zn has two operations, so we keep + there,
but in a general group we use multiplicative notation.)

Here is the key. There are only finitely many elements in the group, so by
xn+1 at the latest, at least two of these ‘powers’ will be equal. (This argument,
that if you fit n+ 1 objects into n slots then there must be a repeat, is called
the pigeonhole principle, among other names.)

To be concrete, let’s say xs = xt, with s < t. Now we can do a very curious
thing. Take the inverse of x, written x−1. If we multiply it together s times,
we get (x−1)s which we can write x−s. Then multiply xs = xt by x−s;

x−sxs = x−sxt, or e = xt−s.

We are almost there! This means there is a positive integer k such that
xk = e. By the Well-Ordering Principle (Axiom 1.2.1), there is a least such
integer. This integer, associated to a specific element of the group, is what we
have been aiming for.

Definition 8.3.10 For a group element x ∈ G, the least (positive) integer k
such that xk = e is called the order of the element x. We write it |x|, by
analogy with the order of a group. ♢
Example 8.3.11 For example, in Z6, look at the element [4]. We see that

[4] + [4] + [4] + [4] + [4] + [4] ≡ [0] mod(6), but [4] + [4] + [4] ≡ [0] mod(6) too.

So while 6 might look like a possibility for the order of [4], we see that clearly
3 is actually the smallest (positive) number of times to add [4] to get [0]. So
|[4]| = 3. □

8.3.3.6 The connection

Here comes the coolest part, where we connect the two concepts of order. We
will definitely use Theorem 8.3.12 in proving various theorems.

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 117

Take a look at any old element x ∈ G. If x has order m, then there are (at
least) m distinct elements of G,

{x, x2, x3, . . . , xm−1, e}.

Now take any other element not in this subset, y, and look at the set

{xy, x2y, x3y, . . . , xm−1y, ey = y} ;

Note that these are also all distinct elements of the group. Are any of them
also included in the first set (powers of x)?

Suppose that some xsy is the same as some xt. That would mean xsy = xt,
so multiplying by x−t we get

xs−ty = e

That would mean y = xt−s, a contradiction since we said y isn’t a power of x.
Hence the new elements form a disjoint set from the previous set.

Now find an element z not in either set, and do the same thing. Then the
set

{xz, x2z, x3z, . . . , xm−1z, ez = z}
will be disjoint from the other sets, and all its elements will still be distinct.
Since G is finite, eventually doing this process again and again will fill out G
completely.
Theorem 8.3.12 Lagrange’s Theorem on Group Order. The order of
any element x of G divides the order of the group itself. We can write this as

|x| | |G|
Proof. Examine the above argument. We have a number of subsets of G, all of
size m, which exactly fill out G, which has size n. This forces that m divides
n as integers. ■
Example 8.3.13 For example, above we saw that [4] ∈ Z6 has order 3, and
of course Z6 itself has order 6. You can check for yourself that 3 divides 6, so
that |[4]| | |Z6|. □

We already had a theorem with Lagrange’s name, but that doesn’t usually
stop whoever names theorems from giving them names. Lagrange was one of
the most important mathematicians of the eighteenth century; see Historical
remark 16.3.7 for more about him.

8.3.3.7 Cyclic groups

There is another, simpler concept to keep in mind.
• If G has order |G| = n and there is some element x ∈ G such that x

has order |x| = n as well, then it must go through all the possible other
elements of G before hitting xn = e.

• This element, whose powers run through all n elements of G, is called a
generator of the group.

• Any group that has a generator (again, an element whose powers hit all
elements of the group) is called a cyclic group.

It is pretty clear, I hope, that Zn is a cyclic group with generator [1], for
any n. But not every group is cyclic! See Exercises 8.4.9 and 8.4.10.

There can be more than one generator; going back to Z6, note that

[1] + [1] + [1] + [1] + [1] + [1] ≡ [0] and [5] + [5] + [5] + [5] + [5] + [5] ≡ [0].

Other elements are in between (e.g. [2] ≡ [1] + [1] ≡ [5] + [5] + [5] + [5]).

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 118

8.3.3.8 Abelian groups

This won’t come up too much, but it is important to note that most of the
groups we will encounter in this course have one additional special property.

Namely, it doesn’t matter what order you do the operation in. (Such an
operation is called commutative.)

• For instance, clearly (in any Zn) it is true that [1] + [2] = [2] + [1], or
really for any elements at all.

• Not all groups have this property; you may recall that multiplying ma-
trices in two different orders may yield two different answers.

• If your group has this property, then it is clear that Fact 8.3.7 reduces
to (ab)−1 = a−1b−1.

Any group which has this property, that a ∗ b = b ∗ a for all a, b ∈ G, is called
an Abelian group. Just keep it in mind!

8.4 Exercises
1. Write out the addition table for Z11 completely, by hand.
2. Write out the multiplication table for Z11 completely, by hand.
3. Find some conjecture/pattern to state about multiplication tables, based

on any of the interacts in this chapter.
4. Find some conjecture/pattern to state about values of an (mod p), for p

prime and 0 ≤ n < p you discovered using the interact in Subsection 8.2.1.
This could be anything profounder than

a0 ≡ 1 (mod p) or 1n ≡ 1 (mod p)

for all prime p and for all n, but should at least be some pattern you
tested for a number of values.

5. Give an example of a non-closed binary operation.
6. In Example 8.3.2, what is the order of the group element which is rotation

by ninety degrees to the left? What is the order of rotation by 180 degrees?
7. Consider a similar setup to Example 8.3.2, but with a regular hexagon. If

R is rotation of the hexagon by sixty degrees to the right, verbally describe
R−1. How would you describe R3 verbally? What is the order of R?

8. Without using other resources, explain why Fact 8.3.7 is known as the
“socks and shoes” property.

9. Give an informal argument that Q is not cyclic.
10. Give an example of a cyclic group which is not finite.
11. (Only if you have some experience with matrices.) Find two 2×2 matrices

A and B which have non-zero determinant such that A · B ̸= B · A.
Conclude that the group of 2 × 2 matrices with non-zero determinant is
not Abelian. (It is a group, because all such matrices have an inverse
matrix.)

Summary: The Group of Integers Modulo n

In this chapter, it is high time to introduce a few algebraic innovations that
allow a unified presentation of our ideas about modular arithmetic.

1. Most importantly, we officially define Integers Modulo n and reconfigure

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 119

what an inverse is in Fact 8.1.5. We not only make tables of operations,
but in Subsection 8.1.2 we start visualizing them!

2. We will see later that the visualization of powers in Figure 8.2.1 is ex-
tremely powerful.

3. In the final section, we build our way up to the definition of a group in
Definition 8.3.3, so that in the future we can use the important ideas of
the Order of an element of a group and Lagrange’s Theorem on Group
Order.

The Exercises give a chance to try some algebraic theory we otherwise avoid
in this course.

CHAPTER 8. THE GROUP OF INTEGERS MODULO N 120

Chapter 9

The Group of Units and Euler’s
Function

9.1 Groups and Number Systems
There is a lot that the integers modulo n can teach us. We can approach new
horizons by rethinking the problems we have just studied.

9.1.1 Solving linear equations – again
What is a group, again? As we saw in Section 8.3, a group is any ‘number
system’ where we can solve linear equations.
Example 9.1.1 Here are some familiar group examples.

• The integers modulo n, Zn, is a group under addition. As an example,
3 + x ≡ 2 (mod 4) has a solution.
Namely, we use the (group) inverse, −3 ≡ 1, to solve it, so that

x ≡ 2 + (−3) ≡ 2 + 1 ≡ 3 (mod 4)

is the solution.

• Similarly, we can solve equations like 2
3 ·x = 5 over the rational numbers.

Why? Because 2
3 has a (group) inverse in the group Q \ {0} (under

multiplication), namely
(
2
3

)−1
= 3

2 , and

x = 5 · 3
2

does indeed solve this equation.

□
Let us use this idea to help us with solving congruences modulo n. Using

the above framework, I should be able to solve

43x ≡ 2 (mod 997)

by using something like a = 43−1, the notation we saw before.
That would get us

x ≡ 2a ≡ 2 · 43−1 (mod 997).

121

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 122

Let’s try this in Sage.

a=mod (43 ,997)
x=2*a^-1
print("a␣is␣%s"%a)
print("a^-1␣is␣%s"%a^-1)
print("2a^-1␣is␣%s"%x)

a is 43
a^-1 is 371
2a^-1 is 742

This checks out, of course:

mod (43*742 ,997)

2

We can similarly try to solve with a composite modulus:

53y ≡ 29 (mod 100)

using b = 53−1, so that

y ≡ 29 · b ≡ 29 · 53−1 (mod 100).

y=29* mod (53 ,100)^-1
print("y␣is␣%s"%y)

y is 93

y=29* mod (53 ,100)^-1
53*y

29

9.1.2 A new group
9.1.2.1 The group of units

So solving this should often be possible. But it can’t always work, otherwise I
could use it to solve something like

52y ≡ 29 (mod 100)

and we already know this does not have a solution. We can’t just use this idea
willy-nilly; indeed, there isn’t a 52−1 in this case.

Hence we introduce a new group – and it’s even a simple set to define.
Definition 9.1.2 We let Un, the group of units modulo n, be the set of
equivalence classes [a] modulo n such that gcd(a, n) = 1. ♢

This will be the set where we are allowed to do inverses, and hence to solve
things easily. Recall Definition 5.3.4 and Question 5.3.6.
Example 9.1.3 Before going on, figure out for yourself the elements of U5 and
U8. □

Now, naming something doesn’t guarantee it’s useful, or that it performs
as claimed! So we need to check some things from Definition 8.3.3.

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 123

Proposition 9.1.4 The group of units is really a group.
Proof. First, this is certainly a set. Since we earlier proved that any two
elements of a residue class have the same gcd with a modulus, the definition
makes sense, and we know how to check if something is in it.

Next, the set is associative with respect to multiplication, because it’s really
the same as multiplication over Z. The identity element [1] is likewise inher-
ited from Z. We have inverses because we only allow elements that will have
solutions to ax ≡ 1 according to Proposition 5.1.1; see also Question 5.3.6 and
Exercise 5.6.5.

Finally, we do need to check whether the multiplication is closed on this
set. After all, it’s not obvious that if ax ≡ 1 and bx ≡ 1 have solutions, then
so does (ab)x ≡ 1! But if gcd(a, n) and gcd(b, n) are both 1, then ab will also
be coprime to n, which is all that is needed1. All in all, that means Un really
and truly is a group. ■

9.1.2.2 More facts and examples

The terminology units makes sense too. If you are in a number system with
addition and multiplication, then a unit is an element that has a multiplicative
inverse.
Example 9.1.5 Here are some examples of units.

• In the integers, ±1 are the units.

• More unusual is the set of complex numbers (!), which are all units (except
zero). In fact, the inverse of r (cos(θ) + i sin(θ)) is

1

r
(cos(−θ) + i sin(−θ)) .

• And Un is the set of all the integers modulo n that have multiplicative
inverses. By our previous investigations, we know this is when ax ≡ 1
(mod n) has a solution. Since multiplication is the operation, there are
inverses!

□
Naturally, it can take a while to list all the elements of Un, but it’s worth

doing. Try it for n = 10, n = 11, and n = 12 by hand (see Exercise 9.6.1).
Sage has commands to list the group of units and give the order of the

group. Try them interactively here, or individually below.

@interact
def _(n=22):

pretty_print(html("The␣units␣of␣$\\ mathbb{Z}_{%s}$␣
are"%n))

pretty_print(html(
Integers(n).list_of_elements_of_multiplicative_group ())
)

pretty_print(html("There␣are␣$%s$␣of␣
them."%Integers(n).unit_group_order ()))

Sage note 9.1.6 Reminder to try things out. Remember, you can use
these yourself by using these commands, or by cutting and pasting them in
a Sage or Jupyter notebook, CoCalc, or command line interface. They are

1Try proving this two ways, using tools in Chapter 3 and then those in Chapter 6.

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 124

tedious to type, though!

Integers (50).list_of_elements_of_multiplicative_group ()

[1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37,
39, 41, 43, 47, 49]

Integers (50).unit_group_order ()

20

9.2 The Euler Phi Function
We give the size of the group of units (mod n) a special name.

Definition 9.2.1 We give the order of Un the name ϕ(n). That is, by defini-
tion,

ϕ(n) = |Un|.

♢
This is the so-called Euler ϕ function. It can also be written phi, it is

pronounced ‘fee’, and it’s occasionally notated φ just for fun. We’ll meet Euler
many times in this text; see Historical remark 13.0.3.

Remark 9.2.2 Since modulo one everything is one, we say U1 = {[1]} and
ϕ(1) = 1 since gcd(1, 1) = 1, despite the fact that also everything is zero. If
this bothers you, you are nearly at the algebraic notion of a field mentioned
toward the end of Section 8.1, and may wish to read some discussions of the
field with one element.

One of the most fun things to do with basic number theory is to explore
new concepts with pencil and paper – because it really is tractable.

Question 9.2.3 Do you see any patterns on the value of ϕ(n)? □

9.2.1 Euler’s theorem
So far this is a relatively abstract concept. What follows is not abstract at all,
but very, very useful! Let’s follow the following argument to see what we can
find out about ϕ(n).

Recall the notion of the order of an element (Definition 8.3.10). So any
random element [a] ∈ Un (for some n) has an order.

Example 9.2.4 For instance, the order of [2] in U7 is 3, because [2]1 and [2]2

are not 1, but [2]3 ≡ 8 ≡ 1 (mod 7). □
This means we can apply the things we learned about orders, in particular

Theorem 8.3.12 of Lagrange. It stated that the order of any element of a finite
group divides the order of the group itself.

Think about what this implies for orders in |Un|. First, |a| divides |Un|.
(For instance, in Example 9.2.4, 3 divides 6.) That can be rewritten as

|a| | ϕ(n), or ϕ(n) = k|a|

for some positive integer k.
Finally, let’s apply this fact to powers of a.

aϕ(n) = ak|a| = (a|a|)k ≡ 1k ≡ 1 (mod n)

https://ncatlab.org/nlab/show/field+with+one+element
https://ncatlab.org/nlab/show/field+with+one+element

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 125

This is very interesting; without it, all we would know is that a|a| ≡ 1 because
that’s the definition of what ‘order’ means. With it, we have proved one of the
many celebrated theorems of Leonhard Euler:

Theorem 9.2.5 Euler’s Theorem. If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod
n).
Proof. See the preceding paragraphs. ■

Try verifying Euler’s Theorem for n = 12 and n = 11 for some simple a
such as a = 3 or a = 5. Can you see how to recover Fermat’s Little Theorem
from Euler’s Theorem, as a special case? (See Exercise 9.6.2.)

9.3 Using Euler’s Theorem
Euler’s Theorem has many uses, especially theoretical ones we will use through-
out. We will begin with its use in some computations we are already familiar
with; see Section 10.5 for some more interesting computational uses.

9.3.1 Inverses
We can use it to compute inverses mod (n), with just a little cleverness. If

aϕ(n) ≡ 1 (mod n),

then certainly multiplying both sides by a−1 yields

aϕ(n)−1 ≡ a−1 (mod n).

We can check this using Sage.

@interact
def _(a=3,n=10):

a=mod(a,n)
try:

b = a^-1
pretty_print(html(r"$%s^{-1}$␣is␣$%s$␣and␣

$%s^{\phi(%s) -1}=%s^{%s-1}$␣is␣also␣$%s$"%(a, b,
a, n, a, euler_phi(n), a^(euler_phi(n) -1))))

except:
pretty_print(html("Don ' t␣forget␣to␣pick␣an␣a␣that␣

actually␣has␣an␣inverse␣modulo␣n!"))

Example 9.3.1 Let’s pick a congruence we wanted to solve earlier, like

53y ≡ 29 (mod 100)

and try to solve it this way. Instead of all the stuff we did before, we could
just multiply both sides by the inverse of 53 in this form.

53y ≡ 29 (mod 100)

53ϕ(100)−1 · 53y ≡ 53ϕ(100)−1 · 29 (mod 100)

Now using Theorem 9.2.5, we get

1 · y ≡ 29 · 53ϕ(100)−1 (mod 100).

One could conceivably do this power by hand using our tricks for powers;
using a computer, it would look like the following in Sage.

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 126

mod (29*53^(euler_phi (100) -1) ,100)

93

This answer jells with our previous calculation. Better, I didn’t have to
solve a different linear congruence in order to solve my original one; I just had
to have a way to do multiplication mod (n). □
Sage note 9.3.2 Euler phi in Sage. Notice that Sage has a command to get
the Euler phi function, namely euler_phi(n). This doesn’t have the direct con-
nection to the group, but is easier to use than Integers(n).unit_group_order().

9.3.2 Using Euler’s theorem with the CRT
We can use this to do Chinese Remainder Theorem systems much more easily,
as long as we have access to ϕ.

Remember the algorithm for the CRT, where we tried to solve systems like
this:

• x ≡ a1 (mod n1)

• x ≡ a2 (mod n2)

• · · ·

There, we had to calculate many solutions to congruences of the form

N

ni
x ≡ 1 (mod ni).

(This was to get the di numbers.) Our new information means that this inverse
is just (

N

ni

)−1

≡
(
N

ni

)ϕ(ni)−1

,

since we are looking at a congruence modulo ni.
So the things in the final solution which looked like

ai ·
N

ni
·
(
N

ni

)−1

can be thought of as

ai ·
N

ni
·
(
N

ni

)ϕ(ni)−1

= ai

(
N

ni

)ϕ(ni)

,

which is much cooler and simpler! So the answer to the general system is just

x ≡
k∑

i=1

ai

(N
ni

)ϕ(ni)

(mod N).

a_1 ,a_2 ,a_3 = 1,2,3
n_1 ,n_2 ,n_3 = 5,6,7
N=n_1*n_2*n_3
print(N)

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 127

210

print(euler_phi(n_1), euler_phi(n_2), euler_phi(n_3))
print(mod(a_1*(N/n_1)^(euler_phi(n_1)) +

a_2*(N/n_2)^(euler_phi(n_2)) +
a_3*(N/n_3)^(euler_phi(n_3)),N))

4 2 6
206

Sage note 9.3.3 More complex list comprehension. It’s possible to do
the previous work more concisely, no matter how many congruences you have,
if you know a little Python and recall from Sage note 4.6.2 the little something
called a ‘list comprehension’.

a_1 ,a_2 ,a_3 = 1,2,3
n_1 ,n_2 ,n_3 = 5,6,7
N=n_1*n_2*n_3
sum([mod(a*(N/n)^(euler_phi(n)),N) for (a,n) in

[(a_1 ,n_1),(a_2 ,n_2),(a_3 ,n_3)]])

206

But that’s not necessary for our purposes.
Example 9.3.4 We can do this one step even better. Take a huge system like

• 3x ≡ 7 (mod 10)

• 2x ≡ 5 (mod 9)

• 4x ≡ 1 (mod 7)
Can we find solutions for this using the same mechanism? Yes, and without
too much difficulty now.

Since one can solve bx ≡ c (mod n) with

x ≡ bϕ(n)−1 · c,

any likely system of congruences with coprime moduli

bix ≡ ci (mod ni)

where N is the product of the moduli could be solved by

x ≡
k∑

i=1

(
b
ϕ(ni)−1
i ci

)(N

ni

)ϕ(ni)

(mod N).

Let’s use this to solve this system; we print a few intermediate steps.

c_1 ,c_2 ,c_3 = 7,5,1
m_1 ,m_2 ,m_3 = 10,9,7
M=m_1*m_2*m_3
b_1 ,b_2 ,b_3 = mod(3,M),mod(2,M),mod(4,M)
d_1 ,d_2 ,d_3 = mod(M/m_1 ,M),mod(M/m_2 ,M),mod(M/m_3 ,M)
print(b_1 ,b_2 ,b_3)
print(d_1 ,d_2 ,d_3)
print(b_1^(euler_phi(m_1) -1)*c_1*d_1^(euler_phi(m_1)) +

b_2^(euler_phi(m_2) -1)*c_2*d_2^(euler_phi(m_2)) +
b_3^(euler_phi(m_3) -1)*c_3*d_3^(euler_phi(m_3)))

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 128

3 2 4
63 70 90
79

Notice that we make as much stuff modulo M to begin with as possible.
Even for bigger numbers, asking Sage to first make things modular is a big
help – it takes essentially no time! □
Example 9.3.5 We can demonstrate this with much larger examples, picking
essentially random large primes mi to compute with.

• 3x ≡ 7 (mod m1)

• 2x ≡ 5 (mod m2)

• 4x ≡ 1 (mod m3)

In the first one, we choose primes in the ten thousands.

c_1 ,c_2 ,c_3 = 7,5,1
m_1 ,m_2 ,m_3 = random_prime (10000) , random_prime (20000) ,

random_prime (30000)
M=m_1*m_2*m_3
b_1 ,b_2 ,b_3 = mod(3,M),mod(2,M),mod(4,M)
d_1 ,d_2 ,d_3 = mod(M/m_1 ,M),mod(M/m_2 ,M),mod(M/m_3 ,M)
print("Our␣primes␣are␣%s,␣%s,␣and␣%s"%(m_1 ,m_2 ,m_3))
print(b_1^(euler_phi(m_1) -1)*c_1*d_1^(euler_phi(m_1)) +

b_2^(euler_phi(m_2) -1)*c_2*d_2^(euler_phi(m_2)) +
b_3^(euler_phi(m_3) -1)*c_3*d_3^(euler_phi(m_3)))

It’s worth trying to time this – recall that we can use %time for this in
notebooks, see Sage note 4.2.1. The second example uses primes in the millions
range.

c_1 ,c_2 ,c_3 = 7,5,1
m_1 ,m_2 ,m_3 = random_prime (10^8) , random_prime (2*10^8) ,

random_prime (3*10^8)
M=m_1*m_2*m_3
b_1 ,b_2 ,b_3 = mod(3,M),mod(2,M),mod(4,M)
d_1 ,d_2 ,d_3 = mod(M/m_1 ,M),mod(M/m_2 ,M),mod(M/m_3 ,M)
print("Our␣primes␣are␣%s,␣%s,␣and␣%s"%(m_1 ,m_2 ,m_3))
b_1^(euler_phi(m_1) -1)*c_1*d_1^(euler_phi(m_1)) +

b_2^(euler_phi(m_2) -1)*c_2*d_2^(euler_phi(m_2)) +
b_3^(euler_phi(m_3) -1)*c_3*d_3^(euler_phi(m_3))

□

9.4 Exploring Euler’s Function
One of the neatest things about ϕ(n), beyond it being quite useful for things we
are familiar with (congruences), is that it is a prototype for the many functions
there are in number theory. So we will look at it in a bit more depth.

Let’s get some more conjectures about values of ϕ(n). Finding patterns is
fun!

One pattern we saw is Theorem 9.2.5, that if gcd(a, n) = 1, then aϕ(n) ≡ 1
(mod n). But there are some other places one might look for patterns, now
that one has done some number theory. These are questions the Fundamental

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 129

Theorem of Arithmetic just begs us to ask, regarding a possible formula.
Question 9.4.1 One can ask:

• Given a prime p, is there a formula for ϕ(pe)?

• If m and n are coprime, is there a relation between ϕ(mn) and ϕ(m) and
ϕ(n)?

□
What happens in the latter case for n = 15 and m = 16? Can you do it by

hand?
There are a lot of other interesting questions one can ask about this function

which aren’t directly related to a formula.
Question 9.4.2 For instance, one can ask:

• When does ϕ(n) | n?

• When (if ever) does ϕ(m) | ϕ(n)? (See Exercise 9.6.18.)

• Given m, for how many integers n it is true that ϕ(n) = m?

• Are there infinitely many n for which ϕ(n) ends in zero? (See Exer-
cise 9.6.17.)

□
One can also ask questions about new, related functions. For instance, let

f(n) = ϕ(n)/n. Can you find a formula? Where is this function equal to
certain values, such as f(n) = 1/2? (See Exercise Group 9.6.14–16.)

Quite surprisingly, there is an additive result as well – try adding up∑
d|n

ϕ(d)

for small values of n to seek a pattern! (Try it interactively below.)

@interact
def _(n=range_slider (2,150,1,(2,20))):

top = n[1]
bottom = n[0]
cols = ((top -bottom)//10)+1
T = [cols*[' n ' ,r ' $\phi(n)$ ']]
list = [[i,euler_phi(i)] for i in range(n[0],n[1])]
list.extend ((10-(len(list)%10))*[' ' , ' '])
for k in range (10):

t = [item for j in range(cols) for item in
list[k+10*j]]

T.append(t)
pretty_print(html(table(T,header_row = True , frame =

True)))

Remark 9.4.3 Before moving on to some proofs in the next section, we highly
encourage all readers to explore many questions – perhaps using the interact
above. It’s simply not the same to just prove, and even less so to read a someone
else’s proof. To really understand these (or other) things in mathematics, one
must get a feel for them “by hand”.

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 130

9.5 Proofs and Reasons
In this text, we try to strike a balance between exploration and proof. The
point is that number theory is both of these things. Exploration is wonderful,
but we will see a number of times where we really do need the proof to avoid
error. Nonetheless, do not start this section before really trying things!

In a good proof, the techniques will not just prove that things are true, but
lend insight into why they are true. The proofs here have this trait.

9.5.1 Computing prime powers
With some effort above, you should have seen a pattern for ϕ(pe). Let’s prove
this.
Fact 9.5.1

ϕ(pe) = pe − pe−1 =

[
1− 1

p

]
pe

Proof. What we want is the number of positive numbers (!) coprime to pe and
less than pe.

The most important point is that any number which is not coprime to
pe must share a prime factor with it, which must be p. Likewise, any number
divisible by p is not coprime to pe, so this is a necessary and sufficient condition.

Now we just need to count these numbers. But all the numbers less than
or equal to pe which have a factor of p are just the multiples of p, which occur
every pth element. Since pe itself is the pe−1th such multiple, there are exactly
pe−1 such integers not coprime to pe.

Subtract; there are
pe − pe−1

elements which are coprime. ■

9.5.2 Multiplicativity
The most interesting proof is that of the following fact2 about ϕ applied to
certain products. Later (Definition 18.1.2) we will see this has proved that ϕ
is multiplicative.

Fact 9.5.2 If gcd(m,n) = 1, then ϕ(mn) = ϕ(m) · ϕ(n).
Proof. Take the integers from 1 to mn and arrange them in an array like so –
n rows, m columns:

1 2 3 . . . m

m+ 1 m+ 2 m+ 3 . . . 2m
...

...
...

(n− 1)m+ 1 (n− 1)m+ 2 (n− 1)m+ 3 . . . nm

Notice that only some of the columns contain elements of Um, namely,
the columns with km + ℓ where gcd(ℓ,m) = 1. The others necessarily share
nontrivial factors with m, so we focus on the ϕ(m) columns like this where all
elements are coprime to m.

Now within each such column, I claim there are all possible classes in Zn.
Why?

2We use a standard proof such as in [E.2.4] or [E.2.1]; it is also possible to use Fact 9.5.4
and Proposition 23.4.11 as in [E.2.13] or [E.5.1], but for this particular function this strategy
seems more illuminating.

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 131

• Suppose that two elements of the ℓ column are the same equivalence class.
Then km+ ℓ ≡ k′m+ ℓ (mod n).

• In that case we cancel ℓ to get km ≡ k′m (modulo n as always), and we
can also cancel m, since we already know it is coprime to n. That leads
to k ≡ k′. (See also Section 9.7.)

In particular, each class is only represented once in each column.
That means that each relevant column has exactly ϕ(n) elements in it which

are coprime to n (though which rows these elements are in will depend upon
the column). In total we have ϕ(m)ϕ(n) of them! ■
Example 9.5.3 It can be easier to see with an example, say n = 15. Try the
following interact if you are online. The elements that are units modulo mn
are marked with exclamation points.

@interact
def _(m=(5 ,[2..10]) ,n=(3 ,[2..10])):

T = [[' $[%s]$ ' %i for i in [1..m]]]
for k in range(n):

t = []
for i in [1+k*m..m+k*m]:

if gcd(i,m*n)==1:
t.append(' $%s$␣! ' %i)

else:
t.append(' $%s$ ' %i)

T.append(t)
pretty_print(html(table(T, header_row=True , frame=True)))

Warning! If you pick an m and n which aren’t coprime, you’ll see how the
exclamation points don’t come in the right amounts or the right places for the
proof.

Again, since there are ϕ(m) columns with ϕ(n) elements in them, all co-
prime to both m and n, that means there are ϕ(m)ϕ(n) elements coprime to
mn, which proves what we wanted. □

9.5.3 Addition Formula
If you were diligent in your exploration, you will have discovered that∑

d|n

ϕ(d) = n.

We will prove this carefully, using subsets. We will gain insight of a combina-
torial nature – that there are two ways to count n, one of which is precisely
about finding numbers coprime to divisors of n.

To really understand this proof, it is best to follow along with n = 15.
Fact 9.5.4 ∑

d|n

ϕ(d) = n

Proof. In order to show this, we will take the set {1, 2, 3, . . . , n} and partition
it into subsets of numbers that each have the same gcd with n. If we can show
there are ϕ(d) numbers having each possible gcd, then that totals up to n.

Indeed, the only possibilities for greatest common divisor with n are the k
various divisors {di}ki=1 of n, so that each subset corresponds to one of these

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 132

divisors. Our subsets then look like

{a ∈ Z | 0 ≤ a ≤ n− 1, gcd(a, n) = 1 = d1}, . . .

{a ∈ Z | 0 ≤ a ≤ n− 1, gcd(a, n) = dk}.

Let’s look at these sets more carefully. Each one consists of numbers sharing
divisor di with n. So, if we wanted to, we could divide all the numbers in the
ith set

{a ∈ Z | 0 ≤ a ≤ n− 1, gcd(a, n) = di}

by their common factor di.
That new set will be the set of positive numbers b ≤ n

di
also coprime to n

di
.

So the size of the subset of numbers having gcd di with n is the same as the
number of these b coprime to n

di
.

More precisely, if we look at all the original subsets in question, they have
the same sizes as the following sets:

{b ∈ Z | 1 ≤ b ≤ n/1, gcd(b, n/1) = 1}, . . .

{b ∈ Z | 1 ≤ b ≤ n/n, gcd(b, n/n) = gcd(b, 1) = 1}.

These new sets {b ∈ Z | 1 ≤ b ≤ n/di, gcd(b, n/di) = 1} themselves are dif-
ferent from before (and possible not disjoint). But their sizes (or cardinalities)
are the same as before, and the old sets were all disjoint, so we conclude that

n = ϕ(n) + ϕ(n/d1) + ϕ(n/d2) + · · ·+ ϕ(1).

But the set of numbers n
di

for all divisors di of n is also the set of all divisors
of n, so we can rewrite the sum as desired!

n =
∑
d|n

ϕ(d)

■
Some readers will want to know this will be revisited in a far more sophis-

ticated way in Example 23.2.4.

9.5.4 Even more questions
There are lots of other interesting questions to tackle. Go back to the beginning
of Section 9.4 and look at some of the questions you didn’t yet explore. You
now have the tools you need to tackle such questions, and even to prove things
about them. The structure of ϕ is very regular!

9.6 Exercises
1. Compute the group of units Un for n = 10, 11, 12.
2. Prove Theorem 7.5.3 as a corollary of Theorem 9.2.5.
3. Prove that if p is prime, then ap ≡ a (mod p) for every integer a.
4. Use Exercise 9.6.3 to prove the polynomial x5−x+2 has no integer roots

(see Section 4.5 for context).
5. Formally prove that ϕ(p) = p − 1 for prime p, by deciding which [a] ∈

{[0], [1], [2], . . . , [p− 2], [p− 1]} have gcd(a, p) = 1.

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 133

6. Verify Euler’s Theorem by hand for n = 15 for all relevant a (note that
ϕ(15) = 8, and remember that a8 = ((a2)2)2 so we can use modulo reduc-
tion at each squaring).

7. Get the inverse of 29 modulo 31, 33, and 34 using Euler’s Theorem.
8. Evaluate without a calculator 1149 (mod 21) and 139112 (mod 27).
9. Solve the congruence 33x ≡ 29 (mod 127) and (mod 128).
10. Solve as many of the systems of congruences we already did Exercises 5.6

using the Chinese Remainder Theorem and Euler’s Theorem as you need
in order to understand how it works. Follow the models closely if neces-
sary.

11. Use the facts from Section 9.5 to create a general formula for ϕ(N) where
N =

∏k
i=1 p

ei
i . Then prove it by induction.

12. Conjecture and prove a necessary (or even sufficient) criterion for when
ϕ(n) is even. (Thanks to Jess Wild.)

13. Compute the ϕ function evaluated at 1492, 1776, and 2001.

Let f(n) = ϕ(n)/n.
14. Show that f(pk) = f(p) if p is prime.
15. Find the smallest n such that f(n) < 1/5.
16. Find all n such that f(n) = 1/2.

17. Prove whether there are infinitely many values of ϕ that end in zero.
18. Conjecture whether there are any relations between m and n that might

lead ϕ(m) to divide ϕ(n).
19. Look up the Carmichael conjecture about ϕ. What does it say, and what

is the current status3 of this conjecture?

9.7 The Conductor, solved
Do you remember A First Problem from the prologue? Somewhat surpris-
ingly, perhaps, the same train of ideas from the proof that ϕ is multiplicative
(Fact 9.5.2) can lead us finally to a nice proof of a formula for the conductor of
any pair of relatively prime integers m,n. And this will be a concrete formula
and proof we can actually understand!
Example 9.7.1 As before, let us take a concrete example, for m = 3, n = 5.
The first row indicates that each column is in one of the three equivalence
classes modulo 3. The ones which can be written mx+ ny are underlined.

[0] [1] [2]

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

Figure 9.7.2 Example of conductor analysis
In each column, look at the lowest number that can be represented. Do all of

these have something in common? You may also want to see any commonalities
3Be wary of commercials mentioning it; see the May 2019 Notices of the AMS!

https://www.ispot.tv/ad/doVG/drivetime-mathematician
http://www.ams.org/journals/notices/201905/rnoti-p759.pdf

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 134

in the numbers which cannot be represented.
To complement the table, try the following interact if you are online. This

time elements that do have a representation as mx + ny for nonnegative x, y
are indicated with exclamation points, by analogy with Example 9.5.3.

@interact
def _(m=(3 ,[2..10]) ,n=(5 ,[2..10])):

them = set([m*x+n*y for x in srange(n) for y in
srange(m)])

T = [[' <m>[%s]</m> ' %i for i in [0..m-1]]]
for k in range(n):

t = []
for i in [0+k*m..m-1+k*m]:

if i in them:
t.append(' %s␣! ' %i)

else:
t.append(' <m>%s</m> ' %i)

T.append(t)
pretty_print(html(table(T, header_row=True , frame=True)))

□
In each column – that is to say, in each residue class modulo m – the lowest

number that can be represented is a multiple of the other number n. We can
justify this. If mx+ny is representable, then since x, y ≥ 0 we can just subtract
off multiples of m until the number is just a multiple of n, which is obviously
representable.

Now let’s consider those multiples of n, but regarded modulo m (so, in
different columns). Those must all land in different residue classes modulo m,
presumably not in the same order as the usual order:

{[0], [n], [2n], [3n], . . . , [(m− 2)n], [(m− 1)n]} = {[0], [1], . . . , [m− 1]};

in the example above it was

{[0], [5], [10]} = {[0]3, [2]3, [1]3}.

To see this4, consider that if

kn ≡ k′n (mod m)

then we can just cancel n since gcd(m,n) = 1, and so

k ≡ k′ (mod m).

Significantly, all numbers in each residue class (modulo m) greater than kn are
also representable, since they are by definition a multiple of m greater than kn;
since all residue classes are represented, this means there is a greatest number
beyond which all are representable (the conductor).

So what is the conductor? All these multiples of n are representable, so
the largest numbers which are not representable in each class modulo m must
be kn−m. The biggest of those is clearly the one with the biggest k, which is
(m− 1)n, so

(m− 1)n−m

is the biggest number that can’t be represented.
4Showing this fact was actually part of our proof of Fermat’s Little Theorem, done in

Exercise 7.7.10, but for completeness we include it now.

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 135

Alternately, we can write

(m− 1)n−m+ 1 = mn− n−m+ 1 = (m− 1)(n− 1)

for the smallest number above which all are represented, and we have a formula
for the conductor.

We can summarize the entire discussion above as a proof of the first half of
a solution5 to Exercise 1.4.7.
Fact 9.7.3 Given m,n positive coprime integers, the conductor exists and is
(m − 1)(n − 1). Exactly half the integers less than the conductor cannot be
represented (and so half of them can be).
Proof. See above for the formula for the conductor. Then we want to show
that exactly half of the numbers below the conductor, including the (obviously)
representable 0, are in fact representable. We will do this by pairing up the
numbers from 0 to (m − 1)n − m in a way such that each pair adds up to
(m− 1)n−m. One of each pair will be representable, yielding the conclusion.
(That the numbers arrange in pairs follows from noting that since gcd(m,n) =
1, at least one of m,n is odd, so there are an even number of integers from 0
to (m− 1)n−m.)

Suppose that 0 ≤ z ≤ (m− 1)n−m is representable, so that

z = mx+ ny ,m, n > 0.

Then consider the ‘complement’

z′ = (m− 1)n−m− z = m(−1− x) + n(m− 1− y).

(In Example 9.7.1 we could consider z = 5 and z′ = 2, where x = 0, y = 1.)
We can bound the difference between m and y, or to be more precise m− 1

and y. If m− 1 ≤ y, then by construction z ≥ n(m− 1), but we are assuming
z is less than the conductor. So

m− 1 ≥ m− 1− y ≥ 0.

Certainly (−1− x) < 0, so it sure looks like z′ = m(−1− x) + n(m− 1− y) is
not representable.

Of course, it’s possible that z′ could be written in a representable way by
adding ms and subtracting ns. However, because m and n are coprime (think
back to our methods in Section 3.1), the minimum possible number of each of
these needed to do this would be n added ms, and m subtracted ns. Then we
could write

z′ = m(n− 1− x) + n(−1− y),

but this has the problem now that −1− y < 0.
Finally, we can invert this argument to ensure this is a one-to-one corre-

spondence between representable numbers and the rest. By Definition 2.4.1,
any positive number z′ which is not representable must still have a represen-
tation as mx + ny, just that either x or y (but not both) positive. Pick the
representation z′ = mx+ ny with the smallest positive x (which exists by Ax-
iom 1.2.1). Then by the argument in the previous paragraph, we know z′ can
also be written as m(x− n) + n(y +m) where now x− n < 0, since x was the
smallest positive option for the coefficient of m. Since z′ isn’t representable,
then y +m > 0.

5See [E.2.1, Exercise 1.25, solution] for an argument based on the geometric ideas we
explored in Section 3.3.

CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION 136

We can rewrite this as 0 < −y < m and 0 < x < n. Then the ‘complement’
can be represented as follows, where in the last line we add mn to the first
term and subtract it from the second term:

z = (m− 1)n−m− z′ = (m− 1)n−m− [mx+ ny]

= m(−1− x) + n(m− 1− y)

= m(−1− x) +mn+ n(m− 1− y)−mn

= m(n− 1− x) + n(−1− y).

Since x − n < 0, we know n > x which means n − x − 1 ≥ 0; since similarly
−y > 0 we know that −1 − y ≥ 0, so z really is representable, and we have
completed the proof. ■

Summary: The Group of Units and Euler’s Function
This chapter uses the groups viewpoint of Chapter 8 to introduce the important
topic of units.

1. After an example revisiting solving linear congruences, we introduce The
group of units in Definition 9.1.2. Yes, we check it is a group.

2. In Definition 9.2.1 the Euler ϕ function is introduced, along with the
incredibly important Euler’s Theorem about powers of a number modulo
n.

3. We then use Euler’s Theorem in Section 9.3 to do computations with
Inverses and the Chinese Remainder Theorem.

4. Explore! In Section 9.4 you are encouraged to think about not just a
formula for ϕ, but more sophisticated properties thereof.

5. In the last major section of this chapter, we then prove the most impor-
tant formulas.

• In Fact 9.5.1 we get a formula for ϕ (pe).
• In Fact 9.5.2 we see that ϕ is multiplicative, which should allow for

a general formula in Exercise 9.6.11.
• In Fact 9.5.4 there is a remarkable addition formula.

There are many computational Exercises, and we especially encourage trying
to explore enough to make conjectures like in Exercise 9.6.18. Finally, in Sec-
tion 9.7 we finally solve the questions originally raised in Question 1.1.1.

Chapter 10

Primitive Roots

There is deeper structure in the group of units than one might at first suspect.
This chapter explores that structure.

To start off, remember our search for patterns in the powers of a (mod n)?
That is, we looked for patterns in ab mod(n). One of the things we discovered
was Fermat’s Little Theorem, which was that the first and last columns of the
following graphic were the same color (representing one).

0 2 4 6 8 10

1

3

5

7

9

1

3

5

7

9

Figure 10.0.1 Colored table of powers modulo n = 11

There is lots left to discover, though. Can you find more by using the
following interact?

import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator , FuncFormatter
@interact
def power_table_plot(p=(13, prime_range (5,50))):

mycmap = plt.get_cmap(' gist_earth ' ,p-1)
myloc = IndexLocator(floor(p/5) ,.5)
myform = FuncFormatter(lambda x,y: int(x+1))
cbaropts = { ' ticks ' :myloc , ' drawedges ' :True ,

' boundaries ' :srange (.5,p+.5,1)}
P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in range(1,p)

for b in srange(p)]), cmap=mycmap , colorbar=True ,
colorbar_options=cbaropts , ticks=[myloc ,myloc],
tick_formatter =[None ,myform])

show(P,figsize =6)

137

CHAPTER 10. PRIMITIVE ROOTS 138

Sage note 10.0.2 Reminder for colormaps. Remember, to get a gray-
scale plot, just change the part with plt.get_cmap('gist_earth',...) to use
'gray', or some other colormap (see Sage note 8.2.2) of your choice.

Have you made the observation that sometimes we get all colors in a single
row? This means that (at least sometimes) ab (mod n) goes through every
single number when we do enough powers ab.

It turns out that this concept has a name, and is the last of the big concepts
of basic congruence number theory.

10.1 Primitive Roots

10.1.1 Definition
Definition 10.1.1 We say that a ∈ Un is a primitive root of n when ab runs
through all elements of Un for 1 ≤ b ≤ ϕ(n). ♢

Or, you can say the row corresponding to a primitive root hits all the
possible colors in the visualization! For composite n, this won’t mean all colors
per se, just all colors that represent units. (See the colorbar below.) So for
such moduli, we shrink the number of rows down for this visualization; it has
rows only for the elements of Un.

By the way, can you ‘see’ Euler’s Theorem in this graphic? (Don’t forget
that it generalizes Fermat’s Little Theorem.) Try exploring it in the interact
as well, which allows not just for prime moduli but composite ones as well.

0 1 2 3 4

1

3

7

9

1

2

3

4

5

6

7

8

9

Figure 10.1.2 Colored table of powers (of units) modulo n = 10

import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator , FuncFormatter
@interact
def power_table_plot(modulus =(10, srange (3,50))):

Zm = Integers(modulus)
ls = Zm.list_of_elements_of_multiplicative_group ()
mycmap = plt.get_cmap(' jet ' ,modulus -1)
myloccb = IndexLocator(ceil(modulus /10) ,.5)
myloc = myloccb
myform = FuncFormatter(lambda x,y:

ls[min(int(x),len(ls) -1)])
cbaropts = { ' ticks ' :myloccb , ' drawedges ' :True ,

' boundaries ' :srange (.5, modulus +.5,1)}
P=matrix_plot(matrix(euler_phi(modulus),

[mod(a,modulus)^b for a in range(1,modulus) for b in
srange(euler_phi(modulus)+1) if gcd(a,modulus)==1]),

CHAPTER 10. PRIMITIVE ROOTS 139

cmap=mycmap , colorbar=True ,
colorbar_options=cbaropts , ticks=[None ,myloc],
tick_formatter =[None ,myform])

show(P,figsize =6)

Sage note 10.1.3 Filtering list comprehensions. We are only looking
at units here. Where does this show up in the code? The syntax [x for y
in range(1,mod) if func(x)] takes list comprehensions to another level, by
‘filtering’. This allows us to remove from the list anything which doesn’t fit what
we want. In this case, we removed non-units; gcd(a,mod)==1 was required.

10.1.2 Two characterizations
Proposition 10.1.4 There are two equivalent ways to characterize/define a
primitive root of n among numbers such that gcd(a, n) = 1.

• We say that a is a primitive root of n if ab yields every element of Un.

• We say that a is a primitive root of n if the order of a is ϕ(n).
Proof. Why are these true? Recalling the terminology from Section 8.3, the
first one means that Un is a cyclic group (one all of whose elements are powers
of a specific element), and that a is a generator of that group. This is the
more advanced point of view.

The second point of view also uses the group idea of the order of an element.
Remember, this is the smallest number of times you can multiply something
by itself and get 1 as a result. What would this idea mean without using the
terminology of groups? With that viewpoint, k is the order of a if ak ≡ 1 (mod
n) and ab ̸≡ 1 for 1 ≤ b < k. ■

10.1.3 Finding primitive roots
As a first exercise, the gentle reader should figure out the orders of some
elements of some small groups of units. For n ∈ {5, 7, 8, 9, 10, 12, 14, 15}, try
exploring Un. There should be at least some primitive roots.

Question 10.1.5 In exploring Un for some n ∈ {5, 7, 8, 9, 10, 12, 14, 15}:
• Were all elements primitive roots?

• Did all of these groups have primitive roots?

• Is it particularly fun to look for them?

□
It’s useful to try looking for primitive roots by hand. However, it’s better

to know whether one should bother to look, and hence to try to prove things
about orders in general.

10.2 A Better Way to Primitive Roots

10.2.1 A useful lemma
In order to find primitive roots, we might want a better approach than simply
trying every single power of a for every a until we find one. Let’s walk through
an example to motivate a new approach, using a small modulus.

CHAPTER 10. PRIMITIVE ROOTS 140

Example 10.2.1 A motivating example. Let’s take a number n such that
ϕ(n) has some, but not too many, factors – say, n = 11, ϕ(11) = 10. Okay, we
know that every element a ∈ U11 will have

a10 ≡ 1 (mod 11),

but which elements don’t reach the unit before the tenth power?
We know by Theorem 8.3.12 that the order of an element has to divide

ϕ(11) = 10, so we could try a2 and a5; no other ak could yield 1. In fact, if
those aren’t ≡ 1, there aren’t any other possible orders out there, so that a
would work as a primitive root.

• Let’s try this with a = 2.

22 ≡ 4 ̸≡ 1 (mod 11) and 25 = 32 ≡ −1 ̸≡ 1 (mod 11),

so 2 must be a primitive root.

• What about with a = 3?

32 = 9 ̸≡ 1 (mod 11),

so that seems promising, but

35 = 9 · 9 · 3 ≡ (−2)2 · 3 ≡ 12 ≡ 1 (mod 11)

so 3 cannot be a primitive root modulo eleven (and in fact has order five).

The moral is that we didn’t have to check all ten possible powers of a = 2
or a = 3 to decide whether a was a primitive root modulo eleven. If you aren’t
confident of this idea, try using this strategy to determine which of a = 4, 5, 6
is a primitive root (exactly one of them is). □

Now we formalize and rephrase our strategy slightly more efficiently.
Sage note 10.2.2 How Sage does primitive roots. As far as I understand,
the following strategy is how even Sage tests for finding primitive roots, at
least for basic cases. You can check for yourself by looking at the code from
the component program, PARI; look for is_gener_expo and is_gener_Fp.
Lemma 10.2.3 Testing for Primitive Roots. An element a ∈ Un is a
primitive root if and only if

aϕ(n)/q ̸≡ 1 in Un for each prime q | ϕ(n).
Proof. If a is in fact a primitive root, then ϕ(n) is the smallest number k such
that ak ≡ 1, so certainly for numbers smaller than ϕ(n), like ϕ(n)/q, those
powers shouldn’t be ≡ 1.

On the other hand, if a isn’t a primitive root, then its order k must be a
proper divisor of ϕ(n).

Now look at the prime divisors q of ϕ(n)/k. For such a divisor,

q | ϕ(n)/k so qkℓ = ϕ(n) for some ℓ ∈ Z.

That means ϕ(n)/q = kℓ and so the power ϕ(n)/q in the statement is
actually a multiple of the order k. Since ak ≡ 1, then certainly

akℓ = aϕ(n)/q ≡ 1 (mod n)

as well, which completes the proof. ■

http://pari.math.u-bordeaux.fr/cgi-bin/gitweb.cgi?p=pari.git;a=blob;f=src/basemath/arith1.c
http://pari.math.u-bordeaux.fr/cgi-bin/gitweb.cgi?p=pari.git;a=blob;f=src/basemath/arith1.c

CHAPTER 10. PRIMITIVE ROOTS 141

This proof is a little terse, so let’s unpack this test. Essentially, we change
two things from the initial idea of trying all divisors of ϕ(n):

• Instead of trying powers which are divisors of ϕ(n), we try powers which
are ϕ(n) divided by divisors. So 25 becomes 210/2 and 32 becomes 310/5.
That seems like it’s not doing anything other than rewriting, but at least
it organizes things differently.

• Then, instead of having to try all ϕ(n)/d, we use a trick to just need
prime divisors d. (See the proof.)

Doing some examples slowly will help it make sense. Once you have done so,
try the interact.

@interact
def _(n=(19 ,[2..100]) ,a=3):

phi=euler_phi(n)
pds=prime_divisors(phi)
if gcd(a,n)!=1:

pretty_print(html("Make␣sure␣a␣and␣n␣are␣
relatively␣prime!"))

else:
a = mod(a,n)
pretty_print(html("Is␣$%s$␣a␣primitive␣root␣of␣

$%s$?"%(a,n)))
pretty_print(html(r"The␣prime␣divisors␣of␣

$\phi(%s)=%s$␣are␣$%s$"%(n, euler_phi(n),
' , ' .join([str(pd) for pd in pds]))))

pretty_print(html("The␣powers␣are␣"+ ' ␣and␣
' .join([r ' $%s^{%s/%s}\equiv␣
%s$ ' %(a,phi ,pd,a^(phi/pd)) for pd in pds])))

pretty_print(html("And␣the␣order␣of␣a=$%s$␣is␣
<tt>a.multiplicative_order () </tt >=$%s$"%(a ,
a.multiplicative_order ())))

10.2.2 Using the test lemma
If you tried various n and various attempts at primitive roots a above, you
will see that Lemma 10.2.3 really works. Make sure you are trying a that are
actually coprime to n, though! As it turns out, there aren’t very many test
powers to try, since ϕ(n) in general doesn’t have a lot of prime divisors, even
if n is a fairly large prime.

Why not try it by hand for n = 17? There is only one prime divisor of
ϕ(17), which makes things easier. Fill in this table, where PR means primitive
root.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PR? No No

The lemma also makes easy some statements that would otherwise be quite
hard. For instance, you should (Exercise 10.6.2) see how to use the test lemma
to prove that if a is a primitive root of n, then so is a−1 (modulo n).

Here’s something harder, to show the power of this approach.

Proposition 10.2.4 If a is a primitive root of n, then so is n− a if 4 | ϕ(n).

CHAPTER 10. PRIMITIVE ROOTS 142

Proof. Let’s think in terms of powers. If aϕ(n)/q ̸≡ 1, then

(n− a)ϕ(n)/q ≡ (−a)ϕ(n)/q ≡ (−1)ϕ(n)/qaϕ(n)/q.

So, as long as ϕ(n)/q is even for all prime divisors of ϕ(n), the two powers
(the one of a and the one of n− a) come to the same thing.

Since ϕ(n) is already assumed to be even, the only possible odd ϕ(n)/q
comes from q = 2, but ϕ(n) is assumed to be divisible by four, so ϕ(n)/q will
be even. ■
Example 10.2.5 If you did the table at the beginning of this subsection
properly, you will note that 3 and 14 are a pair of primitive roots of seventeen.
There should be three other such pairs.

On the other hand, from the proof we can see that if ϕ(n) is even, but not
divisible by four, then we expect that if a is a PR then n− a will not be. For
example, since two is a primitive root of eleven in Example 10.2.1, we expect
that nine is not; try computing this yourself. □

10.3 When Does a Primitive Root Exist?
Recall your experimentation in Subsection 10.1.3. You should have discovered
that there is not always a primitive root.
Fact 10.3.1 There is no primitive root for n = 12.
Proof. See Exercise 10.6.4. ■

This is also the case for n = 8 (Exercise 10.6.3). So, when do we have
primitive roots?

10.3.1 Primitive roots of powers of two
We’ll start this investigation by proving that most powers of 2 do not have
primitive roots. The following should give you an error.

power =25
primitive_root (2^ power)

Traceback (most recent call last):
...
ValueError: no primitive root

Proposition 10.3.2 For k > 2, there are no elements of U2k that have order
ϕ(2k) = 2k−1, because the highest order they can have is 2k−2.
Proof. Assume n = 2k for k > 2. (For n = 2 and n = 4, there are primitive
roots – check this if you haven’t already). In Exercise 10.6.3 we show that
n = 8 does not have a primitive root. In particular, each element of U8 has
order 23−2 = 2, so that a2 ≡ 1 (mod 8) for all a ∈ U8.

Think of n = 8 = 23 as a base case for induction on k ≥ 3. Now assume
by induction that for n = 2k it is true that no element has order higher than
2k−2. I.e.,

a2
k−2

≡ 1 (mod 2k).
By definition of divisibility, that means for any odd number a, we have that

a2
k−2

= 1 + 2k ·m

for some integer m.

CHAPTER 10. PRIMITIVE ROOTS 143

Next, let’s look at what happens to everything in modulus 2k+1. We want
that

a2
(k+1)−2

= a2
k−1

≡ 1 (mod 2k+1).

While it’s easy to get 2k+1 from 2k, the only way to easily get a2k−1 from a2
k−2

is by squaring. (Recall Fact 4.5.5 where we found powers quickly by using
(a2

e

)2 = a2
e+1 .)

So we write a2
k−1 as a square, substitute the above, and look at the remain-

ders.
a2

k−1

=
(
a2

k−2
)2

= (1 + 2km)2 = 1 + 2k+1m+ 22km2

= 1 + 2k+1(m+ 2k−1m2) ≡ 1 mod 2k+1

By induction we are done; because the highest possible order of an element
is less than ϕ, there are no primitive roots modulo 2k for k > 2. (Remember
by Lagrange’s Theorem on Group Order in any case the order is a power of
two.) ■

primitive_root (64)

Traceback (most recent call last):
...
ValueError: no primitive root

Fact 10.3.3 It turns out that ±5 have order 2k−2 in U2k .
Proof. We won’t prove this, but it is easy if you use just a little group theory.

■
One can also demonstrate this fact computationally for a given example.

@interact
def _(power =5):

a = mod(5,2^ power)
pretty_print(html("Powers␣of␣5␣modulo␣$2^{%s}$␣

are"%power))
print ([a^i for i in [1..2^(power -1)]])

10.3.2 Two important lemmas
There follow two important lemmas1 about order in the group of units used
for working with primitive roots, whose proofs are valuable exercises.

10.3.2.1 How the lemmas work

Lemma 10.3.4 Suppose p is prime and the (multiplicative) order of a modulo
p is d. If b and d are coprime, then ab also has order d modulo p.
Proof. See Exercise 10.6.6. ■
Lemma 10.3.5 Suppose p is prime and d divides p−1 (and hence is a possible
order of an element of Up). There are at most ϕ(d) incongruent integers modulo
p which have multiplicative order d modulo p.
Proof. See Exercise 10.6.7. ■

Before using them a lot, we should unpack these results a little bit. Here
is a first taste.

1Or lemmata, but who’s counting?

CHAPTER 10. PRIMITIVE ROOTS 144

Fact 10.3.6 If there is one primitive root of n, then there are actually ϕ(ϕ(n))
of them.
Proof. We will only deal with the case of n = p prime (see Exercise 10.6.10 for
the rest).

In Lemma 10.3.4, let the order of a be p − 1. Then a is a primitive root
modulo p, and so is ab for every b coprime to p− 1. Since there are ϕ(p− 1) of
these, it satisfies the claim. By the Lemma 10.3.5, there can’t be more. ■

It works; let’s check this out interactively.

@interact
def _(p=(41, prime_range (100))):

a=mod(primitive_root(p),p)
pretty_print(html("$%s$␣is␣a␣primitive␣root␣of␣$%s$,␣

with␣order␣$%s$"%(a,p,p-1)))
L=[(i,a^i,(a^i).multiplicative_order ()) for i in

range(2,p-1) if gcd(i,p-1) ==1]
for item in L:

pretty_print(html(r"$%s^{%s}\equiv␣%s$␣also␣has␣
order␣$%s$␣(and␣$\gcd(%s,%s)=1$)"%(a, item[0],
item[1], item[2], item[0], p-1)))

10.3.2.2 How the lemmas (don’t) fail

To continue, let’s pick a non-prime number we know something about to see
how many numbers we have with a given order.

We saw in Proposition 10.3.2 that powers of two (past 4) do not have
primitive roots, but U2k does have lots of elements with the next smallest
possible order. So, for example, for n = 32 we can look at whether powers b
coprime to that order (8) of such an element are in fact also elements with the
same order.

@interact
def _(n=5):

pretty_print(html("Modulo␣$2^%s"%n))
a=mod(5,2^n)
L=[(i,a^i,(a^i).multiplicative_order ()) for i in

range(1,a.multiplicative_order ()) if
gcd(i,a.multiplicative_order ())==1]

for item in L:
pretty_print(html(r"$%s^{%s}\equiv␣%s$␣has␣order␣

$%s$␣(and␣$\gcd(%s,%s)=1$)"%(a, item[0],
item[1], item[2], item[0],
a.multiplicative_order ())))

The interact confirms that this is true; in fact Lemma 10.3.4 should be true
whether p is prime or not, though I won’t ask you to prove it.

Lemma 10.3.5 also seems to be working; there are exactly ϕ(8) = 4 powers
here, each of which has order eight. The problem in deciding if there are
primitive roots, though, is that there might be another element of the same
non-maximal order as the powers of a above which is not one of them! This
code shows them for powers of two.

@interact
def _(n=5):

pretty_print(html("Modulo␣$2^%s"%n))

CHAPTER 10. PRIMITIVE ROOTS 145

a=mod(-5,2^n)
L=[(i,a^i,(a^i).multiplicative_order ()) for i in

range(1,a.multiplicative_order ()) if
gcd(i,a.multiplicative_order ())==1]

for item in L:
pretty_print(html(r"$%s^{%s}\equiv␣%s$␣has␣order␣

$%s$␣(and␣$\gcd(%s,%s)=1$)"%(a, item[0],
item[1], item[2], item[0],
a.multiplicative_order ())))

We see that in some sense there are ‘extra’ elements with order 8 when
n = 32 (confirming Fact 10.3.3 for this n). If you have eight elements of order
eight, and obviously at least one element of order 1, in U32, then it is impossible
to have the required eight elements of order sixteen that one would need for
there to be a primitive root modulo 32. (Why? Because 8+1+8 > 16 = |U32|.)
In essence, the fact that this can’t happen for a prime modulus is why primitive
roots do exist in that case.

10.4 Prime Numbers Have Primitive Roots
We use many of the same techniques and ideas in by proving that every prime
number p has a primitive root. Let’s check that this claim is true for at least
some primes.

L=[(p,primitive_root(p)) for p in prime_range (100)]
for item in L:

print("A␣primitive␣root␣of␣%s␣is␣%s"%(item[0],item [1]))

A primitive root of 2 is 1
A primitive root of 3 is 2
A primitive root of 5 is 2
...
A primitive root of 97 is 5

So at least we get a primitive root for the first 25 primes.
Theorem 10.4.1 Primitive Roots Exist for Primes. Every prime has a
primitive root. In other words, the order p− 1 group Up is always cyclic.
Proof. Below, we will actually prove the stronger Claim 10.4.4, which states
that the number of elements of order d (a positive divisor of n) is ϕ(d). Natu-
rally this will be non-zero for d = p− 1, which proves the theorem. ■

Before we examine the claim, we need some discussion.
Example 10.4.2 First, it is useful to see what these sets look like for two
examples – one where we know we have a primitive root, and one where we
know we don’t.

Assuming you are online, evaluate the next cell to get the list of sets of
different order elements for n = 41:

for d in divisors (40):
L=[]
for a in range (1 ,41):

if mod(a,41).multiplicative_order ()==d:
L.append(a)

pretty_print(html(r"There␣are␣$%s=\phi(%s)$␣elements␣of␣
order␣$%s$␣-␣"%(len(L),d,d)+str(L)))

CHAPTER 10. PRIMITIVE ROOTS 146

But here is the list of sets for n = 32; there aren’t any for the highest
possible order, and all the other sets have orders exact multiples of ϕ(d).

for d in divisors(euler_phi (32)):
L=[]
for a in range (1 ,32):

if mod(a,2)==1 and
mod(a,32).multiplicative_order ()==d:
L.append(a)

if len(L)== euler_phi(d):
pretty_print(html(r"There␣are␣$%s=\phi(%s)$␣elements␣

of␣order␣$%s$␣-␣"%(len(L),d,d)+str(L)))
else:

pretty_print(html(r"There␣are␣$%s\neq\phi(%s)$␣
elements␣of␣order␣$%s$␣-␣"%(len(L),d,d)+str(L)))

As always, doing an entire example manually is very instructive too. □
For another set of ideas, recall that if g is a primitive root of p, by definition

gp−1 ≡ 1 but no previous positive power is. Assuming p is an odd prime, then
p− 1 is even, and we could try to separate out the odd and even powers

g, g3, g5, . . . and g2, g4, g6, . . .

and compare them or their products.
Question 10.4.3 Let g be a primitive root of p.

• Can you see why the inverse of an even power of a primitive root is also
an even power?

• Do you think an odd power (greater than one) of a primitive root g could
be a different primitive root g′? Why or why not? What about even
powers of a given primitive root – could they be primitive roots, at least
in principle?

□
Finally, for those with more experience with groups, a good exercise would

be to see whether Claim 10.4.4 converts into a statement about the number of
elements of each order of any cyclic group.

Now let’s prove our claim.

Claim 10.4.4 If p is prime, the number of elements of Up of order d is ϕ(d)
(where of necessity d is a positive divisor of ϕ(p) = p− 1).
Proof. Assume that p is prime. For any of the divisors d of p−1 (not just p−1
itself), consider the possible number of elements of Up with that order,

|{a ∈ Up | a has order d}| .

By Lemma 10.3.5, this quantity is clearly between zero and ϕ(d). On the other
hand, by Lemma 10.3.4, once we find one a with order d, then all the powers
of a coprime to d also have that order (and are distinct), so there are at least
ϕ(d) of them.

In particular, the cardinality of the set of elements of Up of order d is always
either zero or ϕ(d) > 0, so the entire proof boils down to finding at least one
element a with order d for each potential order d. (The reason we just need to
consider d | p − 1 is Theorem 8.3.12 that the order of any element of a group
divides the order of the group, so the only possible orders of elements in Up

are positive divisors of p− 1.)

CHAPTER 10. PRIMITIVE ROOTS 147

Suppose that at least one of the sets for some divisor d′ (such as the set of
primitive roots, if d′ = p− 1) is empty. Then on the one hand, every element
of Up has some order, so

p− 1 =
∑
d|p−1

|{a ∈ Up | a has order d}| ≤ 0 +
∑

d|p−1,d ̸=d′

ϕ(d).

On the other hand, Fact 9.5.4 with n = p− 1 tells us that∑
d|p−1,d ̸=d′

ϕ(d) <
∑
d|p−1

ϕ(d) = p− 1.

Combining these two inequalities yields p− 1 < p− 1, an absurdity. ■
The proof above makes it evident that the real place primality is used is in

the crucial lemmas 10.3.5 and 10.3.4. If you are still curious to see how this
works, you can explore more online in the following interact; when there is not
a primitive root, somehow the ‘extra’ elements of Un which ‘would have’ had
order ϕ(n) are distributed nicely among the remaining potential orders.

@interact
def _(n=(25 ,[0..100])):

for d in divisors(euler_phi(n)):
L=[]
for a in range(1,n):

if gcd(a,n)==1 and
mod(a,n).multiplicative_order ()==d:
L.append(a)

if len(L)== euler_phi(d):
pretty_print(html(r"There␣are␣$%s=\phi(%s)$␣

elements␣of␣order␣$%s$␣-␣
"%(len(L),d,d)+str(L)))

else:
pretty_print(html(r"There␣are␣$%s\neq\phi(%s)$␣

elements␣of␣order␣$%s$␣-␣
"%(len(L),d,d)+str(L)))

10.5 A Practical Use of Primitive Roots
We will soon begin talking about cryptography and related matters. Before
we do so, we will preview our computational needs by using primitive roots to
solve some congruences in a cool way.

Suppose you want to solve a more involved congruence than the basic ones
we have tackled thus far. A general form that we might want to solve would
look like

ab ≡ c (mod n)

where either a or b might be a variable, and n would be prime or a prime power.
Here are two examples:

• x3 ≡ 5 (mod 17)

• 5x ≡ 17 (mod 19)

You can think of the first one as finding a higher root modulo n, and the second
one as finding a logarithm modulo n.

CHAPTER 10. PRIMITIVE ROOTS 148

As we will see below, our general strategy will be to find a primitive root
g of n (when this is possible) and write both as powers of g, e.g. a = gi and
c = gj for some i, j ∈ Z. Then our congruence will become

gib ≡ gj (mod n)

and thinking of it as solving in the exponents ib and j will be productive.

10.5.1 Finding a higher root
With that as introduction, let’s examine one way to solve the first congruence
using this idea.

First, find a primitive root modulo 17. Obviously we could just ask Sage
and its builtin command primitive_root, or use Lemma 10.2.3 with trial and
error. In the not too distant past, the back of every number theory text had a
table of primitive roots!

primitive_root (17)

3

Now what we will do is try to represent both sides of

x3 ≡ 5 (mod 17)

as powers of that primitive root.
The easy part is representing x3; we just say that x ≡ 3i for some (as yet

unknown) i, so
x3 ≡

(
3i
)3 ≡ 33i.

The harder part is figuring out what power of 3 gives 5. Again, there is no
shortcut, though number theory texts in the past had huge tables of them, and
their powers (for easy reference). In practice, one would have all powers of a
given primitive root available for use ahead of time.

a=mod (3,17)
L=[(i,a^i) for i in range (2,17)]
for item in L:

if item [1]!=5:
pretty_print(html(r"$%s^{%s}\equiv␣%s\not\equiv␣

5$"%(a,item[0],item [1])))
else:

pretty_print(html(r"$%s^{%s}\equiv␣%s$␣-␣
hooray!"%(a,item[0],item [1])))

break

By substituting the primitive roots in for x3 and 5, we transform

x3 ≡ 5 (mod 17)

into the congruence
33i ≡ 35 (mod 17).

This is a much more familiar type of problem. How would we have solved
this in high school? You would solve it this way, with equations (not congru-
ences):

33i = 35 ⇒ 3i = 5 ⇒ i = 5/3.

CHAPTER 10. PRIMITIVE ROOTS 149

We will try to do something very similar here.
What is very important is that this congruence is, in some sense, really no

longer a congruence in Z17. To be precise, everything in sight is really in U17,
a cyclic group of order ϕ(17) = 16. But a cyclic group of order 16 would just
be the same as thinking modulo sixteen! So we can take out the exponents,
just like in precalculus, but do things (mod 16):

3i ≡ 5 (mod 16).

(See Exercise 10.6.14 to justify doing this manipulation.)
A little guess and check (or more powerful methods earlier in the book)

show that i = 7 suffices, so that x = 37 ≡ 11 (mod 17) is the solution. And we
figured it out without taking every cube out there!

Indeed, doing just that confirms our result. We take all cubes starting at
2, and the one corresponding to 11 is what we want:

[mod(i,17)^3 for i in range (2,17)]

[8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16]

Note the use of range from Sage note 2.1.3. Why do you think we used it
here?
Example 10.5.1 If we change the congruence to a fourth power x4 ≡ 5 (mod
17), the only change is that now we have to solve 4i ≡ 5 (mod 16). However,
there are no such solutions since gcd(4, 16) = 4 ∤ 5, and we confirm this by
seeing that 5 does not show up in this list:

[mod(i,17)^4 for i in range (2,17)]

[16, 13, 1, 13, 4, 4, 16, 16, 4, 4, 13, 1, 13, 16, 1]

□
Example 10.5.2 Finally, let’s try solving the closely related x3 ≡ 7 (mod 19).
Here, a primitive root is 2, and it turns out that 26 ≡ 7, so we may attempt a
solution. We obtain

23i ≡ 26 (mod 19) ⇒ 3i ≡ 6 (mod 18),

which definitely does have solutions.
In fact, there are three solutions (2, 8, 14) to the reduced congruence

i ≡ 2 (mod 6)

so there are three solutions (22, 28, 214) to the original congruence. Let’s check
this:

a = mod(2 ,19)
[(a^b)^3 for b in [2, 8, 14]]

[7, 7, 7]

□
A similar strategy can work for higher degree congruences. (See [E.2.4, The-

orem 8.17] for a general statement on when such solutions exist, which we will
omit for the sake of space.)

CHAPTER 10. PRIMITIVE ROOTS 150

Example 10.5.3 If we try solving x6 ≡ 8 (mod 49), we’ll need a primitive
root of 49; 3 works. I can find out what power 3i of 3 yields 8:

x = mod(primitive_root (49) ,49)
L=[(i,x^i) for i in range(2,euler_phi (49))]
for item in L:

if item [1]!=8:
pretty_print(html(r"$%s^{%s}\equiv␣%s\not\equiv␣

8$"%(x,item[0],item [1])))
else:

pretty_print(html(r"$%s^{%s}\equiv␣%s$␣-␣
hooray!"%(x,item[0],item [1])))

break

Looks like it’s 336. So we write x = 3i for some as yet unknown i, and get

36i ≡ 336 (mod 49),

which gives us
6i ≡ 36 (mod ϕ(49) = 42)

which itself reduces to
i ≡ 6 (mod 7).

So i = 6, 13, 20, 27, 34, 41 all work, which means that x = 3i ≡ 43, 10, 16, 6, 39, 33
all should work.

[mod(d,49)^6 for d in [43 ,10 ,16 ,6 ,39 ,33]]

[8, 8, 8, 8, 8, 8]

□

10.5.2 Discrete logarithms
Similarly, we can try to solve logarithmic examples like

5x ≡ 17 (mod 19).

Indeed, solving this problem is an example of what is called a discrete loga-
rithm problem. Such problems are apparently very, very hard to solve quickly,
but (!) no one has ever actually proved this.

Example 10.5.4 Let’s solve 5x ≡ 17 (mod 19). As we noted in Exam-
ple 10.5.2, a primitive root modulo 19 is 2, and we can check that 5 ≡
216 (mod 19) and 17 ≡ 210 (mod 19). Then, replacing these, we see that

216x ≡ 210 (mod 19)

yields
16x ≡ 10 (mod 18).

Since each of the numbers in this latter congruence is even, we can reduce this
to 8x ≡ 5 (mod 9), which further reduces to the easy-to-solve −x ≡ 5 (mod 9).

Taking x ≡ −5 ≡ 4, and keeping in mind the original modulus of 18, that
suggests that we could let x ≡ 4, 13 in solving the original congruence. And
indeed

54 ≡ 513 ≡ 17 (mod 19)

as desired:

CHAPTER 10. PRIMITIVE ROOTS 151

mod (5,19)^13, mod(5 ,19)^4

(17, 17)

□
Sage note 10.5.5 Reminder on equality. To check whether two things
are equal, remember that you can just use == with the two expressions and see
if you get True or False.
Example 10.5.6 Let’s try to solve 16x ≡ 13 (mod 19).

Again, 2 is a primitive root of 19, and obviously 16 = 24. It might look
harder to represent 13; of course we could do it with the computer, but note
that 13 + 19 = 32 = 25. Sometimes we really can do them by hand!

Thus our congruence becomes

24x ≡ 25 (mod 19)

which yields
4x ≡ 5 (mod 18).

However, since gcd(4, 18) = 2 ∤ 5, by Proposition 5.1.1 this latter congruence
has no solutions, so neither does the original congruence. (It turns out that
16 has only order 9 as an element of U19, and evidently 13 is not one of the
elements in the subgroup generated by 16.) □

10.6 Exercises
1. Find primitive roots of 18, 23, and 27 (one for each modulus) using

Lemma 10.2.3 to test various numbers.
2. If a is a primitive root of n, prove that a−1 is also a primitive root of n.
3. Show that there is no primitive root for n = 8.
4. Show that there is no primitive root for n = 12.
5. Find two primitive roots of 81 using the Euler ϕ criterion Lemma 10.2.3

(that is, by hand).
6. Prove Lemma 10.3.4. Suppose p is prime and the order of a modulo p is

d. Prove that if b and d are coprime, then ab also has order d modulo
p. Hint: actually write down the powers of ab, and figure out which ones
could actually be 1. Lagrange’s (group) Theorem 8.3.12 could also be
useful.

7. Prove Lemma 10.3.5. Suppose p is prime and d divides p−1 (and hence is
a possible order of an element of Up). Prove that at most ϕ(d) incongruent
integers modulo p have order d modulo p. Hint: Lagrange’s (polynomial)
Theorem 7.4.1.

8. Find the orders of all elements of U13, including of course the primitive
roots, if they exist. Then verify Claim 10.4.4 for p = 13.

9. Challenge: Assuming p is prime, and without using Claim 10.4.4, prove
that there are exactly ϕ(p− 1) primitive roots of p if there is at least one.

10. Finish the proof of Fact 10.3.6 for the case of composite n.
11. Challenge: Assume that a is an odd primitive root modulo pe, where p

is an odd prime (that is, both a and p are odd). Prove that a is also a
primitive root modulo 2pe.

CHAPTER 10. PRIMITIVE ROOTS 152

12. Solve x6 ≡ 4 (mod 29).
13. Solve x4 ≡ 4 (mod 99) by writing this as the combination of two congru-

ences which can be solved with primitive roots, and then using Subsec-
tion 5.4.1 to put them back together.

14. Prove this crucial key to solving congruences by looking at the exponents
in Section 10.5: If x ≡ y (mod ϕ(n)) and gcd(a, n) = 1, show that ax ≡ ay

(mod n). Hint: Theorem 9.2.5.

Find all solutions to the following. Making a little table of powers of a primitive
root modulo 23 first would be a good idea.

15. x3 ≡ 2 (mod 23) 16. 3x ≡ 2 (mod 23)
17. x4 ≡ 2 (mod 23) 18. 13x ≡ 5 (mod 23)
19. 3x5 ≡ 1 (mod 23) 20. 3x14 ≡ 2 (mod 23)

21. For which positive integers a is the congruence ax4 ≡ 2 (mod 13) solvable?
22. Conjecture what the product of all primitive roots modulo p (for a prime

p > 3) is, modulo p. Prove it! (Hint: one of the results in Subsection 10.3.2
and thinking in terms of the computational exercises might help.)

10.7 All the Primitive Roots
There is more to the primitive root story, but we won’t cover the rest in detail.
The complete story of which n have groups of units Un that are cyclic is given by
Sage. Recall from Sage note 5.3.8 that the question mark gives us information.

a=pari (5)
a.znprimroot?

Signature: a.znprimroot ()
Docstring:

Returns a primitive root (generator) of
(\ mathbb{Z}/n\mathbb{Z})^*,

whenever this latter group is cyclic (n = 4 or n = 2p^k
or n = p^k,

where p is an odd prime and k >= 0). If the group is not
cyclic ,

the result is undefined. If n is a prime power , then the
smallest

positive primitive root is returned. This may not be
true for n =

2p^k, p odd.

Note that this function requires factoring p-1 for p as
above , in

order to determine the exact order of elements in
(\ mathbb{Z}/n\mathbb{Z})^*: this is likely to be costly

if p is
large.

Init docstring: ...
File: /tmp /...
Type: method

CHAPTER 10. PRIMITIVE ROOTS 153

Notice that we already showed that bigger powers of two do not have prim-
itive roots, so we have seen parts of both what does and what doesn’t have a
primitive root.

To make this result somewhat more plausible, the following cell demon-
strates Exercise 10.6.11 – that an odd primitive root for a prime power is also
a primitive root for twice that modulus.

@interact
def _(n=(7^2, prime_range (100)+[i^2 for i in

prime_range (3 ,25)]+[i^3 for i in prime_range (3,12)])):
a=mod(primitive_root(n),n)
if mod(a,2) ==0:

for i in range(1,euler_phi(n)):
if gcd(i,euler_phi(n))==1:

a=a^i
if mod(a,2) ==1:

break
pretty_print(html("$%s$␣is␣a␣primitive␣root␣of␣$%s$,␣

hence␣has␣order␣$%s$"%(a,n,euler_phi(n))))
pretty_print(html(r"The␣order␣of␣$%s$␣in␣

$\mathbb{Z}_{%s}$␣is␣also␣
$%s$"%(a,2*n,mod(a,2*n).multiplicative_order ())))

pretty_print(html("Compare␣the␣powers:"))
print ([a^i for i in range(1,euler_phi(n)+1)])
a = mod(a,2*n)
print ([a^i for i in range(1,euler_phi (2*n)+1)])

This is also consistent with what we already know, since ϕ(2pe) = ϕ(pe). Do
the patterns in the interact help you think how you might solve the exercise?

Finally, to really stretch yourself, how do you think you would get from a
primitive root modulo p to one modulo pe? How would you show that other
numbers do not have one?

Summary: Primitive Roots
This chapter uses groups to uncover one of the most profound insights of Fig-
ure 10.0.1.

1. We begin by defining primitive roots in Definition 10.1.1, and immedi-
ately recharacterizing in terms of group theory in Proposition 10.1.4.

2. A simpler way to test for whether a number is a primitive root is Lemma 10.2.3.

3. In the next section we see some examples of numbers which do not have
primitive roots. More importantly, we tackle the key Lemmas 10.3.4 and
10.3.5 to understand the group Up for p prime. An example of something
we win from this is Fact 10.3.6.

4. Then we prove the famous result that Primitive Roots Exist for Primes.

5. We conclude the chapter by using primitive roots to help solve interest-
ing congruences, like higher degree polynomials in Subsection 10.5.1 and
discrete analogues of the logarithm in Subsection 10.5.2.

There is the usual variety of Exercises, and a short appendix about All the
Primitive Roots.

CHAPTER 10. PRIMITIVE ROOTS 154

Chapter 11

An Introduction to Cryptog-
raphy

We are now ready for some applications. This chapter introduces cryptogra-
phy, as well as the prototype for a cool mathematical encryption system and
other similar topics. In Chapter 12, we will also discuss practical issues in im-
plementing these – namely, finding huge primes and factoring huge composite
numbers.

By ‘huge’ I mean something substantially bigger than the output of the
following commands.

print(next_prime(randrange (2^100)))
print(next_prime(randrange (2^200)))

82823055428384472362413881743
760484670368065451826384290635929664594981544625732757532239

Those are peanuts by today’s standards. But with the tools we’ve developed
up to this point, we are ready for them.

11.1 What is Cryptography?
Cryptography is not just the science of making (and breaking) codes, as a
dictionary might have it. It is the mathematical analysis of the tools of secrecy,
from both the perspective of someone keeping a secret and that of the person
trying to figure it out. Sometimes it is also called cryptology, while sometimes
that term is reserved for a wider meaning.

There are two kinds of codes.

• There are codes which disguise information and are intended to remain
secret! (Especially for those needing private communication.)

• There are codes encapsulating information in a convenient format, not
needing secrecy. (Especially to allow for error checking.)

Mathematicians use the word code to indicate information is being stored,
reserving the term cipher to talk about a way to protect that information. So,
what we do when learning about this is some of each, though mostly about
ciphers.

155

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 156

11.1.1 Encoding and decoding
There are many ways to encode a message. The easiest one for us (though
not used in practice in exactly this way) will be to simply represent each letter
of the English alphabet by an integer from 1 to 26. It is also easy to represent
both upper- and lowercase letters from 1 to 52.

We’ll use the following embedded cell to turn messages into numbers and
vice versa. You encode a plaintext message (no spaces, in quotes, for our
examples) and decode a positive integer.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

Sage note 11.1.1 Definitions. This cell should not have any output. The
code def followed by a function name and input variable name (and colon) just
tells Sage to define a new (computer, not necessarily mathematical) function.
Then the commands after the first line of each definition say what to do, includ-
ing what to send back to the user, the return statement. As long as nothing
goes wrong, no output is required – you told Sage to do something, and it did
it.

This is a very handy way to make new mathematical functions too. Even
something as basic as def f(x): return x^2 could be useful, though in this
simple case Sage gives you many more tools if you use the syntax f(x) =
x^2 instead. Try to watch the Sage code throughout, especially in the final
few chapters like Section 23.3, for usage of the def statement to make new
functions.

Let’s try to encode the letter “q”.

encode(' q ')

17

Sage note 11.1.2 Always evaluate your definitions. If the previous cell
doesn’t work, then you may need to evaluate the first one in this section again.
If anything in this chapter ever gives a NameError about a global name encode,
you probably need to reevaluate some previous cell. Most likely, the one with
def encode!

The process of decoding (or to decode) is similar.

decode (17)

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 157

' Q '

This should be straightforward. Too straightforward, perhaps. What are
some issues here?

• First, notice that I didn’t bother separating lower and uppercase letters.

• Also, no matter how complicated you get, with just a one-to-one corre-
spondence, there are only a few possibilities for each letter. So if you
know the human language in question, you can just start guessing which
encrypted number stands for its most common letter.

• Can you think of other drawbacks? (See Exercise 11.8.14.)

That means that, in practice, we need to do a few other things. One thing
that is commonly done is to make longer blocks of letters, and then turn those
into numbers. After all, presumably there are a lot more three-letter (or longer)
possible blocks of letters in English than would make it too easy to decrypt
them. (Can you think of exceptions, though?)

For pairs, we will represent the first letter as a number from 1 to 26, and the
second letter as 26 times the letter number (think of it as base 26). Remember
that A=1, B=2, etc.

Now compare the following two encodings of “The best day of the year”
and see which one might be easier to decipher.

[encode(letter) for letter in ' Thebestdayofthisyear ']

[20, 8, 5, 2, 5, 19, 20, 4, 1, 25, 15, 6, 20, 8, 9, 19, 25,
5, 1, 18]

print(encode(' cb '))
print(decode (3+26*2))

55
CB

[encode(pair) for pair in
[' th ' , ' eb ' , ' es ' , ' td ' , ' ay ' , ' of ' , ' th ' , ' is ' , ' ye ' , ' ar ']]

[228, 57, 499, 124, 651, 171, 228, 503, 155, 469]

Whereas there are many 5s in the first encoding, which you could guess were
Es, the second one has only one repeat (though knowing English, one might
guess it was ‘Th’). For this reason, it’s important to point out we haven’t made
anything secret yet, we’ve just encoded.

With three letter blocks, there are then already 263 = 17576 possibilities.

print(encode(' zab '))
print(decode (26+1*26+2*26^2))

1404
ZAB

One could use this to encode the phrase INT HEB EGI NNI GWA STH
EWO RDX. In this case, we use an extra X to fill out the space from a famous
quote; much more sophisticated filler can be used in real cryptography.

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 158

To be fair, when filler of this type is used, it would more often be used in
the middle to confuse things. In addition, one might recombine the message
in various ways. We will, however, usually keep our whole message together as
one item, since we want to understand the mathematical aspects most, rather
than real cryptography.

11.2 Encryption
We will spend most of our time talking about enciphering, or encrypting,
messages. Such encryption is the difficult part, after all, the details of which
we want to keep secret.

What is cool about modern ciphers is that we actually expect that any eaves-
dropper will know how we do the encryption; they just don’t know the key,
which is the specific numbers we use to perform our mathematical encryption.

Reversing this process (hopefully only done by the person you want to re-
ceive your message!) is called decryption. Sometimes you need a different set
of numbers to decrypt, in which case we distinguish between the encryption
key and the decryption key.
Sage note 11.2.1 Reminder to evaluate definitions. Don’t forget to
evaluate the first cell of commands so we can use words as messages instead of
just numbers.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

11.2.1 Simple ciphers
In the past, one would usually assume that both the sender and the receiver
keep their keys secret (seems reasonable!), which is called symmetric key
cryptography. The symmetry is that both people need to keep it secret. One
early example of this supposedly goes back to C. Julius Caesar. To encrypt
a message, first convert it to numbers, and then add three to each number
(‘wrapping around’ as in modular arithmetic if needed), and convert back to
letters.

message= ' MathIsCool '
secret =[encode(letter) for letter in message]
secret

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 159

[13, 1, 20, 8, 9, 19, 3, 15, 15, 12]

It’s pretty clear that 1=A here, for instance. Now let’s add three to each.
The second letter should get to 4=D, for instance.

code =[(x+3)%26 for x in secret]
print(code)
print(' ' .join([decode(m) for m in code]))

[16, 4, 23, 11, 12, 22, 6, 18, 18, 15]
PDWKLVFRRO

What did I do here? Again, this is just modular arithmetic, modulo 26, so
I added 3 mod (26).

11.2.2 Decryption and inverses
How will I decrypt it, if I get this mysterious message? Here is the main point
about mathematical ciphers; they need to come from operations that have
inverses! So in number theoretic ciphers, they’ll need to come from (somehow)
invertible operations.

In this case, the operation is modular addition, which certainly has inverses.
If your encoded numerical message is x, your key is a, and you are working
modulo (n), then your encrypted message m is

m ≡ x+ a mod(n)

To get x back, you just use the additive inverse to a modulo n, which is −a.
Since −3 is the inverse of 3, this one is easy to decipher.

' ' .join([decode ((x-3) %26) for x in code])

' MATHISCOOL '

We could list the key here as a pair (a, n), with a = 3 and n = 26.
As noted above, one can do something similar with bigger numbers, in

blocks of two. In the next Sage cell, the code requires a message with an even
number of letters; can you make it more flexible?

message= ' Mathiscool '
secret =[encode(message [2*i:2*i+2]) for i in

range(len(message)/2)]
secret

[39, 228, 503, 393, 327]

11.2.3 Getting more sophisticated
Let’s do something a little more interesting to encrypt our ‘secret’ about how
cool math is. What else has inverses?

Well, sometimes multiplication mod (n) does! We could make a cipher that
gets m by performing

m ≡ ax+ b (mod n).

Here, let’s choose a = 5 and b = 18; we’ll use n = 677, the next prime after
262, since we have blocks of two letters each.

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 160

n = next_prime (26^2)
code =[(5*x+18)%n for x in secret]
print(code)
print(' ' .join([decode(m) for m in code]))

[213, 481, 502, 629, 299]
EHMRHSEXMK

Now the key is listed as a triple, (a, b, n) = (5, 18, 677). How do we invert
this?

To get from ax + b back to x, ordinarily we would subtract b and then
divide by a. Now we are working over Zn, so is that possible? We’ll need our
first ‘extra’ condition.
Fact 11.2.2 To make modular encryption by a linear function workable, we
need gcd(a, n) = 1. In that case there is a number a′ such that

a(a′) ≡ 1 (mod n),

so we can decode via

m 7−→ a′(m− b) ≡ x (mod n).
To decode this particular example, then, we need to first subtract 18, then

multiply by an inverse to 5 (mod 677) (which turns out to be 271):

' ' .join([decode (271*(x-18) %677) for x in code])

' MATHISCOOL '

You should get ‘MathIsCool’ or whatever message you originally used. For
convenience, you can use the cell below to do this in just one step, picking your
own a and b along with your own (even length) message.

message= ' hiphiphooray '
a = 5
b = 18
secret =[encode(message [2*i:2*i+2]) for i in

range(len(message)/2)]
n = 677
ainv = mod(a,n)^-1
code =[(a*x+b)%n for x in secret]
print(' ' .join([decode(m) for m in code]))
print(' ' .join([decode(ainv*(x-b)%n) for x in code]))

EUSQHDDYLOSU
HIPHIPHOORAY

The proof of the pudding is in the eating. There’s no way I get the original
message back unless this works! Can you modify the Sage cell above to break
your message into groups of three letters instead?

11.2.4 Linear algebra and encryption
There is another way of using blocks of size two or more, which we won’t pursue
very far, but which is a big piece of how standard encryption works (see here
and here). Let’s look at our message again.

http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 161

message= ' Mathiscool '
secret =[encode(letter) for letter in message]
secret

[13, 1, 20, 8, 9, 19, 3, 15, 15, 12]

Now, in blocks of two, I will change my numbers by turning the first one
into the sum of the numbers modulo 26 and leaving the second one alone. So
for the second block (20, 8), I will change that block to (28, 8), which modulo
26 becomes (2, 8).

[(secret[i]+ secret[i+1]) %26 if i%2==0 else secret[i] for i
in range(len(secret))]

[14, 1, 2, 8, 2, 19, 18, 15, 1, 12]

This turns out to be the same thing as multiplying the corresponding list
of vectors of length two by a matrix!(

1 1

0 1

)
To invert this cipher, we would need an inverse to this matrix modulo 26.
(People don’t do something quite so naive, as there aren’t too many inverses
modulo 26, but for our purposes this suffices.)

In any case, this is another connection to the rest of mathematics! And
it is a huge reason why linear algebra over finite algebraic structures is very
important in security.

11.2.5 Asymmetric key cryptography
Finally there is another type of encryption, which is rather different. There
exists the possibility that everybody knows the key to encrypt, while only the
legitimate person knows how to decrypt. This is called asymmetric key
cryptography.

This idea may seem odd. But in practice today, people really do just post
their encryption keys on the Internet! In the live book, this links the public
key of a fairly well-known open-source software advocate, for example.

In theory, anyone who wants to send Person XYZ a secure message could
use this key, but only Person XYZ can decrypt it – convenient! Such an
implementation of an asymmetric system is called public-key cryptography,
although of course it’s only the encryption key that is actually public.

In this chapter, we will see examples of both symmetric and asymmetric
systems, but the main point is to lead up to the mathematics of basic public
key systems.

11.3 A Modular Exponentiation Cipher
To prepare for discussion of a famous public-key system, we will first discuss a
(symmetric) system that leads to it. This system needs yet another invertible
number theory procedure, one that we have used enough to be quite comfort-
able with.

That procedure is modular exponentiation as cipher. Recall that we have
methods to solve modular exponential congruences (such as using primitive
roots). That gives us tools sufficient to implement these subtle techniques.

http://www.catb.org/esr/gpg-public-key.asc

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 162

Sage note 11.3.1 Another reminder to evaluate definitions. Don’t
forget to evaluate the commands below so we can use words as messages instead
of just numbers.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

11.3.1 The Diffie-Hellman method
In the cell below, we will pick a few numbers relevant to this method. To use
it, we will need a prime number p, and some legitimate exponent e that won’t
mess things up too badly. (Also, suppose our secret is still that math is cool.)

What do I mean by ‘won’t mess things up too badly?’ Recall from Subsec-
tion 10.5.1 that when we solved

x3 ≡ 5 (mod 17) as 33i ≡ 35 (mod 17)

we ended up in the world of ϕ(17) = 16 and solved

3i ≡ 5 (mod 16).

This required a solution i to exist, which wouldn’t happen for all possible
choices of numbers in a congruence!

In order to keep using these ideas easily, we will pick an exponent coprime
to ϕ(p).

Now, here is the algorithm (see also Algorithm 11.3.3). I just take my
message (as a number) and raise it to the e power modulo p. It’s as simple as
that!

In the cell below, we pick a convenient e and p.

p=29 # a prime number
e=9 # a number coprime to euler_phi(p)=p-1=28
message= ' MathIsCool '
secret =[encode(letter) for letter in message]
code=[mod(x,p)^e for x in secret]
print(code)
print(' ' .join([decode(m) for m in code]))

[5, 1, 23, 15, 6, 11, 21, 26, 26, 12]
EAWOFKUZZL

Here I picked p = 29 since it’s close to 26, and more or less arbitrarily
picked an exponent e = 9 (though it does have to be coprime to 28 = ϕ(29)).

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 163

Note the steps. I first had to encode “MathIsCool” to numbers. Then I
exponentiated each number in the coded version, modulo 29. To be precise, I
sent each number

a 7→ a9 (mod 29).
Remark 11.3.2 Notice that decoding the secret message code is not so useful
anymore! (What would we do with the number 28 as an output, for instance?)
So we usually just stick with the numbers.

Leaving aside for the moment that the letter A will now have the unfor-
tunate property that it always stays 1, and hence basically unencrypted (this
is because we are doing a toy example), how on earth would we ever decrypt
this? Do we have a way to invert

a9 (mod 29)

in any way?
Naturally, we do! We will use exponentiation again to do so. We just need

something that solves (
a9
)f ≡ a (mod 29),

or more concisely
a9f ≡ a1 (mod 29).

(We can think of f as a power that inverts the original power 9.).
From our discussion in Section 10.5, solving this congruence is tantamount

to solving
9f ≡ 1 (mod 28)

and we know we can find this. In the cell below, we do it computationally, but
you could do this one ‘by hand’.

f=mod(e,p-1)^-1 # the multiplicative inverse mod p-1 (!) to
our encryption power

print(f)
print(' ' .join([decode(x^f) for x in code]))

25
MATHISCOOL

This method of encryption is known as the Diffie-Hellman method (named
after its originators, who proposed it in the mid-70’s); see Historical remark 11.4.1
and Historical remark 11.3.5.

11.3.2 A bigger example
Now we will do a more real example of this. Notice how important it was that
we chose an initial exponent e that was coprime to ϕ(p) = p− 1.

message= ' heymathiscooleverybody '
secret=encode(message)
secret

13044594485924740120065295822374

For convenience, I’ll just take the next prime bigger than my message.

p=next_prime(secret)
print(p)
print(factor(p-1))

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 164

13044594485924740120065295822453
2^2 * 3^2 * 11 * 17 * 8273 * 234219716629408326624607

Next, I pick an exponent. Not every exponent will work! Beforehand I
factored p− 1 so I could find something coprime to it.

e=10103 # a number coprime to p-1
code=mod(secret ,p)^e
code

9687827625907130820812107474110

The encrypted message is now just one number. Now we need the decryp-
tion key. Luckily, that’s just as easy as taking an inverse modulo p− 1:

f=mod(e,p-1)^-1
print(f)
print(' ' .join(decode(code^f)))

5098792796685815968933767514883
HEYMATHISCOOLEVERYBODY

Here is one more extended Sage example; why not try your own message?
Here, the interesting point is that I allow Sage to pick a prime for me using
next_prime(). (If it fails, try changing e to something coprime to p− 1.)

message= ' mathisreallycoolanditshouldntbeasecret '
secret=encode(message)
p=next_prime ((secret)^5)
e=677 # hopefully coprime to p-1
code=mod(secret ,p)^e
f=mod(e,p-1)^-1
pretty_print(html("My␣encoded␣message␣is␣$%s$"%secret))
pretty_print(html("A␣big␣prime␣bigger␣than␣that␣is␣$%s$"%p))
pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html("The␣encrypted␣message␣is␣$%s$"%code))
pretty_print(html("The␣inverse␣of␣$%s$␣is␣$%s$"%(e,f)))
pretty_print(html("And␣the␣decrypted␣message␣turns␣out␣to␣

be:"))
print(' ' .join(decode(code^f)))

11.3.3 Recap
Here is the formal explanation of our first awesome encryption scheme.
Algorithm 11.3.3 Diffie-Hellman Encryption. To encrypt using this
method, do the following.

• Turn your message into a number x.

• Pick a prime p (presumably greater than x).

• Pick an exponent e such that gcd(e, p− 1) = 1.

• Encrypt to a secret message by taking

m = xe (mod p).

Here are the steps for decryption.

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 165

• Find an inverse modulo p− 1 to e, and call it f .

• Decrypt (if you want) by taking

mf ≡ x (mod p)

• Celebrate in your opponent’s destruction.
Proof. Why does this work? First, note that our condition on f is equivalent
to

ef ≡ 1 (mod p− 1).

Then we can simply compute that

mf ≡ (xe)
f ≡ xef ≡ x1 ≡ x (mod p)

which verifies that we get the original message back. ■
Feel free to use the following Sage cells to see what happens with your own

short messages.

@interact
def _(message= ' mathiscool ' ,e=677):

secret=encode(message)
p=next_prime (100*(secret))
if gcd(e,p-1) != 1:

pretty_print(html("Looks␣like␣$%s$␣isn ' t␣coprime␣to␣
the␣prime!␣Try␣another␣one."%e))

else:
code=mod(secret ,p)^e
try:

f=mod(e,p-1)^-1
except:

pretty_print(html("Looks␣like␣$%s$␣is␣not␣
coprime␣to␣the␣prime␣we␣chose ,␣$%s$"%(e,p)))

pretty_print(html("My␣encoded␣message␣is␣
$%s$"%secret))

pretty_print(html("A␣big␣prime␣bigger␣than␣that␣is␣
$%s$"%p))

pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html("The␣encrypted␣message␣is␣

$%s$"%code))
pretty_print(html("The␣inverse␣of␣$%s$␣is␣

$%s$"%(e,f)))
pretty_print(html("And␣the␣decrypted␣message␣turns␣

out␣to␣be:"))
print(' ' .join(decode(code^f)))

Or you can choose a prime on your own.

@interact
def _(message= ' hi ' ,p=991,e=677):

secret=encode(message)
if is_prime(p) and gcd(p,e)==1 and p>secret:

e=677 # hopefully coprime to p-1
code=mod(secret ,p)^e
try:

f=mod(e,p-1)^-1
except:

pretty_print(html("Looks␣like␣$%s$␣is␣not␣

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 166

coprime␣to␣the␣prime␣we␣chose ,␣$%s$"%(e,p)))
pretty_print(html("My␣encoded␣message␣is␣

$%s$"%secret))
pretty_print(html("A␣big␣prime␣bigger␣than␣that␣is␣

$%s$"%p))
pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html("The␣encrypted␣message␣is␣

$%s$"%code))
pretty_print(html("The␣inverse␣of␣$%s$␣is␣

$%s$"%(e,f)))
pretty_print(html("And␣the␣decrypted␣message␣turns␣

out␣to␣be:"))
print(' ' .join(decode(code^f)))

elif not is_prime(p):
pretty_print(html("Pick␣a␣prime␣p!"))

elif p <= secret:
pretty_print(html("Make␣sure␣your␣prime␣is␣bigger␣

than␣your␣secret ,␣$%s$"%secret))
else:

pretty_print(html("Make␣sure␣that␣$gcd(p,e)=1$!"))

Sage note 11.3.4 Compute what you need. Remember, you can always
compute anything you need. For instance, if you for some reason didn’t pick a
big enough prime, you can use the following command to find one.

next_prime (11058)

11059

Historical remark 11.3.5 Diffie and Hellman. In 2015, Whitfield Diffie
and Martin Hellman won the Turing Award for their contribution, the highest
award in computer science.

11.3.4 A brief warning
Remember, the key that makes it all work (thanks to Fermat’s Little Theorem/
Euler’s Theorem) is that exponents of congruences mod n live in the world of
congruences mod ϕ(n), as long as they are numbers coprime to ϕ(n). That’s
why gcd(e, p− 1) = 1 is important.

Here’s an example of how not choosing your exponent wisely can go wrong.

message= ' hi ' # needs to be in quotes
secret=encode(message)
p=991 # needs to be bigger than secret
e=2 # NOT coprime to p-1
code=mod(secret ,p)^e
code

95

Sage note 11.3.6 Change values right in the code. Some Sage cells
have little text boxes or sliders for interacting. But you can use any of them
to change the values we are playing with; try changing the variable message in
the preceding cell to encode your own secret.

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 167

Assuming you followed along, so far, so good; it got encrypted. But what
happens when we try to decrypt?

f=mod(e,p-1)^-1
message ,secret ,code ,decode(code^f) # prints all the steps

Traceback (most recent call last):
...
ZeroDivisionError: inverse of Mod(2, 990) does not exist

You should have gotten an error (in fact, a ZeroDivisionError, which
should sound relevant). It turns out not even to be possible to go back-
wards. Be warned that you must know the mathematics to use cryptography
wisely.

11.4 An Interesting Application: Key Exchange
There is a quite useful application of Diffie-Hellman called key exchange. In
fact, this is the original application they had in mind.
Historical remark 11.4.1 Diffie-Hellman controversy. There is a little
controversy over exactly whom to credit for originating the concept of public-
key cryptography. Researchers at the British intelligence unit GCHQ published
a number of internal papers on methods similar to those in this chapter, and
Ralph Merkle previously published a paper introducing the notion. However,
the specific mathematics are due to Diffie and Hellman, who were the first to
publish in a public venue, so it seems reasonable to keep the traditional name.

11.4.1 Diffie-Hellman Key Exchange
Here is the basic concept of key exchange. Two people trying to pass informa-
tion (universally called Alice and Bob) want to decide on a secret key for using
some encryption routine. Since all we really care about are the numbers, once
we’ve encoded, we should just assume the key is a number.

Unfortunately, Alice and Bob know that someone may be listening in on
their decision. Instead of trying to send a secret key only one of them has
chosen, they try to create a secret key together using (essentially) public means.
Here’s how it works.
Algorithm 11.4.2 Diffie-Hellman key exchange. Here are the steps.

• First, Alice and Bob jointly pick a big prime p and a base for exponenti-
ation g, presumably with 1 < g < p. This doesn’t need to be secret.

• Now, they each secretly choose an exponent; maybe Alice chooses m and
Bob chooses n.

• The key step: Each of them exponentiates g to their secret power, modulo
p.

• Then they pass off these numbers to each other, and once again expo-
nentiate the other person’s number to their own secret power, modulo
p.

The resulting numbers are the same and give the secret key.
Proof. The two numbers are (gm)n = gmn and (gn)m = gnm, which are the
same, and certainly are so modulo p. ■

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 168

Example 11.4.3 Alice and Bob pick p = 991 and g = 55, and then (separately)
pick m = 130 and n = 123. Then they compute the powers gm and gn modulo
p.

p=991
g=mod(55,p)
m=130
n=123
Alice_does=g^m
Bob_does=g^n
print("Alice␣does", Alice_does)
print("Bob␣does", Bob_does)

Alice does 722
Bob does 114

Alice and Bob have different numbers now, but after doing their powers
after the exchange, the numbers should be the same.

Bob_does^m,Alice_does^n

(877, 877)

Note the code takes one power to the m and the other power to the n. □
Thus, now they have a secret key (gmn = gnm) they can easily compute but

which a spy in the middle cannot. Feel free to try this with your own numbers
you pick!

@interact
def _(p=(991, prime_range (1000)),g=55,m=130,n=123):

g=mod(g,p)
pretty_print(html("If␣you␣jointly␣picked␣$p=%s$␣and␣base␣

$g=%s$"%(p,g)))
pretty_print(html("Then␣separately␣picked␣secret␣powers␣

$m=%s$␣and␣$n=%s$"%(m,n)))
pretty_print(html(r"Your␣publicly␣traded␣info␣would␣be␣

$%s^{%s}\equiv␣%s$␣and␣$%s^{%s}\equiv␣
%s$"%(g,m,g^m,g,n,g^n)))

pretty_print(html(r"But␣the␣secret␣joint␣key␣would␣be␣
$%s^{%s\cdot␣%s}\equiv␣%s$"%(g,m,n,g^(m*n))))

This number gmn can now be used in some symmetric encryption system
as a key for both Alice and Bob.

11.4.2 In the Middle
Having a key that isn’t directly communicated should help protect from any
potential Eve who might be listening in. (That’s Eve for eavesdropping, believe
it or not – also a universal person in these stories.) That is good news.

On the down side, if Eve is not only listening, but actually has access to
Alice and Bob’s transmissions and can change them, she can still cause trouble.
Eve can in this situation add her own exponent, ℓ, to the game, so that she
pretends to have secret key gmℓ with Alice and secret key gnℓ with Bob. Both
of their keys’ security is now compromised.

Such a situation is historically known as a “Man in the Middle” attack.
There is no obvious way to stop such an attack with this algorithm, if Eve has
that much power. (See Exercise 11.8.5.)

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 169

11.5 RSA Public Key
Sage note 11.5.1 We keep reminding you. Remember, this cell contains
the command used to make numbers from letters (and vice versa), so always
evaluate the cell before doing any en/decoding.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

In order to deal with some of the issues of symmetric systems, we will now
introduce the most famous public-key system. Recall that this means we have
an encryption key that is easy for anybody at all to use, but is very difficult to
undo unless you know the secret. (Sometimes this is called a trapdoor system,
because it’s easy to fall in but it’s hard to get back out unless you know where
the secret passageway is!)

Historical remark 11.5.2 Who is RSA? The formal name for the sys-
tem in this section is “Rivest, Shamir, Adleman” or RSA, for Ron Rivest,
Adi Shamir, and Leonard Adleman, who developed it in the late 1970s. The
acronym continues to be the name of the security company they cofounded.
Like the Diffie-Hellman protocol, the British intelligence unit GCHQ also de-
veloped it in earlier (then-classified) documents.

11.5.1 The background
The idea behind RSA is to make Diffie-Hellman, which relies only upon The-
orem 7.5.3 and primes, into a system which involves Euler’s Theorem (9.2.5).
We want to do so, but not so heavily as to make the computation too expen-
sive. (With the advent of mobile devices, it turns out that this has once again
become a big issue, so much so that even RSA or similar methods are be-
ing replaced with more sophisticated ones involving curves like those coming
from the Mordell equation (recall Section 15.3), known as elliptic curves. See
[E.4.19] for an excellent full introduction to this at about the level of this text,
which could help in answering Exercise 25.9.10; a more targeted approach is
in [E.2.10, Chapter 18.6].

It turns out that the easiest way to keep computation easy while sticking
with exponentiation is to choose as a modulus a large integer n with only two
prime factors, instead of one large prime p as we did before. For instance:

p=89
q=97
n=p*q

https://www.rsa.com

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 170

print("Multiply␣the␣primes␣%s␣and␣%s␣to␣get␣our␣modulus␣
%s"%(p,q,n))

Multiply the primes 89 and 97 to get our modulus 8633

Exponents here live in the world of ϕ(n). We can easily compute this using
Fact 9.5.2 (so that ϕ(n) = (p − 1)(q − 1)). So the computations are going to
be easy for us, assuming we know p and q.

But they will not be so easy to compute without that knowledge, for which
we need to have the prime decomposition of n. In particular, for reasonably
large n, that means ϕ(n) is essentially secret to anyone who isn’t tough enough
to factor n.
Remark 11.5.3 At least that’s what people currently believe; if it isn’t true,
we are in deep trouble security-wise, as we will see later.

As an example, in the early 1600s, Fermat believed 232 + 1 was prime. It
took until 1732 and the genius of Euler to factor 232 + 1 as follows1, which
shows the one hundred sixteenth prime is the smaller of two factors.

2^32+1 , factor (2^32+1) ,nth_prime (116)

(4294967297 , 641 * 6700417 , 641)

Hence n = 232+1 wouldn’t have been a bad n to choose in the early 1700s,
since it would take a lot of trial and error to get to the one hundred sixteenth
prime!

11.5.2 The practice of RSA
That’s the preliminaries. From now on, we do exactly the same thing as before,
choosing an e coprime to ϕ(n), etc. This time, though, instead of keeping e
secret, we let anybody know it (along with n, which we have to let people know
anyway).

Example 11.5.4 With the same primes, let’s choose e = 71, because that is
coprime to ϕ(89 · 97) = ϕ(89)ϕ(97) = 88 · 96 = 8448.

p=89
q=97
n=p*q
phi=euler_phi(n)
e=71
print("Multiply␣the␣primes␣%s␣and␣%s␣to␣get␣our␣modulus␣

%s"%(p,q,n))
print("Are␣e=%s␣and␣phi(%s)=%s␣coprime?"%(e,n,phi))
print(gcd(e,phi)==1)

Multiply the primes 89 and 97 to get our modulus 8633
Are e=71 and phi (8633) =8448 coprime?
True

We compute an inverse mod ϕ(n) just as before, which will be (as before)
our decryption key. Since we are able to compute ϕ(n), it isn’t hard to get an
inverse for e. If you only knew n, though, it would be very hard to do this
(for reasonably large n); or at least, it is supposed to be hard to compute ϕ(n)

1Weil points out in [E.5.8, II.IV] that Fermat had the tools to do this (see the discussion
at the end of Subsection 7.5.2), but apparently just completely neglected to use them, so
convinced was he of his correctness.

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 171

without factoring n, though it has yet to proven.

f=mod(e,phi)^-1;f

119

Now, just like with Diffie-Hellman, I raise my message (number) to the
power e to encrypt, and raise to the power f to decrypt an encrypted message.
Here are all the steps together!

@interact
def _(message= ' hi ' ,p=89,q=97,e=71):

secret=encode(message)
n = p*q
phi = (p-1)*(q-1)
if gcd(n,e)==1 and n>secret:

code=mod(secret ,n)^e
try:

f=mod(e,phi)^-1
pretty_print(html("My␣encoded␣message␣is␣

$%s$"%secret))
pretty_print(html(r"A␣big␣product␣of␣primes␣

bigger␣than␣that␣is␣
$pq=%s\cdot%s=%s$"%(p,q,n)))

pretty_print(html(r"(which␣means␣my␣secret␣
$\phi(n)=\phi(%s\cdot␣%s)=(%s-1)(%s-1)$␣is␣
$%s$)"%(p,q,p,q,phi)))

pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html(r"The␣encrypted␣message␣is␣

$%s^{%s}\equiv%s$"%(secret ,e,code)))
pretty_print(html("The␣inverse␣of␣$%s$␣modulo␣

$%s$␣is␣$%s$"%(e,phi ,f)))
pretty_print(html("And␣the␣decrypted␣message␣

turns␣out␣to␣be:"))
print(' ' .join(decode(code^f)))

except:
pretty_print(html(r"Looks␣like␣$%s$␣is␣not␣

coprime␣to␣$\phi(%s)=%s$"%(e,n,phi)))
elif gcd(phi ,e)!=1:

pretty_print(html(r"Make␣sure␣that␣
$gcd(\phi(n),e)=1$!"))

elif n <= secret:
pretty_print(html("My␣encoded␣message␣is␣

$%s$"%secret))
pretty_print(html(r"Make␣sure␣that␣$pq=%s\cdot␣

%s=%s$␣is␣bigger␣than␣your␣secret"%(p,q,n)))

□

11.5.3 Why RSA works
Now we have an encryption method where anyone can encrypt. The modulus
n (not written as pq) and e are both published, and anyone who wants to send
a message of length n or less just exponentiates. You just have to be sure that
ϕ(n) and e are coprime for it to be defined properly.

Algorithm 11.5.5 RSA encryption algorithm. In order to encrypt a

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 172

message x via RSA with public key (n, e), you do

xe (mod n).

In order for the owner of the key to decrypt a message m, they do

me−1

= mf (mod n)

for any f solving ef ≡ 1 (mod ϕ(n)).
Proof. Assume the original message was x and that this is coprime to n. Since

ef ≡ 1 (mod ϕ(n))

we have ef = kϕ(n)+1 for some integer k. Hence by Euler’s Theorem we have

(xe)
f
= xef = xkϕ(n)+1 =

(
xϕ(n)

)k
x1 ≡ 1kx ≡ x (mod n).

So it all works out, we recover the original message.
Interestingly, because n = pq is a product of different primes, we don’t

actually need the coprime hypothesis for the message, which is nice not to
have to check. Suppose p | x but gcd(q, x) = 1, for example. Then modulo p

we have (xe)
f ≡ x because both are zero, while modulo q we do a bit more

computation to see

(xe)
f
= xkϕ(n)+1 = xkϕ(p)ϕ(q)+1 ≡

(
xϕ(q)

)kϕ(p)
x1 ≡ x.

By (essentially) the Fundamental Theorem of Arithmetic that suffices to show
they are equivalent modulo n = pq as well. (If pq | x, then x ≡ 0 so things
aren’t very interesting.) ■

And if someone nefarious were to try to decrypt this, they would need access
to f somehow, or something equivalent to it mathematically. That would mean
solving

ef ≡ 1 (mod ϕ(n))

for f without actually knowing what ϕ(n) is!
Naturally, that is pretty easy to compute in the cases above. But in real

life?

p=next_prime(randrange (2^50))
q=next_prime(randrange (2^50))
n=p*q # needs to be bigger than secret
print("The␣first␣part␣of␣my␣key ,␣%s,␣is␣the␣product␣of␣my␣

secret␣primes"%n)

The first part of my key , 387557680000801386581770958669 ,
is the product of my secret primes

The n in the cell above is the product of two primes – but would you like
to try to compute ϕ(n) by hand? Without knowing the actual primes, it could
be very difficult to figure out ϕ(n), which you probably need to get f .

Realistic examples have much larger primes than this, say 100 digits. But
let’s see what would happen next in a ‘real’ example.

message= ' mathiscool ' # needs to be in quotes
secret=encode(message) # needs to be less than n
print("My␣message␣is␣%s␣numerically"%secret)

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 173

My message is 68408084029415 numerically

Hopefully the randomness of the p and q I picked didn’t keep n from being
greater than the numerical value of the message.

Now we pick the other piece of our key, e. Believe it or not, it doesn’t really
seem to matter (though no one has proved this) what e is. Documentation for
a widely used RSA implementation says this:

-F4|-3: The public exponent to use, either 65537 or 3. The default
is 65537.

The documentation used to also recommend 17, which I figure is easier to
use than 65537 but less obvious than 3. Let’s check that it’s coprime to the
modulus of the key.

phi=euler_phi(n)
e=17 # needs to be coprime to phi
print("And␣I␣can␣check␣whether␣e=17␣is␣coprime␣to␣phi(%s)"%n)
print(gcd(phi ,e)==1)

And I can check whether e=17 is coprime to
phi (674932867331573648976699887017)

True

If you get False above (I did once in a while during testing), then just pick
a different e. (Only evaluate the following cell if you have to!)

e=65537 # needs to be coprime to phi
print("Second␣try␣-␣is␣e=65537␣coprime␣to␣phi(%s)?"%n)
print(gcd(phi ,e)==1)

Second try - is e=65537 coprime to
phi (674932867331573648976699887017)?

True

Once we have our key, away we go!

code=mod(secret ,n)^e
print("My␣encoded␣message␣is␣%s"%secret)
print("A␣big␣product␣of␣primes␣bigger␣than␣that␣is␣n=%s"%n)
print("And␣I␣chose␣exponent␣%s"%e)
print("The␣encrypted␣message␣is␣%s^%s␣congruent␣to␣

%s"%(secret ,e,code))

My encoded message is 68408084029415
A big product of primes bigger than that is

n=674932867331573648976699887017
And I chose exponent 65537
The encrypted message is 68408084029415^65537 congruent to

114588857979006420962953343720

Crack that! Who knows what ϕ(n) is?
But if I know it, I can calculate the inverse of e:

f=mod(e,phi)^-1
print("My␣original␣primes␣were␣%s␣and␣%s"%(p,q))
print("So␣phi(n)␣=␣(%s-1)(%s-1)␣=␣%s"%(p,q,phi))
print("Which␣makes␣f␣=␣%s"%f)
print("And␣the␣decrypted␣message␣turns␣out␣to␣be:")

http://www.openssl.org/

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 174

print(' ' .join(decode(code^f)))

My original primes were 607345217933711 and 1111283743416647
So phi(n) = (607345217933711 -1) (1111283743416647 -1) =

674932867331571930347738536660
Which makes f = 668815557671456976556345023213
And the decrypted message turns out to be:
MATHISCOOL

11.6 RSA and (Lack Of) Security
We are now ready to discuss some elementary security issues regarding RSA.
Remember, we aren’t learning to be security experts here, and far more pow-
erful techniques are available! But these are some underlying fundamentals.
Sage note 11.6.1 A final reminder to evaluate definitions. If you’re
online, don’t forget to evaluate the commands in the Sage cell below so we can
use words as messages instead of just numbers.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

11.6.1 Beating the man in the middle
First, remember one problem with Diffie-Hellman key exchange (Section 11.4).
Someone who can control your messages can actually fake them. This can’t
happen with public-key systems (at least not as easily). Here’s why.

Suppose I want to let someone verify I am who I say I am. In a public-key
system, I never need to let f get known, so I encode my signature with f itself
as the exponent!

First, I just turn my signature into a number. I’ll just use the first three
letters in order to keep the encoding small enough to use small primes.

signature= ' Cri '
code=encode(signature)
print(code)

6555

Then I raise it to the power of the secret key f , the inverse of the public
key e.

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 175

p=89
q=97
n=p*q
phi=euler_phi(n)
e=71
f=mod(e,phi)^-1
secret=mod(code ,n)^f
secret

5422

Now anyone in the world can check my signature by raising this version of
the signature to the public power e modulo n.

print(secret^e)
print(decode(secret^e))

6555
CRI

The reason this works is because

ef ≡ 1 (mod ϕ(n))

and ef = fe in a commutative setting:(
Namef

)e
= (Name)

ef ≡ Name1 ≡ Name (mod n)

Naturally, implementing this is somewhat more complex in real life (e.g. padding
is used), but it is one major digital signing method implemented on many se-
cure systems.

Interestingly, this concept also can be used in the opposite way2. Suppose
that someone sends a message using their public signature as above – a message
which later turns out to implicate him or her in illegal activity, a scandal,
offensive behavior, etc. The author may wish to repudiate this message, but
(at least in principle) the digital signature cannot be repudiated in the same
way as other types of messages. (Of course, one can always say that one’s
private key was stolen, so it’s not foolproof!)

11.6.2 A cautionary tale
Lest you think we are now completely secure, let me warn you about one
possible problem. Remember how we said above that it seems not to matter
too much what e is? Well, that is sort of true, and sort of untrue.

Suppose we chose to send a message using the following primes and ran-
domly (maybe) chosen exponent e. (Notice that if gcd(e, ϕ(pq)) ̸= 1, this code
wouldn’t have worked at all.)

message= ' hiphop '
secret=encode(message)
p=197108347
q=591324977
e=52665067560570823
n=p*q
phi=(p-1)*(q-1)
code=mod(secret ,n)^e

2I am indebted to my colleague, Russ Tuck, for this observation.

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 176

f=mod(e,phi)^-1
print("My␣encoded␣message␣is␣%s"%secret)
print("A␣big␣product␣of␣primes␣bigger␣than␣that␣is␣

pq=(%s)(%s)=%s"%(p,q,n))
print("(which␣means␣my␣secret␣

phi(n)=phi((%s)(%s))=(%s-1)(%s-1)␣is␣%s)"%(p,q,p,q,phi))
print("And␣I␣chose␣exponent␣%s"%e)
print("The␣encrypted␣message␣is␣%s^%s␣congruent␣to␣

%s"%(secret ,e,code))
print("The␣inverse␣of␣%s␣modulo␣%s␣is␣%s"%(e,phi ,f))
print("And␣the␣decrypted␣message␣turns␣out␣to␣be:")
print(' ' .join(decode(code^f)))

My encoded message is 197108322
A big product of primes bigger than that is

pq =(197108347) (591324977) =116555088756283019
(which means my secret

phi(n)=phi ((197108347) (591324977))=(197108347 -1) (591324977 -1)
is 116555087967849696)

And I chose exponent 52665067560570823
The encrypted message is 197108322^52665067560570823

congruent to 109598935674432155
The inverse of 52665067560570823 modulo 116555087967849696

is 103781564699780695
And the decrypted message turns out to be:
HIPHOP

The above cell just does the RSA algorithm for a particular case, verifying
it works.

Now suppose Alice has sent Bob this message using Bob’s impressive RSA
key (above) of

(n, e) = (116555088756283019, 52665067560570823).

Let me impersonate Eve, trying to snoop. On a hunch (or, as [E.2.3] puts it,
after attending a seminar at a decryption conference), I figure I don’t have
much to lose by just trying random arithmetic, so I decide to just keep taking
eth powers of the encrypted text (which was already raised to the eth power
once).

trial_decrypt=code
for i in [1..25]:

trial_decrypt=trial_decrypt^e
print(' ' .join(decode(trial_decrypt)))

UUQUIAHESLLQ
IFTZCXXTCULDA
HREHHYCUZMWQ
...
DNBDDHIMUTSM
HIPHOP
CPTAXZGBUIVCA
...
DNBDDHIMUTSM
HIPHOP
CPTAXZGBUIVCA
...

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 177

What’s this? You should see a meaningful message appear. Eve would
barely have to do anything to decrypt this!

11.6.3 The explanation
This circumstance may seem mysterious, but it really is related to mathematics
we already used a number of times before. Remember that we could find an
inverse for a modulo n by just taking powers of a, because

a−1 ≡ aϕ(n)−1 (mod n)

Similarly, for any possible message m and public key e, there will always be
some power k of e such

mek ≡ m1 (mod n)

which is the same as
ek ≡ 1 (mod ϕ(n))

For this to happen, we would have to coincidentally have that not only
gcd(e, n) = 1 (which we always pick), but also that gcd(e, ϕ(n)) = 1. Then
Euler’s Theorem 9.2.5 says that the order of e modulo ϕ(n) is a divisor of ϕ(n),
so we will sometimes find e where that order is a small divisor of ϕ(n).

Of course, in real life this would only happen randomly, so you could just
protect against it by checking the order of e modulo ϕ(n). Here’s how I created
this not-quite-random example!

g = 7 # Pick something coprime to n
print(gcd(g,phi))
i = mod(g,phi) # look at it mod phi(n)
print(i.multiplicative_order ())
print(factor(i.multiplicative_order ()))

1
4567854373940
2^2 * 5 * 11 * 13 * 37 * 1879 * 22973

j=i^(11 * 13 * 37 * 1879 * 22973) # take it to as high a
power I can to reduce the order

print(j.multiplicative_order ()) # make sure this is small
print(gcd(j,phi)) # check we still have the right gcd
print(j)

20
1
52665067560570823

What was the problem here? The issue is that we had an n such that its
group of units had elements of tiny order in its group of units. (Two levels
deep here!)

More precisely, we had an n with a ϕ(n) such that Uϕ(n) had elements of
very small order in it, so that

everysmallorder ≡ 1 (mod ϕ(n))

was possible. How can we avoid this?

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 178

11.6.4 A solution
When we found elements of big order (primitive roots, for prime modulus) in
Chapter 10, we relied on having the original modulus p being prime. We did
not tell the whole story, but we did do enough of what happens with other
moduli to know that we should suspect that choosing n factoring as a small
number of primes to powers should make it easy to find elements of big order
in the group of units. (For instance, we saw that 2n had elements pretty close
to being primitive roots.)

And we do know something about ϕ(n). Namely, since n = pq is the
product of two primes, we know that ϕ(n) = (p− 1)(q− 1) is also the product
of two numbers. It would be too much to hope for those to be prime! After
all, p− 1 and q − 1 will both be even, since p and q will be odd primes.

However, it’s possible to pick p and q so that p − 1 = 2p′ and q − 1 = 2q′,
where p′ and q′ are both prime. In that case

ϕ(n) = ϕ(pq) = ϕ(p)ϕ(q) = 2p′2q′ = 4p′q′

so that ϕ(n) at least is four times a product of (still big) prime numbers.
We will not prove it, but it turns out this is enough to guarantee the

existence of elements of orders p′ − 1 and q′ − 1 in Uϕ(pq), just like we had
elements of order p− 1 in Up. To be precise, we get elements of order

p′ − 1 =
p− 1

2
− 1 and q′ − 1 =

q − 1

2
− 1

if p−1
2 and q−1

2 are both prime. Here is an example of this with very small p
and q, where we at least have elements of order four.

n = 7*11
phi = euler_phi(n)
[mod(i,phi).multiplicative_order () for i in [1.. phi] if

gcd(i,phi)==1]

[1, 4, 2, 4, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 4, 2]

Going backwards, we are looking for prime numbers p′, q′ such that 2p′ +
1, 2q′ + 1 are also prime, and then we use p = 2p′ + 1 and q = 2q′ + 1 in RSA,
finding an exponent that has big order in Uϕ(n). In this example, p′ = 5 and
q′ = 3.

Such primes p′ and q′ are called Germain primes, for French mathe-
matician Sophie Germain. The primes p and q are then called safe primes,
presumably because they might be ‘safe’ to use under some circumstances.
Historical remark 11.6.2 Sophie Germain. Germain was the only female
number theorist of note before the twentieth century, and is definitely an im-
portant figure. She is most well-known today for proving cases of Fermat’s Last
Theorem and (more importantly) developing a general strategy for attacking
it for the first time. During Napoleon’s invasion of various German territories,
she intervened to ensure Gauss’ safety, as she had corresponded with him under
an assumed name for some time on this problem. Her significant work on an
early problem in mathematical physics, while eventually winning an award, was
largely ignored during her lifetime by the French mathematical establishment.

Research into security of number-theoretic cryptography is ongoing. There are
practical points as well; as just one example, one ePrint discovered that 0.2%
of a large set of public keys have “secret keys [which] are accessible to anyone

http://eprint.iacr.org/2012/064

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 179

who takes the trouble” to try to find them. Other studies have found even
more – often because of poor randomness.

Another interesting vulnerability is that there is a significant (in practice,
not in theory) chance that two RSA keys will share a (prime) factor. In another
study it was found that not only did a nontrivial number of apparently unre-
lated keys share a factor (enabling their complete factorization), many keys
were the same! These would still be hard to factor, but as the authors says,
“[g]iven cryptographic key sizes, we would not expect to see devices generate
a single duplicated key for the population sizes we examined if the keys were
generated with sufficient entropy.” This chapter is just a small taste of issues
to consider, and no substitute for having a real security professional!

11.7 Other applications
The methods of Diffie-Hellman and RSA are just the most typical and famous
encryption systems used in introductory number theory texts; there is a huge
amount of active research into the mathematics of cryptography, much of which
uses rather more advanced mathematics. The important point is that we have
observed some of the basic issues to consider in such systems.

A good next system to check out which has mathematics at the same level
is the El-Gamal system (see Exercise 11.8.12). After reading Chapter 17 you
may wish to explore the system mentioned in Subsection 17.5.3. For some-
thing slightly more advanced, see the very brief discussion of elliptic curves in
cryptography at the beginning of Subsection 11.5.1.

There are also tons of other cryptographic applications which are not di-
rectly about encryption. Two of my favorites are finding ways to flip a coin
over the Internet and how to find out if someone makes more money than you
without them revealing their actual salary. For now, we just share one secret.

11.7.1 Secret sharing
Suppose that a company with a particular trade secret has three employees
with clearance to know details of this secret process. However, the company
wants to avoid one of the three being bought off by a competitor and revealing
it in an act of corporate espionage.

The company needs to devise a system where, in order to actually gain
access to the details of the trade secret, one needs two of the people involved.
In a movie, you would have an impressive safe with three locks; each person
would have a separate key to one of the locks, and the safe would be constructed
so that any two of the keys would open it.

But real cryptography is not the movies! For one thing, the data is proba-
bly electronic, so it’s really something we need to do digitally. Cryptography
provides the perfect way to deal with these issues. What we will do is indeed
give each person a key – a digital encryption key, of course3.
Algorithm 11.7.1 Secret Sharing. Suppose the trade secret is digitally
represented as a large number K. Here are steps to create three different keys
so that access to any two of these will allow access to K.

• Choose some prime p > K.

• Choose three numbers m1 < m2 < m3 which are:
3The following description of this threshold scheme is a simplified exposition based on the

one in the book where I first learned it, [E.2.4, Chapter 7.6]; see [E.4.21, Section 4.6] for a
related scheme.

https://factorable.net/weakkeys12.extended.pdf
https://factorable.net/weakkeys12.extended.pdf
https://en.wikipedia.org/wiki/Secret_sharing_using_the_Chinese_remainder_theorem#Asmuth-Bloom's_threshold_secret_sharing_scheme
https://en.wikipedia.org/wiki/Secret_sharing_using_the_Chinese_remainder_theorem#Mignotte's_threshold_secret_sharing_scheme

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 180

◦ mutually coprime and coprime to p, i.e. gcd(mi,mj) = 1 and
gcd(mi, p) = 1.

◦ AND such that
m1m2 > pm3

• Let M = m1m2.

• Now choose some t < M/p at random. Then the keys are as follows:

◦ We have a modified secret

K0 = K + tp

◦ Person i gets the key

ki = K0 (mod mi)

Proof. What good do these do us? Well, the Chinese Remainder Theorem
allows us to reconstruct K0 modulo mimj with any two keys ki and kj . That
may not seem like a lot; that just gives us things to within multiples of mimj .

But by our choice of M = m1m2 > pm3, we know that M/p > m3 (and
hence M/p > mi as well). So

K0 = K + tp < p+ tp = (t+ 1)p ≤ (M/p)p = M

And certainly if K0 < M , then K0 < mimj , since M is the smallest such
product. So the Chinese Remainder Theorem allows us to reconstruct K0

uniquely, and then K = K0 − tp!
Finally, note that just one person doesn’t have enough information to get

K, since that just tells that

K0 ≡ ki (mod mi),

so that
K0 = ki + ℓmi

for all ℓ modulo mi. ■
Obviously, we’ll want to see this in action.

Example 11.7.2 Suppose your secret was K = 5. Let’s pick p = 13, and
numbers 17, 19, 16.

K=5
p=13
m1,m2 ,m3=17 ,19 ,16

We’ll check quickly that m1m2 > pm3:

m1*m2>p*m3

True

So M = 17 · 19 = 323, and we can pick t = 12 more or less randomly as
being less than M/p = 323/13 = 20 11

13 .

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 181

M=m1*m2
t=12
print(M)
print(M/p > t)

323
True

So K0 = K + tp = 5 + 12 · 13 = 161:

K_0=K+t*p
print(K_0)

161

This gives keys ki, which are K0 modulo mi. Note that in our example,
we can check all the conditions in the proof by hand, but with industrial-size
numbers that would not be possible.

k1,k2 ,k3 = mod(K_0 ,m1),mod(K_0 ,m2),mod(K_0 ,m3)
print(k1 , k2, k3)

8 9 1

The three keys are now 8, 9, 1 for moduli 17, 19, 16.
Now let’s actually reconstruct the secret K. First, let’s see that any two

people do have enough information. We do the Chinese Remainder Theorem
on each pair:

First line: turn modular integers back into integers
k1, k2 , k3 = ZZ(k1), ZZ(k2), ZZ(k3)
print(CRT(k1,k2 ,m1,m2))
print(CRT(k1,k3 ,m1,m3))
print(CRT(k2,k3 ,m2,m3))

Now we subtract tp from these outcomes.

161-t*p

5

Great!
One might suspect that a lone person, without one of the other secret

sharers, might be able to just ‘guess’ which of the various solutions was right
in this very small example.

print ([k1+i*m1 for i in [0..10]])
print ([k2+i*m2 for i in [0..10]])
print ([k3+i*m3 for i in [0..10]])

[8, 25, 42, 59, 76, 93, 110, 127, 144, 161, 178]
[9, 28, 47, 66, 85, 104, 123, 142, 161, 180, 199]
[1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161]

As you can see, without all the information it would not be so clear which
is the correct K0. If you get only one chance, you might not want to try to be
lucky! □

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 182

As a note, we should point out that this secret sharing method doesn’t
just protect against someone defecting. It also provides protection against one
of the three becoming incapacitated somehow. If all three were necessary to
unlock the secret, the company is one illness or death or resignation away from
its secret being irretrievably lost without a system of this type.

Finally, it is not terribly hard to extend this to a system that works by
sharing a secret among n individuals in such a way that only k of them are
needed to access the secret. For full details, I recommend [E.2.4, Chapter 7.6];
Example 11.7.2 was originally based on [E.2.4, Example 7.8].

11.8 Exercises
1. Do all the encryptions and/or encodings in Sections 11.1 and 11.2 ‘by

hand’.
2. Encrypt your name using an affine method (ax + b) with key (5, 6, 29)

(don’t worry about letters), and decrypt BXHBI.
3. Create your own ax + b (mod n) system of encryption and bring an en-

crypted message to class (or a friend also interested in number theory).
4. Use the Diffie-Hellman method of encryption to encrypt a short (three to

five character) message with a 26 < p < 50 ‘by hand’ (i.e. without Sage
but with a calculator). Be prepared to explain your choice of e and p, and
calculate that ef ≡ 1 (mod p− 1) by hand.

5. Draw a diagram and show that if Eve has control of both communications
in Diffie-Hellman key exchange (Algorithm 11.4.2), she can intercept and
decrypt all messages.

6. Do this two-parter:
• Suppose you discovered that the message 4363094, where p = 7387543,

actually represented the (numerical) message 2718. What steps
might you take to try to discover e?

• Suppose that you discovered in the previous part by hard work that
e = 35. Now quickly decrypt the message 6618138.

7. Pick two primes between 1000 and 2000 and create an RSA public key
(n, e) for them. What is the decryption key f? Show your work.

8. Suppose that n = 9211 and e = 539.
• Encrypt a (short) message.

• Find the decryption key f for this situation, and decrypt your mes-
sage.

• Use f to sign your name!
9. Come up with your own RSA public-key system by choosing p and q

and e as appropriate, but with n > 10000; then encrypt a short numerical
message and hand in only the public key (n, e) and the encrypted message.
(Your instructor’s job will be to crack it!)

10. Construct a secret and share it in the way described in Algorithm 11.7.1.
11. Learn about a symmetric key cryptosystem in common use. Do you own

any devices which use it?
12. Learn about the El-Gamal public key encryption method. How is it im-

plemented? What mathematics used there is similar to what is used in

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 183

this chapter? What is different?
13. Learn about the Advanced Encryption Standard. How is the mathematics

used there different from what is used in this chapter?
14. Examine the code for encode and decode throughout, or have your instruc-

tor explain it. If you were trying to encode real human communication,
what improvements would you like to make to these? Could you imple-
ment them, and how?

15. In Example 11.7.2, explain mathematically the necessity of the Sage com-
ment # First line: turn modular integers back into integers just be-
fore the invocation of the Chinese Remainder Theorem with CRT.

Summary: An Introduction to Cryptography
A major application of number theory is ensuring privacy of many different
types of communication. This chapter introduces the mathematics of cryptog-
raphy at the level we have reached thus far.

1. We begin with a brief, non-rigorous introduction to Encoding and decod-
ing, as distinct from encryption.

2. We then dive into a few mathematically elementary Encryption tech-
niques which using congruence, keeping the mathematics as the main
focus.

3. A first method which helps motivate the mathematics of public-key meth-
ods is Diffie-Hellman Encryption.

4. This is immediately used to show a real application: Diffie-Hellman key
exchange.

5. The next long section gives a lot of detail about the most famous public
key method, the RSA encryption algorithm.

6. In Section 11.6 we then examine some of the mathematical weaknesses
of RSA, including the notions of Germain and safe primes.

7. There are many other interesting topics in the practice of cryptography,
but we only cover Secret Sharing for now.

In the Exercises it is worth doing the ones where you create a small encryption
and trying to have someone else break it.

CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY 184

Chapter 12

Some Theory Behind Cryp-
tography

Cryptography is fun in and of itself. However, there are powerful theoretical
issues at play throughout – as evidenced by the ever-increasing number of
publications in this area.

Certainly we can only touch on basic questions in this text, but the reader
will be gratified to see how much variety there is even thus restricted. We pick
two of the many theoretical questions to address.

• How do we find all these big primes, anyway?

• How can we be sure it’s not so easy to break the codes – such as by
factoring big numbers?

12.1 Finding More Primes
As we have seen, it is not terribly hard to find lots of small primes. One can
use Sieve of Eratosthenes, or make numbers coprime to known primes and then
factor them.

The problem is that almost every effort to find lots of big primes has been
stymied. Primes simply do not follow nice enough rules to enable easy detec-
tion, despite the fact that they seem to follow very nice rules on average – a
fact we will explore in later chapters.

12.1.1 Fermat primes
Here is an interesting historical example. Recall (Subsection 11.5.1) that our
friend Pierre de Fermat thought that numbers of the form 22

n

+1 would always
be prime – numbers such as 5, 17, and 257.

Definition 12.1.1 We call numbers of the form Fn = 22
n

+ 1 Fermat num-
bers. ♢

However, as we mentioned in Subsection 11.5.1, in 1732 Euler proved that
Fn is not prime if n = 5. (See William Dunham’s [E.5.5] for an engaging take
on the story.) Evaluate the following cell, which quickly produces numbers a
bit long for print!

185

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 186

for n in [0..7]:
pretty_print(html("If␣$n=%s$,␣then␣

$2^{2^n}+1=2^{2^%s}+1=%s$␣factors␣as␣
$%s$"%(n,n ,2^(2^n)+1,factor (2^(2^n)+1))))

For example,

22
7

+ 1 = 59649589127497217 · 5704689200685129054721.

Nobody knows if there are any more primes1 in the sequence Fn past n = 4.
Even the prime factors of elements of the sequence seem to be quite large;
see for instance the end of Subsection 12.6.1 for F8, or Subsection 17.5.2 for
even more information. A very accessible article about the properties a prime
divisor of a Fermat number is [E.7.43], where the authors prove directly that
37 can never divide any Fn.

There is a special test called Pépin’s test that tests Fermat numbers for
primality. It is equivalent to checking whether 3 is a primitive root of 22n + 1.
Proving it is just a little beyond us right now, so we will not address it yet; see
Fact 17.5.1 for the statement and proof.

12.1.2 Primes from Fermat numbers
However, we can at least prove what seems obvious in the computation af-
ter Definition 12.1.1 – namely, that lots of primes arise as factors of Fermat
numbers, even when Fn isn’t itself prime. First, we need a lemma.

Lemma 12.1.2 Suppose ℓ = jk is even, and k is an even factor. Then 2ℓ − 1
factors as

2ℓ − 1 = 2jk − 1 =
(
2j + 1

) ((
2j
)k−1 −

(
2j
)k−2

+
(
2j
)k−3 − · · ·+

(
2j
)
− 1
)

Proof. Multiply and/or apply a little induction. (See Exercise 12.7.1.) ■

Example 12.1.3 For instance, 26 − 1 = 63 factors as

23·2 − 1 = (23 + 1)(23 − 1)

which corresponds to the factorization 9 · 7.
Similarly, 212 − 1 = 4095 factors as

23·4 − 1 = (23 + 1)(29 − 26 + 23 − 1)

which corresponds to the factorization 9 · 455. □

Proposition 12.1.4 Fermat numbers are coprime. Fn = 22
n

+ 1 and
Fm = 22

m

+ 1 are coprime if m ̸= n.
Proof. First, notice that any two Fermat numbers are very closely related to
each other; if n < m, then Fn − 1 divides Fm − 1. In fact, one is a power of
the other:

22
m

=
(
22

n
)2m−n

Because of this, using Lemma 12.1.2 with j = 2n and k = 2m−n (which is
certainly even), we get

22
m

− 1 =
(
22

n

+ 1
)((

22
n
)2m−n−1

−
(
22

n
)2m−n−2

+ · · ·+
(
22

n
)1

− 1

)
1See the witty article [E.7.24] for an argument that we shouldn’t expect many!

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 187

This implies the divisibility relationship

Fn = 22
n

+ 1 | 22
m

− 1 = Fm − 2

so any number d that divides Fn also divides Fm − 2. Now we do a standard
trick (see also Exercise 2.5.6). Combine all of the above facts to see that any
divisor of Fn which also divides Fm must divide Fm − (Fm − 2) = 2, so a
common divisor of Fn and Fm could only be two or one.

But both Fermat numbers are odd, so the gcd must be 1. ■

12.1.3 Mersenne primes
Another early attempt at finding big primes was an idea of Marin Mersenne.
Historical remark 12.1.5 Marin Mersenne. Mersenne was a Minim monk
who not only acted as a clearinghouse for scientific knowledge in early 17th
century France (particularly between Pascal, Fermat, Descartes, Roberval, and
their friends) but also wrote major theological and music theoretical treatises
of his own. See Figure 19.4.12.

Mersenne suggested2 that one try searching for primes of the form 2p − 1,
where p is itself prime.
Definition 12.1.6 In general, numbers of the form Mn = 2n − 1 are called
Mersenne numbers. If they are prime, they are called Mersenne primes.

♢
Using a variant of Lemma 12.1.2 (see Exercise 12.7.2), it is not too hard to

prove that if n is composite then Mn is too; see Exercise 12.7.7. Further, not
every Mp for prime p is prime either; evaluate the following Sage cell to verify
this.

for p in prime_range (100):
pretty_print(html("If␣$p=%s$,␣then␣$2^p -1=2^{%s}-1=%s$␣

factors␣as␣$%s$"%(p,p,2^p-1,factor (2^p-1))))

Certainly the computation above doesn’t always give primes (recall for
instance the discussion at the end of Subsection 7.5.2), but it’s not a bad
source.
Historical remark 12.1.7 GIMPS. You can help the world search for more
Mersenne primes if you leave your personal computer on and connected to the
Internet, via the Great Internet Mersenne Prime Search (GIMPS). Random
computers in labs at the University of Central Missouri and UCLA have found
some of the largest known primes this way.

The most recent one (as of this writing in January 2021) was found in
December 2018! The largest known such primes are very large; this one has
nearly twenty-five million digits, and the folks at Numberphile made a very
amusing video unwrapping a book containing a previous record holder of ‘only’
twenty-two million digits. GIMPS even won a monetary prize for finding these
huge primes; they shared it with many of the people who made it possible.
Historical remark 12.1.8 The Skylake bug. These primes are far too
large, and are not common enough, to use for most serious applications3, but
nonetheless they help us investigate ideas about primes. A less obvious but

2For more on the precise nature of his suggestion, its provenance, and the ‘rule’ by which
he seems to have tried to decide which of these numbers should be considered, see Stillman
Drake’s article The rule behind ‘Mersenne’s numbers’ in Physis Volume 13, Number 4, and
Vittorio Boria’s dissertation, Marin Mersenne: Educator of scientists.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Pascal.html
https://www-history.mcs.st-andrews.ac.uk/Biographies/Fermat.html
https://www-history.mcs.st-andrews.ac.uk/Biographies/Descartes.html
https://www-history.mcs.st-andrews.ac.uk/Biographies/Roberval.html
http://www.mersenne.org
https://www.mersenne.org/primes/press/M82589933.html
https://www.mersenne.org/primes/press/M82589933.html
https://www.youtube.com/watch?v=tlpYjrbujG0
https://www.youtube.com/watch?v=tlpYjrbujG0
https://dra.american.edu/islandora/object/thesesdissertations%3A1871

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 188

interesting application is that searching for very large primes can also help
more mundane hardware testing.

A good example of this is that computing the GIMPS program uncovered
a bug in a major Intel chip. Number theory can push our hardware (and
software!) beyond our imagination. (See also Historical remark 22.3.9.)

Implementing a program like this on normal computers is conceivable is
because of a special test which applies just to numbers of the form 2p − 1.
Algorithm 12.1.9 Lucas-Lehmer test. Let x0 = 4 and let p be prime
(greater than 2). To test whether 2p − 1 is prime, create the list of numbers

xn+1 = residue of x2
n − 2 modulo 2p − 1

Do this p− 2 times; if the result xp−2 is divisible by 2p− 1 (i.e., is zero modulo
2p − 1), then 2p − 1 is in fact prime.
Example 12.1.10 With p = 5 and 2p − 1 = 31, we would start with x0 = 4;
doing it 5− 2 = 3 times gives:

1. 42 − 2 = 14 modulo 31 is 14

2. 142 − 2 = 194 modulo 31 is 8

3. 82 − 2 = 62 modulo 31 is 0

And of course 31 is indeed prime. □
You can try the test, naively implemented in Sage, in the following cell.

@interact
def _(p=(71, prime_range (100))):

test = 4
num = 2^p-1
for i in range(p-2):

test=(test ^2-2)%num
pretty_print(html("The␣test␣says␣"+str(bool(test ==0))))
pretty_print(html("And␣in␣fact␣$2^{%s}-1=%s$␣primality␣

is␣"%(p,num)+str(is_prime(num))))

Proving Algorithm 12.1.9 is slightly beyond our capabilities in this text.

12.1.4 Primes from Mersenne numbers
We can prove the lesser result that Mersenne numbers are coprime, which (just
as with the Fermat numbers) can give us a lot of interesting prime factors.

Proposition 12.1.11 Mersenne numbers are coprime. Mersenne num-
bers 2p − 1 and 2q − 1 with coprime exponents are themselves coprime.
Proof. By way of contradiction, let d > 1 be the gcd of the two numbers 2p− 1
and 2q − 1. Let’s investigate the order of 2 ̸= 1 in Ud. (Before reading more,
think about why 2 is even in this group.)

By definition of divisibility,

2p ≡ 1 (mod d) and 2q ≡ 1 (mod d)

By group theory (use Theorem 8.3.12) we know that 2k ≡ 1 means that k is a
multiple of the order |2| of the element 2. Thus p and q both are multiples of
|2|.

3Though see United States patent 6307935, which explicitly uses them to directly encrypt
onto a special elliptic curve.

http://arstechnica.com/gadgets/2016/01/intel-skylake-bug-causes-pcs-to-freeze-during-complex-workloads/
http://arstechnica.com/gadgets/2016/01/intel-skylake-bug-causes-pcs-to-freeze-during-complex-workloads/
https://patents.google.com/patent/US6307935

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 189

Since p and q are coprime, though, the only possibility for |2| is that |2| = 1.
This is a contradiction, so our assumption that d > 1 was wrong. ■

See this linked video featuring Holly Krieger, by Numberphile for an inter-
esting take on this. Namely, all Mersenne numbers after 26 − 1 (even the ones
where p is not prime!) have a new prime divisor.

12.2 Primes – Probably
Primality testing is full of little tidbits like those in the previous section, and
tantalizingly devoid of easy methods that work for all special cases. Indeed,
none of these paths lead us to reliable, reasonably fast discovery of large primes
for cryptographic purposes, nor do other computationally infeasible methods
like using Wilson’s Theorem or other even stranger formulas (some of which
appear later in this text).

Instead, what is typically done is to pick a number, and then use tests on
it that do not guarantee primality!

Why would this work? The idea is that if a given number passes enough
tests that do not guarantee primality but have a quite low false positive rate
in practice, then the probability the number you have is composite is lower
than the (very low) chance that your computer made an arithmetic error due
to cosmic rays (though one still has to be careful of bugs like the one described
in the discussion before Algorithm 12.1.9).

This is astonishing, but true. Then if you end up with a number that likely
to be prime, you can always confirm its primality with one of the various slower
tests I will not describe.

12.2.1 Pseudoprimes
We start this discussion with our visual representation of powers (see Subsec-
tion 8.2.1).

0 2 4 6 8 10

1

3

5

7

9

1

3

5

7

9

Figure 12.2.1 Colored table of powers modulo n = 11

Notice again here that Fermat’s Little Theorem is visible in the second-to-
last column. The graphic has been expanded, so that the last column is a slight

https://www.youtube.com/watch?v=09JslnY7W_k

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 190

restatement thereof, true for all a:

ap ≡ a (mod p).

(See Exercise 12.7.3 and Exercise 9.6.3.) Go ahead and confirm it in the inter-
active version.

import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator , FuncFormatter
@interact
def power_table_plot(p=(11, prime_range (100) [2:])):

mycmap = plt.get_cmap(' gist_earth ' ,p-1)
myloc = IndexLocator(floor(p/5) ,.5)
myform = FuncFormatter(lambda x,y: int(x+1))
cbaropts = { ' ticks ' :myloc , ' drawedges ' :True ,

' boundaries ' :srange (.5,p+.5,1)}
P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in range(1,p)

for b in srange(p+1)]),cmap=mycmap , colorbar=True ,
colorbar_options=cbaropts , ticks=[myloc ,myloc],
tick_formatter =[None ,myform])

show(P,figsize =6)

This is a useful criterion, as it works for all input, including multiples of
the modulus. We can now use it to state a test for possible primality:

Fact 12.2.2 If there is an a such that an ̸≡ a (mod n), then n must be
composite.

So if an ≡ a (mod n) for a given n, it’s at least possible that n is prime.

Definition 12.2.3 If an ≡ a (mod n), we say n passes the base a test. ♢
It turns out that everyone from the ancient Chinese to Leibniz used this

test for the base a = 2 to assert numbers are prime. And it doesn’t do a
bad job. As some former students pointed out, it’s sort of like internet date
matching for primes; it doesn’t always work but can succeed reasonably often.

@interact
def _(n=100):

pretty_print(html("Here␣are␣the␣numbers␣through␣$%s$␣
that␣pass␣the␣base␣2␣test"%n))

pretty_print(html("along␣with␣whether␣they␣are␣actually␣
prime"))

for i in [2..n]:
if mod (2^i,i)==2:

pretty_print(html(r"$2^{%s}\equiv␣2\text{␣(mod␣
}%s)$␣and␣the␣primality␣of␣$%s$␣is␣
%s"%(i,i,i,is_prime(i))))

We can change the numbers in the range of the preceding interact to check
for more – say up to 1000, which allows exploring the following question.
Question 12.2.4 Are there any numbers which satisfy the base a test and are
not prime? □

To the surprise of many in the world of numbers, the answer is yes. The
numbers n = 341, n = 561, and n = 645 turn out to fall in that category (for
base a = 2).

print("We␣factor␣341␣and␣get␣%s"%factor (341))
print("We␣factor␣561␣and␣get␣%s"%factor (561))

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 191

print("We␣factor␣645␣and␣get␣%s"%factor (645))

We factor 341 and get 11 * 31
We factor 561 and get 3 * 11 * 17
We factor 645 and get 3 * 5 * 43

That’s still not bad – out of one hundred seventy-one total such potential
primes base 2, only three of them actually are not prime, or about one and
three quarters percent. That is unusual enough that we have a special name
for composite numbers that pass one of the base a tests.

Definition 12.2.5 Pseudoprimes. If an ≡ a (mod n) but n is not prime,
we say it is a pseudoprime base a. ♢

That is to say, if a number satisfies Fermat’s Little Theorem, we think it is
likely enough to be prime to call it a pseudoprime if it isn’t. (Prime, that is.)

Remark 12.2.6 We will loosely follow a somewhat standard convention, par-
ticularly since we’re talking about finding primes, and only consider odd pseudo-
primes. In fact, according to an article by some experts in pseudoprimes
[E.7.32], the first even pseudoprime to the base 2 (161038 = 2 · 73 · 1103)
was only discovered in 1950. See also Exercise 12.7.16.

Perhaps unfortunately to cryptographers (though interestingly to pure math-
ematicians!), it turns out that there are infinitely many such pseudoprimes.

Fact 12.2.7 If n is (an odd) pseudoprime (base 2), then so is 2n − 1.
We will get this result as a corollary of something stronger soon (see Corol-

lary 12.4.3 and Theorem 12.4.2).
All the Fermat and Mersenne numbers pass the base 2 test, incidentally,

though they are all quite large compared to a typical number you might try.

12.2.2 Prime impostors, and how to avoid them
If we want to check things out more carefully, we can try to test for primality
with a different base. In the next cell, we choose a = 3.

for n in [341 ,561 ,645]:
pretty_print(html(r"$3^{%s}\equiv␣%s\text{␣(mod␣

}%s)"%(n,mod(3,n)^n,n)))

As you can see, this exposes 341 and 645 as fakes. What about 561? Let’s
try that one with base a = 5 as well.

@interact
def _(p=(5, prime_range (50))):

for pr in prime_range(next_prime(p)):
pretty_print(html(r"$%s^{561}\ equiv␣%s\text{␣(mod␣

}561)"%(pr,mod(pr ,561) ^561)))

Hmm, that’s interesting. What if I change to a different prime base, like
a = 7 or 11? Try it above.

In the next cell, I get systematic. We should expect output if 561 doesn’t
pass the base a test for some a.

@interact
def _(p=(5, prime_range (1000))):

pretty_print(html("The␣primes␣up␣to␣$%s$␣for␣which␣561␣

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 192

fails␣the␣base␣p␣test:"%p))
for pr in prime_range(next_prime(p)):

if mod(pr ,561) ^561!= pr:
pretty_print(html(r"$%s^{561}\ equiv␣%s\\text{␣

(mod␣}561)$"%(pr,mod(pr ,561) ^561)))

It appears that p561 ≡ p mod 561 for every prime p! Let’s prove it.
Fact 12.2.8 The number 561 is a pseudoprime for every integer base a.
Proof. We know that

561 = 3 · 11 · 17,

so by Fact 7.2.2 (and, ultimately, the Chinese Remainder Theorem)

a561 ≡ a (mod 561)

if and only if a561 ≡ a holds for the prime power factors 3, 11, 17; so we will
check them.

Remember, the exponents for these congruences live in the (mod ϕ(p))
world, so we just need to check what 561 is in each of those worlds. We get:

• 561 ≡ 1 (mod 16 = 17− 1) so a561 ≡ a1 (mod 17)

• 561 ≡ 1 (mod 2 = 3− 1) so a561 ≡ a1 (mod 3)

• 561 ≡ 1 (mod 10 = 11− 1) so a561 ≡ a1 (mod 11)

That is, for p = 3, 11, 17 we see

a561 ≡ a1 (mod p)

Using Proposition 5.4.5, this congruence is always true!
By the way, we note that a560 is not congruent to 1, which explains why

we use an ≡ a for these definitions. ■
Definition 12.2.9 We call a number which is pseudoprime to every base a,
but is not a prime number a Carmichael number, in honor of the first person
to actually produce such numbers, Robert Carmichael (in 1912). ♢

So is 561 a Carmichael number? We saw the factorization above, but here
it is again:

factor (561)

3 * 11 * 17

The proof of Fact 12.2.8 suggests that to find a Carmichael number n, we
might want to look at n which are a product of primes pi such that n− 1 ≡ 1
in the exponent world of pi. It turns out that this is true, and one can prove
something even more specific.
Proposition 12.2.10 Korselt’s Theorem. Carmichael numbers are pre-
cisely those composite n for which n is a product of at least two distinct primes
pi (no squares)

n = p1p2p3 · · · pk with pi ̸= pj

such that
pi − 1 | n− 1

for all the prime factors.

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 193

Proof. Prime numbers satisfy almost all the conditions trivially. To show that
561 is a Carmichael number we used this idea in the form n ≡ 1 (mod ϕ(pi))
for all three prime factors, and essentially the same argument applied to any
number satisfying the hypotheses is a Carmichael number.

We will not prove the other half of this theorem (that all Carmichael num-
bers have this form). It is not hard, however, using a slight variant on the
Euler ϕ function one can acquire from investigating Un for composite n. ■
Example 12.2.11 Evaluate this Sage cell to see the previous result applied to
identify another Carmichael number.

n=29341
pretty_print(html("$%s$␣is␣composite␣with␣factorization␣

$%s$,␣but"%(n,factor(n))))
for fact ,pow in factor(n):

pretty_print(html(r"$%s^{%s}\equiv␣%s\text{␣(mod␣
}%s)$"%(fact ,n,mod(fact ,n)^n,n)))

pretty_print(html("and"))
for fact ,pow in factor(n):

pretty_print(html(r"$%s\equiv␣%s\text{␣(mod␣
}\phi(%s)=%s)$"%(n, mod(n,euler_phi(fact)), fact ,
euler_phi(fact))))

□

12.3 Another Primality Test
For a long time it was open whether we might be lucky and show there are only
finitely many Carmichael numbers. However, as was proved in the mid-nineties,
there are infinitely many Carmichael numbers.

So now what? Can we find other ways to reliably get primes?

12.3.1 Another pattern
To answer this, we turn to another result visible in our modular power graphic.

http://www.math.dartmouth.edu/~carlp/PDF/paper95.pdf

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 194

0 2 4 6 8 10

1

3

5

7

9

1

3

5

7

9

Figure 12.3.1 Colored table of powers modulo n = 11

As usual, Fermat’s Little Theorem is the right-hand column. What’s that
pattern in the middle column? Can you confirm it in the interactive version?

import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator , FuncFormatter
@interact
def power_table_plot(p=(11, prime_range (100) [2:])):

mycmap = plt.get_cmap(' gist_earth ' ,p-1)
myloc = IndexLocator(floor(p/5) ,.5)
myform = FuncFormatter(lambda x,y: int(x+1))
cbaropts = { ' ticks ' :myloc , ' drawedges ' :True ,

' boundaries ' :srange (.5,p+.5,1)}
P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in range(1,p)

for b in srange(p)]),cmap=mycmap , colorbar=True ,
colorbar_options=cbaropts , ticks=[myloc ,myloc],
tick_formatter =[None ,myform])

show(P,figsize =6)

Theorem 12.3.2 The Square Root of Fermat’s Little Theorem.

a(p−1)/2 ≡ ±1 (mod p) for any odd prime modulus p ∤ a
Proof. Since ap−1 ≡ 1 we know that a(p−1)/2 is a solution to x2 ≡ 1. (Note
that p is odd so (p− 1)/2 makes sense.)

As in Section 7.3, we can rewrite and factor the congruence x2 ≡ 1 as
p | x2 − 1 = (x+ 1)(x− 1). Given that p is an odd prime, that means p | x− 1
or p | x+ 1.

Then x ≡ ±1 (mod p). (This is restated in Subsection 16.1.1.) Since
a(p−1)/2 is one such solution, then a(p−1)/2 ≡ ±1 (mod p). ■

What is the use for us of this theorem? Think similarly to the pseudoprime
situation. Imagine we are testing some number n for primality, but we then
find that

a(n−1)/2 ̸≡ ±1 (mod n),

then that number is definitely not prime.

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 195

Let’s try this on our pesky Carmichael number, once again starting with
base a = 2. (Remember that we already know 2561−1 ≡ 1 since 561 is a
pseudoprime.)

mod (2 ,561) ^((561 -1) /2)

1

Not again! Try another base – maybe a = 3?

mod (3 ,561) ^((561 -1) /2)

441

Phew, this works, as 3(561−1)/2 ̸≡ ±1 (and 561 is not prime). So this
criterion does help us test at least a little better.

12.3.2 Miller’s test
A slightly stronger variant of this test is called Miller’s test base a for
primality, after American computer scientist Gary Miller.
Algorithm 12.3.3 Miller’s test for base a. We will proceed by repeatedly
dividing and then checking a congruence.

• Begin with n− 1; divide it by two, and then check the power

a(n−1)/2 (mod n).

If the result is −1 we say n passes Miller’s test. If the result is not ±1,
we say it fails Miller’s test (since if n is prime, the result would certainly
be ±1). If the result is +1, we continue.

• If we have arrived at a point where we can no longer divide n − 1 by
two, we say n passes Miller’s test. Otherwise, assuming a(n−1)/2 ≡ 1, we
continue by dividing the power itself by two and then taking a to that new
power. Once again, if the result is −1 we say n passes the test, and if it
is not ±1, we say it fails.

• If the result is +1 and we can continue dividing the power by two, do so
and check the result, as often as need be. If we arrive at the point where
we have divided n− 1 by all possible powers of two and the result is still
±1, then we say n passes the test.

Example 12.3.4 Let’s see a few examples of this. First, the number 1387 is
a pseudoprime base 2 – but it does not pass Miller’s test, which is good since
it’s composite. Try the following cell to see exactly what happens.

n=1387
pretty_print(html("We␣know␣$%s$␣is␣composite␣because␣it␣

factors␣as␣$%s$"%(n,factor(n))))
pretty_print(html("Let ' s␣check␣$2^{(%s-1)/2}$␣modulo␣$%s$:␣

it ' s␣$%s$"%(n,n,mod(2,n)^((n-1)/2))))

Looking good … But let’s try another pseudoprime number (the Mersenne
number M11, in fact) to see if it passes, just to be sure.

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 196

n=2047
pretty_print(html("We␣know␣$%s$␣is␣composite␣because␣it␣

factors␣as␣$%s$"%(n,factor(n))))
pretty_print(html("Let ' s␣check␣$2^{(%s-1)/2}$␣modulo␣$%s$:␣

it ' s␣$%s$"%(n,n,mod(2,n)^((n-1)/2))))

As we can see, this shows that n = 2047 passes the first part of Miller’s test
base 2, and that there is no further to go because (2047− 1)/2 = 1023 is odd.
So, as far as we know thus far, 2047 is prime (though actually it is the lowest
Mersenne number with prime exponent not to be prime).

Let’s try Algorithm 12.3.3 with another number, 1009.

n=1009
pretty_print(html("We␣know␣$%s$␣is␣prime␣because␣it␣factors␣

as␣$%s$"%(n,factor(n))))
pretty_print(html("Let ' s␣check␣$2^{(%s-1)/2}$␣modulo␣$%s$:␣

it ' s␣$%s$"%(n,n,mod(2,n)^((n-1)/2))))
pretty_print(html("Let ' s␣check␣$2^{(%s-1) /2/2}$␣modulo␣$%s$:␣

it ' s␣$%s$"%(n,n,mod(2,n)^((n-1) /2/2))))

This passes Miller’s test the first time, but the algorithm keeps going since
our first computation was ≡ 1. The second time we got ≡ −1, so we stop and
hope the number is prime. (It is, in this case!) □

12.4 Strong Pseudoprimes
Since composite numbers can pass Miller’s test too, nomenclature can get
frustrating if we don’t organize. So we come up with another name.
Definition 12.4.1 We call a composite number n that passes Miller’s test base
a a strong pseudoprime base a. ♢

The bad news is that strong pseudoprimes exist, as we saw above with
n = 2047. In fact, we can prove a theorem about them analogous to Fact 12.2.7,
and which implies it (see Corollary 12.4.3).

Theorem 12.4.2 If n is a pseudoprime base 2, then 2n−1 is a strong pseudo-
prime base 2.
Proof. As per our convention, let n be composite and odd, but it passes the
base two test:

2n ≡ 2 (mod n).

Since n is odd, we can cancel 2 in the congruence, and get

2n−1 ≡ 1 (mod n).

Rewrite this as 2n−1 − 1 = nk for some integer k.
Since 2n−1 − 1 is odd, then so is k necessarily. Now comes some final

manipulation to prepare to apply Miller’s test to 2n − 1:

(2n − 1)− 1 = 2n − 2 = 2
(
2n−1 − 1

)
= 2nk.

Now use the preceding equation as the exponent in Miller’s test and a clever
reduction:

2[(2
n−1)−1]/2 = 22nk/2 = 2nk = (2n)

k ≡ 1k ≡ 1 (mod 2n − 1).

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 197

Since [(2n − 1)− 1]/2 = 2n−1 − 1 is odd, the number passes Miller’s test.
All that remains is to show 2n − 1 is composite if n is composite; this is a

fairly straightforward extension of Lemma 12.1.2 (see Exercise 12.7.7). ■
Corollary 12.4.3 If n is a pseudoprime base 2, so is 2n − 1. (This is
Fact 12.2.7.)
Proof. All we need is that (±1)2 = 1. ■
Corollary 12.4.4 There are infinitely many strong pseudoprimes (and hence
pseudoprimes) base 2.
Proof. Take your favorite pseudoprime, and keep subtracting one from two to
the power of the previous (strong) pseudoprime. ■

Example 12.4.5 For instance, we now know that 2341 − 1 must fall in that
category. If you try the cell below you will see that the (very large) second
number is odd, which confirms it.

n=2^341 -1
print(mod(2,n)^((n-1)/2))
print ((n-1) /2)

□
But there are not any ‘strong Carmichael numbers’! In fact:

Theorem 12.4.6 If n is an odd composite positive integer, then n passes
Miller’s test for at most (n− 1)/4 bases a between 1 and n− 1.

Although the proof is accessible to us at this point, we will not provide it
for the sake of space. It counts numbers of solutions of xℓ − 1 modulo various
prime powers and combines them with the Chinese Remainder Theorem to
give a good counting argument.

Needless to say, no one could use the base a test for enough bases to prove
primality for any realistic n! But Michael Rabin used this fact to suggest a test
for a probable prime with probability of failure less than

(
1
4

)k for any desired
k.
Algorithm 12.4.7 Miller-Rabin (probabilistic) primality test. Run
Miller’s test for k different bases less than n − 1. If a number passes all of
them, the probability of failure is less than

(
1
4

)k.
For 100 bases, this is the probability that would come out.

(1./4) ^100

6.22301527786114e-61

So if you run the test for 100 bases, you are in pretty decent shape.
You can also always use some slow test to prove primality. That is what

is called a certificate of primality, and although you may not believe it,
programs that reliably generate reasonably large (100-200 digits, right now)
primes and can verify it are hot items on the virtual shelves of those who care
about such things.

Finally, let’s see this in action. Remember that we wanted keys larger than
1024 bits for at least a semblance of security in RSA? Here we go with a start:

p=next_probable_prime(randrange (2^1024))
q=next_probable_prime(randrange (2^1024))
n=p*q
pretty_print(html(p))

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 198

pretty_print(html(q))
pretty_print(html(n))

The p and q we get above are just probable primes. Verifying them could
take a little longer! Here, we try it with just one of them.

p=next_probable_prime(randrange (2^1024))
%time is_prime(p)

CPU times: user 1.35 s, sys: 0 ns, total: 1.35 s
Wall time: 1.35 s

True

Sage note 12.4.8 Reminder about timing. Don’t forget, you could use
%time is_prime(p) to time this operation in a worksheet or Sage command
line.

12.5 Introduction to Factorization
Let’s take a last crack at issues directly related to cryptography. (That doesn’t
mean that other stuff we do in this text is unrelated – oh no! Especially the
geometry is connected. But we will not make direct connections.)

We will focus on the main attack on the RSA algorithm, namely finding
nontrivial factorizations, or factorization.

12.5.1 Factorization and the RSA
Let’s look at another toy RSA problem to get a sense of what is going on. First,
I choose a modulus n = 899. I will also use Sage to verify it has two prime
factors, without telling you what they are.

n=899
print("There␣are␣%s␣prime␣factors␣and␣their␣powers␣are␣%s␣

and␣%s."%(len(n.factor ()), n.factor ()[0][1] ,
n.factor () [1][1]))

There are 2 prime factors and their powers are 1 and 1.

Then I choose an exponent to raise my secret message by …

e=13
print("We␣choose␣n=%s␣and␣exponent␣e=%s,␣and␣verify␣that␣

gcd(e,phi(n))=1:␣%s"%(n,e,1== gcd(e,euler_phi(n))))

We choose n=899 and exponent e=13, and verify that
gcd(e,phi(n))=1: True

I haven’t told you ϕ(n), but this guarantees it is coprime to my (public)
encryption key, which I have chosen to be e = 13. Now we can encode our
message, x = 11.

x=11
message=mod(x,n)^e
message

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 199

21

Now, how could we hope to crack this sinister message? (Assume that Sage
doesn’t have enough power to compute euler_phi(899) directly.) Well, we do
know n = 899 and that e = 13. That could help. Remember, if we knew p
and q, we could easily calculate ϕ(n) without even using Sage, which should
be enough.
Question 12.5.1 Can you quickly now factor n = 899 without using Sage?
Solution. Hint: be smart about it. Think strategically; how should I have
chosen a public modulus n to make this hard to do? How should p and q relate?

□
Hopefully you figured out p and q. Then we just need to find an inverse

modulo ϕ(n) = (p− 1)(q − 1) to get our decryption key.

Sage note 12.5.2 Trying your primes yourself. You can fill in the values
you got for p and q here to make things work. Try it!

p=
q=
f=inverse_mod(e,(p-1)*(q-1))
f

When we decrypt, we should get the original message x = 11 again.

message^f

This simple example makes it clear why factorization, not just looking for
primes, might be important. To be truthful, many researchers in factorization
simply do it to stay one step ahead of the other side, who is presumably also
researching factorization – so to some extent it is an arms race.

But factorization is also inherently interesting mathematically! Here is an
interesting statement, as an example.

Fact 12.5.3 If I know ϕ(n) and n, and know that n is a product of exactly two
distinct primes, I can easily compute them both.
Proof. Of course, if we know ϕ(n), we already can crack the code, but who
cares; maybe we are given ϕ(n) and n and want the factorization. Here is the
short proof.

Suppose the (as yet unknown) primes are p and q. Then expand our formula
to

ϕ(n) = (p− 1)(q − 1) = pq − p− q + 1 = n− (p+ q) + 1

We now can represent both p+ q and pq as formulas in n and ϕ(n):
• p+ q = n− ϕ(n) + 1

• pq = n

Where might we have a formula with p + q and pq? That should seem
familiar …

(x− p)(x− q) = x2 − (p+ q)x+ pq

So we can simply use the quadratic formula on this expression to get the values
for p and q!

p, q =
(p+ q)±

√
(p+ q)2 − 4pq

2
=

n− ϕ(n) + 1

2
±
√

(n− ϕ(n) + 1)2 − 4n

2

■

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 200

Example 12.5.4 Continuing the example above,

x2 − (899− 840 + 1)x+ 899 = x2 − 60x+ 899 = 0

gives

x =
60±

√
602 − 4(1)(899)

2(1)
= 30±

√
3600− 3596

2
= 30± 1 = 29, 31.

□

12.5.2 Trial division
The first, and oldest, method of factoring is one you already know, and maybe
used a few minutes ago – trial factorization, or trial division. It is the
method we used with the Sieve of Eratosthenes; you just try each prime number,
one by one.

In Algorithm 6.2.3, do you remember what the highest number you would
have to try is in order to factor a given n by trial division? (Can you prove
it?)

The following algorithm does this very naively (and slowly, even for trial
division). Let’s try to talk through what each step does.

Sage note 12.5.5 Code for trial division. This is one of the few places
where it really is important to follow the code. That said, the details of the
syntax are not as important as the algorithm – unless you want to harness the
power of computers more effectively!

def TrialDivFactor(n): # We define the function
p = next_prime (1) # We start off by testing the

next prime after 1
top = ceil(math.sqrt(n)) # This was proved to be the

biggest number we need
while p < top: # As long as the prime is less

than that bound , we keep going
if mod(n,p)==0: # In this case , p divides n and

we ' re done!
break # This is Python ' s way of saying

we are done searching
p=next_prime(p) # Otherwise , we try the next

prime until we ' re done looking
if n==1: # We probably could have checked

for this right away
print("1␣is␣not␣prime") # Well , 1 is not a prime!

elif p==n: # If we get all the way through
and end with a prime ...
print(n,"is␣prime") # Then our number was prime

elif mod(n,p)==0: # But otherwise ... (!)
print(n,"factors␣as",p,"times",n/p) # We have a

factorization!
else: # And finally ...

print(n,"is␣prime") # We must have gotten
lucky.

Algorithm 12.5.6 Trial Factorization. To factor n, first enumerate the
primes in ascending order p1, p2, · · · pk, where pk is the largest prime less than
or equal to

√
n. For each prime in order, check whether pi | n. If it does,

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 201

terminate by returning pi and n/pi; otherwise n must be prime.
Now let me verify it works on easy examples. Remember, we are just

looking for factors at this point, not complete factorizations.

for z in range (1,18):
TrialDivFactor(z)

1 is not prime
2 is prime
3 is prime
4 factors as 2 times 2
...
17 is prime

Okay, so this seems reasonable. But it’s a little more problematic when you
try to do large numbers, where large means “bigger than you can do by hand,
but nowhere close to the size we looked at in general.” I’ll actually time4 how
long it takes.

TrialDivFactor (6739815371)
timeit(' TrialDivFactor (6739815371) ')

6739815371 factors as 13099 times 514529
5 loops , best of 3: 76 ms per loop

Sage actually implements this in a much faster way, primarily by using
optimized integers and a special version of Python that allows turning it into
muchfaster code in the C language (Cython). Notice that the command returns
just a single factor – giving another slight speedup.

print (6739815371. trial_division ())
timeit(' 6739815371. trial_division () ')

13099
625 loops , best of 3: 43 �s per loop

That’s roughly one thousand times faster for the initial example! Naturally,
it’s possible to speed up even more. Sometimes getting the full factorization
slows us back down; after all, one has to check that the remaining factor is
prime (or factor it, if it isn’t), so checking this is worth it too.

print (6739815371. factor ())
timeit(' 6739815371. factor () ')

13099 * 514529
625 loops , best of 3: 23 �s per loop

Even for the following smaller number it takes some actual time – here is
where one sees the difference between different implementations of the same
algorithm.

timeit(' TrialDivFactor (997*991) ')

125 loops , best of 3: 1.63 ms per loop

4Unfortunately Sage interacts do not currently support using timeit in an interact prop-
erly.

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 202

timeit(' (997*991).trial_division () ')

625 loops , best of 3: 3.26 µs per loop

timeit(' (997*991).factor () ')

625 loops , best of 3: 8.5 µs per loop

12.5.3 Starting in the middle
So much for trial division! But we have other tools at our disposal.

Some of you might have tried something other than straight trial factor-
ization when attacking n = 899 from our earlier problem. Reason this way;
since we know that someone is trying to protect a secret, they probably are
not going to pick a number with primes like 3 and 5 in it. After all, that would
be too easy to factor.

In fact, it stands to reason that the primes p and q should be relatively
large compared to n – so why not start in the middle?

This was Fermat’s idea for factoring larger numbers. However, he didn’t
just start with primes in the middle; for one thing, if your number is even
somewhat big and you don’t have a computer or huge list of primes, how
would you know where to start? So Fermat became clever, as always, and used
an algebraic identity to help himself along.
Fact 12.5.7 Write n = ab, with a > b, and assume n is odd. Then we can
write n as a difference of two square numbers.
Proof. Namely, n is the difference of the squares of s = a+b

2 and t = a−b
2 :

s2 − t2 =

(
a+ b

2

)2

−
(
a− b

2

)2

=
a2

4
− a2

4
+

b2

4
− b2

4
+

2ab

4
+

2ab

4
= ab = n.

■
Remark 12.5.8 Why is it fine to assume n is odd in these circumstances?

This may seem like an obscure identity to us, but at the time (and even
well into the last century) such identities were the bread and butter of algebra,
before we had tools like computers to help us along.

So what Fermat did5 was try this identity backwards. Here is his strategy.
Algorithm 12.5.9 The Fermat factorization algorithm. To find a factor
for a number n, begin by seeking a perfect square s2 bigger than n, but still as
close as possible. Now, do the following until you succeed, increasing s by one
each time.

• Check whether s2 − n is itself a perfect square t2.

• That means we essentially turned

s2 − t2 = n around into s2 − n = t2.

Once you succeed, then s and t are not the factors of n; rather, they are

a = s+ t and b = s− t.
5At least in the general case; see [E.5.8, II.IV] for his approach for special numbers, such

as

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 203

Proof. It should be clear why a and b are the factors. But how do we know
this algorithm terminates?

Assuming you started with s as instructed, eventually you will reach s =
(n + 1)/2, which is much larger than

√
n. But then ((n + 1)/2)2 − n =

n2+2n+1−4n
4 = ((n − 1)/2)2. You should check that this gives us the trivial

factorization n = n · 1, though! (See Exercise 12.7.11) ■
Here is an implementation – again, assuredly slow, but at least verbose in

its explanation – of this strategy. We simply start with the next s above the
square root of n, and just keep trying s2 − n again and again for bigger and
bigger s.

def FermatFactor(n,verbose=False):
if n%2==0:

raise TypeError("Input␣must␣be␣odd!")
s=ceil(math.sqrt(n))
top=(n+1)/2
while is_square(s^2-n)==0:

if verbose:
print(s,"squared␣minus",n,"is",s^2-n,"which␣is␣

not␣a␣perfect␣square")
s=s+1

t=sqrt(s^2-n)
print("Fermat␣found␣that",s,"squared␣minus",t,"squared␣

equals",n)
if s^2==n:

print("So",n,"was␣already␣a␣perfect␣
square ,",s,"times",s)

elif s<top:
print("So",s+t,"times",s-t,"equals",(s-t)*(s+t),"which␣

is",n)
elif s==top:

print("So␣Fermat␣did␣not␣find␣a␣factor ,␣which␣
means",n,"is␣prime!")

Example 12.5.10 Before we move on, let’s try to factor 143 and 93 using this
algorithm. Remember, we start with s2 − n, where s is the next integer above√
n, and see if it is a perfect square; then we increase s by one each time.

After you attempt this by hand, you can see what Sage does with them to
check.

FermatFactor (143, verbose=True)

Fermat found that 12 squared minus 1 squared equals 143
So 13 times 11 equals 143 which is 143

Well, we struck gold on the first try here! That happens if your number
is the product of two primes which are two apart. (Such primes are known as
twin primes, and have some interesting stories. Among other things, calculat-
ing with them helped find a bug in the Pentium computer chip in 1995; see
Subsection 22.3.2.)

FermatFactor (93, verbose=True)

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 204

10 squared minus 93 is 7 which is not a perfect square
11 squared minus 93 is 28 which is not a perfect square
...
Fermat found that 17 squared minus 14 squared equals 93
So 31 times 3 equals 93 which is 93

As you can see, we probably would have been better off with trial division
for n = 93. It’s obvious that it’s divisible by 3, but that takes a long time to
reach from the middle. □

12.6 A Taste of Modernity
Now, these methods are the beginnings of how people really factor big numbers.
Typically, one does trial division up to a certain size (maybe the first few
hundred or thousand primes), then perhaps some modification of Fermat to
make sure that there aren’t any factors close to the square root if you are
attacking something like RSA where that would otherwise be advantageous.

Then what?
There are many answers to this question, some of which involve cool things

called continued fractions or number fields. See Exercises 12.7.13–12.7.15
to investigate these, starting with a simpler (but related) algorithm to Lenstra’s
in Exercise 12.7.13. See [E.5.2, Chapter 9] for an elementary approach to
Exercise 12.7.15.

Another important modern technique that is beginning to show up in in-
troductory textbooks is Lenstra’s elliptic curve method; see once again either
[E.4.19] or [E.2.10, Chapter 18.7] for details at the level of this text.

We won’t touch more on those topics, but Algorithm 12.4.7 brought up
a concept important in factoring, not just finding primes. Namely, we could
come up with some probabilistic/random methods. That’s right, we are going
to try to find a factor randomly!

12.6.1 The Pollard Rho algorithm
Here is the essence of this random (or ‘Monte Carlo’) approach; it is highly
recursive, like many good algorithms.
Algorithm 12.6.1 Generic routine for “random” factoring. Follow
these steps.

• Pick some polynomial that will be easy to compute mod (n).

• Plug in an essentially random seed value. (Often the seed is 2 or 3.)

• Compute the polynomial’s value at the seed.

• If that has a non-trivial gcd with n, we have a factor. Otherwise, plug the
new value back into the polynomial, and repeat (and hope it eventually
succeeds).

Below is code for the method we’ll discuss in this section. It has a modifi-
cation to the generic algorithm which I will discuss below.

def PollardRhoFactor(n,kstop=50,seed =2):
d=1
a,b=seed ,seed
k=1
def f(x):

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 205

return (x^2+1)%n
while (d==1 or d==n):

a = f(a)
b = f(f(b))
d=gcd(a-b,n)
k=k+1
if k>kstop:

print("Pollard␣Rho␣breaking␣off␣after␣%s␣
rounds"%k)

break
if d>1:

print("Pollard␣Rho␣took␣%s␣rounds"%k)
print("The␣number␣it␣tried␣in␣the␣last␣round␣was␣%s,␣

which␣shares␣factor␣%s"%(a-b,d))
print("And␣%s␣is␣a␣factor␣of␣%s␣since␣%s␣*␣

%s=%s"%(d,n,d,n/d,d*(n/d)))

The essence of the method is that by plugging in the values of the polyno-
mial modulo n, we are generating a ‘pseudo-random’ sequence of numbers.

• x0 ≡ 2 (mod n)

• x1 ≡ f(x0) (mod n)

• x2 ≡ f(x1) (mod n)

• xi+1 ≡ f(xi), all (mod n).

Such a ‘pseudo-random’ sequence might be better than the sequences we used
for trial division or Fermat factorization, precisely because it will likely hit
some small(ish) factors and some fairly large factors, a good mix. It might
also be good that it could give us numbers which, although not a factor of n,
might at least share a factor with n.

A first choice of seed and polynomial might be x0 = 2 and f(x) = x2 + 1.
These choices could be different, but they are typical; John Pollard’s original
paper used f(x) = x2 − 1, for instance.

Example 12.6.2 Let’s try computing what we get for some specific numbers.
Picking n = 8051 as in [E.2.4, Example 3.25], we get results as in the following
interact.

var(' x ')
@interact
def _(seed=2,n=8051, poly=x^2+1, trials =(10 ,[2..50])):

f(x)=poly
for i in range(trials):

pretty_print(html("$x_{%s}=%s$"%(i,seed)))
seed = (ZZ(f(seed)) % ZZ(n))

pretty_print(html("$x_{%s}=%s$"%(i+1,seed)))

Notice that for n = 8051, the term x4 ≡ x19 (mod n), so the sequence, while
seeming fairly random, will not come up with every possible divisor. With seed
3, x13 ≡ x28 is the first repeat; if instead we change the modulus to 8053, there
is no repeat through x50. So you can see the output will be hard to predict.

□
Although the outputs of xi+1 = f(xi) might already seem to be fairly

random, we will not actually try to find common divisors of these numbers with
n. Instead, we will try to see if all the differences xi−xj share a common factor

https://doi.org/10.1007%2Fbf01933667
https://doi.org/10.1007%2Fbf01933667

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 206

with n, using the (highly efficient to compute) greatest common divisor. That
gives a lot more opportunities to find a common factor than just comparing
with xi! And hopefully it’s just as (or more) ‘random’, and just as effective at
finding factors.

However, having all possible differences to check might slow things down
too much. So instead there is a final modification to the algorithm.

First, since there are finitely many possible outcomes modulo any particular
modulus d, the sequence of results will eventually repeat not just modulo n, but
for any d. In particular, suppose d is a divisor of n such that gcd(xi−xj , n) = d
for a specific pair xi and xj with j > i.

Now consider the values of the sequence of xℓ modulo d. Because polyno-
mials are well-defined in modular arithmetic, we have that

xi ≡ xj (mod d)

implies that, for any m we have

xm+i ≡ fm(xi) ≡ fm(xj) ≡ xm+j (mod d)

as well. When we let m = j − i, this becomes

xj ≡ x2j−i (mod d)

which means the sequence (modulo d, the common divisor, not n) repeats itself
every j − i terms (after i, of course, if j − i < i).

Now let s be an integer such that s(j − i) ≥ i. Then xs(j−i) appears after
the periodic behavior (modulo d) begins, so

xs(j−i) ≡ xs(j−i)+(j−i) ≡ · · · ≡ xs(j−i)+s(j−i) (mod d).

If we now let k = s(j − i) this congruence means

xk ≡ x2k (mod d)

so d is a divisor of x2k − xk specifically, not just xi − xj .
Finally, this means instead of checking all possible differences for a common

divisor, we only have to check gcd(x2k − xk, n) for all k in the algorithm.

Algorithm 12.6.3 Pollard Rho factoring algorithm. Follow these steps.
• Pick some polynomial f(x) that will be easy to compute (mod n) (such

as x2 + 1, though other quadratics might be used).

• Plug in an essentially random seed value x0. (Often the seed is 2 or 3.)

• Compute the polynomial’s value at the seed, f(x0) = x1.

• Continue plugging in f(xi) = xi+1, modulo n.

• For each k we check whether

1 < gcd(x2k − xk, n) = d < n.
Since the algorithm doesn’t always find a factor for any given combination

of seed, number, and polynomial, there is nothing to prove per se. However,
probabilistically (just like with Miller-Rabin) it should succeed for k in the
neighborhood of the size of the square root of the smallest factor of n. (This
is also the justification for introducing the algorithm in the original papers
introducing this method and its variants.) So if n has a big, but not too big,
divisor, this test should help us find that divisor.

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 207

Example 12.6.4 Let’s try this with n = 9991. Keeping x2+1 and seed 2, the
numbers we would get for the first six rounds are

x0 = 2, x1 = 5, x2 = 26, x3 = 677, x4 = 8735, x5 = 8950

x6 = 4654, x7 = 9220, x8 = 4973, x9 = 3005, x10 = 8153.

This gives differences as follows:
• x2 − x1 = 26− 5 = 21

• x4 − x2 = 8735− 26 = 8709

• x6 − x3 = 4654− 677 = 3977

• x8 − x4 = 4973− 8735 = −3762

• x10 − x5 = 8153− 8950 = −797

These factor as follows:

factor (21), factor (8709) , factor (3977) , factor (3672) ,
factor (797)

(3 * 7, 3 * 2903, 41 * 97, 2^3 * 3^3 * 17, 797)

That is an impressive list of eight different prime factors that could poten-
tially be shared with 9991 in just five iterations. These differences have the
following gcds with 9991:

gcd (9991 ,21), gcd (9991 ,8709) , gcd (9991 ,3977) ,
gcd (9991 ,3672) , gcd (9991 ,797)

(1, 1, 97, 1, 1)

Indeed the third one already caught a common divisor with 9991.

PollardRhoFactor (8051)

Pollard Rho took 4 rounds
The number it tried in the last round was -3977, which

shares factor 97
And 97 is a factor of 9991 since 97 * 103=9991

□
Remark 12.6.5 This method is called the Pollard rho method because (appar-
ently) a very imaginative eye can interpret the xi eventually repeating (mod d)
(in the example, d = 97) as a tail and then a loop, i.e. a Greek ρ. John Pollard
actually has another method named after him, the p−1 method, which we will
not explore; however, it is related to some of the more advanced methods we
mentioned in the introduction to this section.
Example 12.6.6 Sometimes the rho method doesn’t come up with an answer
quickly, or at all.

PollardRhoFactor (991*997)

Pollard Rho breaking off after 51 rounds

Here we took 50 rounds without success, using the seed 2. Because of the
ρ repetition, it will never succeed. So what do you do then – bring out the

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 208

really advanced methods? Not at all – just as with primality testing, you just
change your starting point to try again!

PollardRhoFactor (991*997 , seed =3)

Pollard Rho took 15 rounds
The number it tried in the last round was 74775, which

shares factor 997
And 997 is a factor of 988027 since 997 * 991=988027

□

12.6.2 More factorization
In general, there are other such probabilistic algorithms, and they are quite
successful with factoring numbers which might have reasonably sized but not
gigantic factors.
Historical remark 12.6.7 Factoring Fermat. The big success of this
algorithm was the 1980 factorization of F8 (the eighth Fermat number) by
Pollard and Richard Brent (see Brent’s website). They used one of several
variants of the method, due to Brent, to found the previously unknown prime
factor6 1238926361552897. Finding this factor of F8 took, in total, 2 hours on
a UNIVAC 1100/42 (which for the time period was very fast, indeed).

Interestingly, the other (much larger) factor was not proven to be prime
until significantly later; and as of this writing (January 2021) even F12 has not
been fully factored! See Subsection 17.5.2 for even more information.

Things don’t automatically work quickly even with today’s far more pow-
erful hardware.

PollardRhoFactor (2^(2^8) +1 ,1000000) # one million rounds!

Pollard Rho breaking off after 1000001 rounds

Hmm, what now? Let’s change the seed.

PollardRhoFactor (2^(2^8) +1 ,1000000 , seed =3)

Pollard Rho breaking off after 1000001 rounds

No one method will factor every number quickly. Luckily, we have bigger
guns at our disposal in Sage (especially in the component program Pari), that
polish thing off rather more quickly.

factor (2^(2^8) +1)

1238926361552897 * 93...321

That is a little better than two hours on a mainframe, or even on your
computer, I hope you’ll agree.

Real factorization algorithms use several different methods to attack differ-
ent types of factors. We can try to simulate this in a basic way by creating
a Sage interact. Evaluate the first cell to define things (don’t forget to keep
the rho method defined); then you can evaluate the second cell, which is the
interact.

6If you want to memorize this historic number, Brent provides the phrase “I am now
entirely persuaded to employ the method, a handy trick, on gigantic composite numbers” to
help you remember it.

https://maths-people.anu.edu.au/~brent/F8.html
http://www.prothsearch.com/fermat.html#Complete
http://www.prothsearch.com/fermat.html#Complete

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 209

def TrialDivFactor(n):
p = next_prime (1)
top = ceil(math.sqrt(n))
while p < top:

if mod(n,p)==0:
break

p=next_prime(p)
if n==1:

print("1␣is␣not␣prime")
elif p==n:

print(n,"is␣prime")
elif mod(n,p)==0:

print(n,"factors␣as",p,"times",n/p)
else:

print(n,"is␣prime")

def FermatFactor(n,verbose=False):
if n%2==0:

raise TypeError("Input␣must␣be␣odd!")
s=ceil(math.sqrt(n))
top=(n+1)/2
while is_square(s^2-n)==0:

if verbose:
print(s,"squared␣minus",n,"is",s^2-n,"which␣is␣

not␣a␣perfect␣square")
s=s+1

t=sqrt(s^2-n)
print("Fermat␣found␣that",s,"squared␣minus",t,"squared␣

equals",n)
if s^2==n:

print("So",n,"was␣already␣a␣perfect␣
square ,",s,"times",s)

elif s<top:
print("So",s+t,"times",s-t,"equals",(s-t)*(s+t),"which␣

is",n)
elif s==top:

print("So␣Fermat␣did␣not␣find␣a␣factor ,␣which␣
means",n,"is␣prime!")

@interact
def _(n=991*997 , method =[' trial ' , ' Fermat ' , ' Pollard␣Rho ']):

if method == ' trial ' :
TrialDivFactor(n)

if method == ' Fermat ' :
FermatFactor(n)

if method == ' Pollard␣Rho ' :
PollardRhoFactor(n)

Sage note 12.6.8 Building interacts. An interact is just a Sage/Python
function, except with @interact before it. There are many different input
widgets you can use; this one demonstrates using a list and an input box
which takes any input. See the interact documentation or Quickstart for many
examples and more details.

If you think this sort of thing is cool, the Cunningham Project is a place to

https://web.archive.org/web/20180830102356/http://doc.sagemath.org/html/en/reference/notebook/sagenb/notebook/interact.html#sagenb.notebook.interact.interact
http://doc.sagemath.org/html/en/prep/Quickstarts/Interact.html
http://homes.cerias.purdue.edu/~ssw/cun/

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 210

explore. I particularly like their Most Wanted lists. The idea is this:

The Cunningham Project seeks to factor the numbers bn ± 1 for
b = 2, 3, 5, 6, 7, 10, 11, 12, up to high powers n.

Another interesting resource is Sage developer Paul Zimmermann’s Integer
Factoring Records. Finally, Wagstaff’s The joy of factoring [E.4.12] has tons of
awesome examples and procedures – far too many, really, as well as an excellent
discussion of how to speed up trial division, etc.

12.7 Exercises
1. Check the multiplication needed in Lemma 12.1.2.
2. Prove the statement of Lemma 12.1.2 in the case that ℓ is odd. Hint: the

factorization you find will be similar, but have a subtle change.
3. Explain why the extension to Fermat’s Little Theorem just before Fact 12.2.2

(or Exercise 9.6.3) is true.
4. Check that 1729 and 2821 are Carmichael numbers.
5. Find a Carmichael number of the form 7 · 23 · p for a prime p; include all

reasoning.
6. Use either the Fermat or Mersenne coprime facts 12.1.4,12.1.11 to provide

a different proof that there are infinitely many primes.
7. Prove that if n is composite then so is Mn. Hint: Exercise 12.7.2.

For the next two exercises, pick some 4-6 digit numbers that don’t share a
factor with 30030 = 2 · 3 · 5 · 7 · 11 · 13. (Try not to do this by just multiplying
other, larger primes, or the following exercises will be less interesting.)

8. Find factors of the numbers you picked using trial division (Algo-
rithm 12.5.6).

9. Find factors of the numbers you picked using Fermat Factorization
(Algorithm 12.5.9).

10. Try to create a number that takes five steps to factor using both Fermat
and trial division. (Can you do seven steps?)

11. Verify the last bit of the proof of The Fermat factorization algorithm.
12. Try using the Pollard Rho factoring algorithm on a large number you

create out of a few big primes (not too big!) with different seeds. Can you
get it to take longer than a few turns? Get your prize numbers; now try
factoring again with this method where you have changed the polynomial
to x3 + 1 or something else other than x2 + 1.

There are many, many methods of factoring to explore! Try looking up some
of them in the following exercises. Be warned that some of these are pretty
deep, though there are good undergraduate-focused explanations out there for
all of them.

13. Investigate the Pollard p − 1 algorithm. How is it similar to the
methods mentioned in this chapter, how is it different? (See [E.4.19]
or [E.2.10] for connecting it to Lenstra’s elliptic curve algorithm.)

14. (Hard.) Find out what a continued fraction is. Then investigate the
continued fraction factorization algorithm. How is it similar to the
methods mentioned in this chapter, how is it different?

15. (Quite hard.) Find out what a quadratic number field is. Then inves-
tigate the quadratic sieve factorization algorithm. How is it similar

http://www.loria.fr/~zimmerma/records/factor.html
http://www.loria.fr/~zimmerma/records/factor.html

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 211

to the methods mentioned in this chapter, how is it different? What
does it have to do with Algorithm 12.5.9?

16. In 17 Lectures on Fermat Numbers: From Number Theory to Geometry
by Michal Krizek, Florian Luca, and Lawrence Somer, the example is
given that 6 is pseudoprime base 4. Find two other pseudoprimes base 4;
obviously they should be greater than 4, but you shouldn’t have to look
beyond 50, either.

Summary: An Introduction to Cryptography
There are many mathematical issues that arise in analyzing even these basic
cryptographic systems – especially ones dealing with primes and composites.

1. Two impractical, but historically important, sources of new prime num-
bers are Fermat primes and Mersenne primes.

2. The road to modern primality testing starts with the notion of Pseudo-
primes. It isn’t the end of the road, because we still have prime impostors
in Subsection 12.2.2.

3. Hence we dig further into Miller’s test for base a, which comes from our
observations of how powers work in modular arithmetic.

4. Finally, in Section 12.4 we see a modern, probabilistic primality test .

5. Factoring is very important in testing the security of cryptography. We
examine some very basic techniques, including The Fermat factorization
algorithm.

6. We see just a bit of more modern methods in Section 12.6, which should
prepare you for more advanced ideas.

As always, there are Exercises to practice, but also to understand the theory
better.

CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY 212

Chapter 13

Sums of Squares

We have now more or less exhausted a lot of what we can do with linear
questions, and even gone beyond to many nonlinear ones. With that in mind,
we return to other considerations. As a warmup for this and ensuing chapters,
consider the following question.

Question 13.0.1 Take a positive integer n (or zero) and try to write it as
n = a2 + b2 for a, b ∈ Z. For which n is this possible, for which is it not? □

It seems that Albert Girard already knew the answer to this question in
the first quarter of the 17th century, and Fermat discovered it a couple years
later as well. A full proof of the answer to this question did not come until
Euler (no surprise here) about six score years after that.

Historical remark 13.0.2 Albert Girard. Girard is an interesting figure,
less well-known than his contemporaries. He apparently was the first to use
our modern notation for trigonometric functions, and spent his adult life in the
Netherlands escaping religious persecution as a Protestant in France.
Historical remark 13.0.3 Leonhard Euler. Euler is well known for being
a rather conventional religious family man amidst the Enlightenment court of
Frederick the Great, and for taking a lot of teasing from Voltaire and the king
(among other things, for being partly blind at the time). See [E.5.6] for much
more about him and his work1 at the level of this text, or over one third of
[E.5.8] for a detailed perspective by an eminent number theorist, or simply
browse the Euler Archive.

There is a lot more to say about someone universally acknowledged as one of
the greatest mathematicians of all time, but we already have plenty of Euler’s
work in this book for you to peruse.
Historical remark 13.0.4 Pierre de Fermat. We’ve already seen Fermat’s
work several times (such as Subsubsection 3.4.3.2, Theorem 7.5.3, and Subsec-
tion 12.1.1), and we’ll see another glimpse of him in Question 15.6.5. About
the man himself we know less, mostly that he was a jurist in southern France
who didn’t travel much, but corresponded a fair amount about his mathemat-
ics, which included prototypes for both differential and integral calculus! As
with most things about Fermat’s personal life, it’s less well known that he
also had a religious side; in [E.7.12] a well-known classicist translates a moving
poem about the dying Christ written in honor of one of Fermat’s friends. See
[E.5.8, Chapter II] for many mathematical, and some personal, details.

1There is an immense recent English-language biography about him, but I do not actually
recommend it for most readers.

213

https://mathshistory.st-andrews.ac.uk/Biographies/Girard_Albert/
http://eulerarchive.maa.org

CHAPTER 13. SUMS OF SQUARES 214

So try out Question 13.0.1! Some things to think about while you try this:

• Are any special types of numbers easier to write in this way than others?

• Is there any way of generating new such numbers from old ones?

• If some types of numbers are not a sum of squares, how might you prove
this?

A separate question to at least keep track of is this.
Question 13.0.5 Assuming you can indeed write it in this way, how many
ways you can write a number as a sum of squares? □

This chapter is completely devoted to continuing to address questions about
writing numbers as a sum of two squares. It will lead us a little far afield,
of necessity, to ask (and start to answer) questions about congruences again.
Much of this chapter will be devoted to a geometric proof that certain numbers
are indeed representable as a sum of two squares. This chapter is a perfect
illustration of one of the main themes of this text – the unity of mathematics.

13.1 Some First Ideas

13.1.1 A first pattern
Let’s assume you’ve done some exploration on your own. Here’s a first pattern
that you may have noticed, similarly to patterns in the past.

Fact 13.1.1 If n ≡ 3 (mod 4), then n is not writeable as a sum of squares.
Proof. You should be able to prove this pretty easily based on things you
already know about squares modulo 4. (See Exercise 13.7.1) ■

The next thing to note is that Sage has a nice command to tell us an answer.

two_squares (29)

(2, 5)

If a representation doesn’t exist, we get an error. If it does, Sage returns
two numbers (a, b) such that a2 + b2 = your number.

In the next cell, I pick a number for which n ≡ 1 (mod 4), but this number
cannot be written in this form. Thus Fact 13.1.1 doesn’t just take care of all
cases.

two_squares (21)

Traceback (most recent call last):
...
ValueError: 21 is not a sum of 2 squares

Fact 13.1.2 There are positive integers with remainders 0, 1, and 2 when
divided by four, but which are not representable as a sum of two squares.
Proof. Show that 12, 21, and 6 are not. (See Exercise 13.7.2.) ■

You can use this interact to explore while avoiding the errors.

@interact
def _(n=29):

try:

CHAPTER 13. SUMS OF SQUARES 215

a,b = two_squares(n)
pretty_print(html("We␣can␣write␣

${0}={1}^2+{2}^2$".format(n,a,b)))
except ValueError:

pretty_print(html("${0}$␣is␣not␣a␣sum␣of␣two␣
squares".format(n)))

Sage note 13.1.3 Handling errors. Most computer languages have a way
to “handle” errors if we don’t want to think of them as errors. In Python, this
is the try/except syntax you see above. Basically, we are trying to use the
two squares command, but if it hiccups, we instead just print a nice message.
Remark 13.1.4 We have already addressed a very special case of writing
numbers as a sum of squares. In fact, in Theorem 3.4.6 we saw a precise
characterization of when a perfect square is a sum of two squares. We will
mention this again briefly in Subsection 14.2.2.

13.1.2 Geometry
Next, we can interpret this question very differently, relying on our geometric
intuition. Figure 13.1.5 helps us visualize the problem.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 13.1.5 Five as a sum of squares
In Figure 13.1.5, n = a2 + b2, then n is the square of the radius of a circle

which has (a, b) as the coordinates of a point. So the sum of squares problem
is actually a geometric one! Try it interactively below.

@interact
def _(n=(5,list(range (100)))):

viewsize=ceil(math.sqrt(n))+2

CHAPTER 13. SUMS OF SQUARES 216

g(x,y)=x^2+y^2
p = implicit_plot(g-n, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
lattice_pts = [[i,j] for i in [-viewsize .. viewsize] for

j in [-viewsize .. viewsize]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
curve_pts = [coords for coords in lattice_pts if

g(coords [0], coords [1])==n]
if len(curve_pts)==0:

show(p+plot_lattice_pts , figsize = [5,5], xmin =
-viewsize , xmax = viewsize , ymin = -viewsize ,
ymax = viewsize , aspect_ratio =1)

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1),pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

That is, we can rewrite Questions 13.0.1 and 13.0.5 like this.
Question 13.1.6

• Which circles around the origin do (or do not) have lattice points?

• If a circle has lattice points, how many does it have?

□
We will choose to address these questions by connecting to geometry. There

are many ways; for instance, in Section 20.1 we will connect to calculus ideas
in number theory.

13.1.3 Connections to some very old mathematics
The following identity was, separately, already known to Diophantus (remem-
ber Diophantine equations?) around 250, to Brahmagupta (about whom more
in Historical remark 15.5.6 and Section 15.6) around 600, and to Leonardo of
Pisa (known also as Fibonacci) around 1250.

Fact 13.1.7 Brahmagupta-Fibonacci identity.(
a2 + b2

) (
c2 + d2

)
= (ac− bd)

2
+ (ad+ bc)

2

Proof. Multiply and cancel; see Exercise 13.7.6. ■
This sort of identity may seem amazing to us, but to people used to needing

lots of symbolic manipulation, it was just part of a toolkit by the time number
theory began ascending with Fermat or Euler.
Historical remark 13.1.8 Fibonacci. Leonardo of Pisa grew up among
Italian merchants in North Africa and learned much mathematics there; we
have seen him a few times already in his eponymous numbers (Exercise 2.5.17)
and in Exercise 5.6.22. However, while it seems pretty clear Fibonacci borrowed
extensively from the Islamic mathematical heritage for many of his problems,
not only was his Liber Abaci very influential for spreading our modern decimal
system into Europe (from India via the Islamic world), but he did nontrivial
original number theory work as well (see [E.5.3, Section 8-4]).

What is useful about this identity is that it implies the following.

https://mathshistory.st-andrews.ac.uk/Biographies/Fibonacci/

CHAPTER 13. SUMS OF SQUARES 217

Fact 13.1.9 Products of numbers writeable as sums of squares can also be
written as sums of squares!
Proof. Use 13.1.7 above. ■

@interact
def _(m=(13 ,[0..100]) ,n=(8 ,[0..100])):

try:
a,b = two_squares(m)
c,d = two_squares(n)
pretty_print(html(r"We␣know␣we␣can␣write␣

${6}={0}\ cdot␣{1}$␣as␣
$({2}^2+{3}^2) ({4}^2+{5}^2)$".format(m, n, a, b,
c, d, m*n)))

pretty_print(html(r"But␣it␣is␣also␣writeable␣as␣
$({0}\ cdot {1} -{2}\ cdot {3})^2␣+␣
({0}\ cdot {3}+{1}\ cdot {2})^2␣=␣
{4}^2+{5}^2={6}$".format(a, c , b , d ,
abs(a*c-b*d), a*d+b*c,m*n)))

except ValueError:
pretty_print(html("Please␣pick␣numbers␣that␣are␣both␣

writeable␣as␣a␣sum␣of␣two␣squares"))

A final question for the reader is to ponder why this means that we can really
reduce the question to whether primes are writeable as a sum of squares.

13.2 At Most One Way For Primes
Most of the rest of this chapter is dedicated to proving what we can about how
to write numbers as sums of squares. We will begin our proofs by talking about
how many ways we can write some numbers as a sum of squares. Namely, we’ll
connect sums of squares to factorization.

Remember that the Brahmagupta-Fibonacci identity says that if two num-
bers are sums of two squares, so is their product. Remarkably, we can sort of
do this backwards.

First, we need to say what we might mean by writing a number as a sum
of squares in two essentially different ways. Compare

13 = 32 + 22 = 22 + 32

to the situation
25 = 52 + 02 = 32 + 42.

We say the latter ways are essentially different, because they involve two
different pairs of nonnegative integers.

It is not a coincidence that 13 is prime, while the number 25 which has two
ways to be written is composite.
Fact 13.2.1 If an odd number N is writeable in two essentially different
(nonnegative) ways as a sum of two squares, then N = yz, where y, z > 1 and
y, z are themselves writeable as sums of two squares.
Proof. Assume first that

N = a2 + b2 = c2 + d2

with a, c odd and b, d even nonnegative integers. Then, assuming a ≥ c and
d ≥ b, let

k = gcd(a− c, d− b) and n = gcd(a+ c, d+ b).

CHAPTER 13. SUMS OF SQUARES 218

Both k and n are even, and

ℓ =
a− c

k
=

d+ b

n
and m =

a+ c

n
=

d− b

k
.

Then we get that

N =

[(
k

2

)2

+
(n
2

)2] (
ℓ2 +m2

)
.

There are some details remaining here, especially in terms of verifying all
these numbers exist, but they mostly just use the definitions of gcd and parity.
See Exercise Group 13.7.8–11. ■
Example 13.2.2 Let’s examine N = 25. First, what are a, b, c, d?

Once you have computed them, you should confirm that k = gcd(2, 4) = 2,
n = gcd(8, 4) = 4 which means ℓ = 1 and m = 2. This yields

25 =

[(
2

2

)2

+

(
4

2

)2
] (

12 + 22
)
= 5 · 5.

So 25 is a product of numbers, each themselves writeable as a sum of two
squares. □
Remark 13.2.3 This method for factoring is apparently due to Euler; see
Wikipedia, which references [E.5.3]. An interesting generalization for the situ-
ation where one has two different ways to write an odd integer as a sum of the
form mx2 + ny2 for positive m,n may be found in [E.7.30].

It is now nearly trivial to prove the following.

Proposition 13.2.4 A prime is writeable in zero or one (positive) way as a
sum of two squares.
Proof. This is clear for p = 2. It remains to consider the case of p odd. If p is
writeable in two different ways, it factors by Fact 13.2.1. But prime numbers
don’t factor nontrivially, so there must be just one way to do it.

Note that there could be zero ways to write p. If p > 2 odd happens to be
p ≡ 3 (mod 4), Fact 13.1.1 says as much, so the use of Fact 13.2.1 in the first
paragraph is really only being applied to p ≡ 1 (mod 4). ■

For example, in Figure 13.2.5 we see that thirteen is only writeable as 32+22

(or 22 + 32).

https://en.wikipedia.org/wiki/Euler's_factorization_method

CHAPTER 13. SUMS OF SQUARES 219

-1 0 1 2 3 4
-1

0

1

2

3

4

Figure 13.2.5 Thirteen in just one way
We can confirm Proposition 13.2.4 visually in many cases, in that each of

the circles with radius squared a prime either has no lattice points, or its only
positive lattice points are (a, b) and (b, a) for one a and b.

@interact
def _(n=(5, prime_range (150))):

viewsize=ceil(math.sqrt(n))+.5
g(x,y)=x^2+y^2
p = implicit_plot(g-n, (-1,viewsize), (-1,viewsize),

plot_points = 100)
lattice_pts = [[i,j] for i in [-1.. viewsize] for j in

[-1.. viewsize]]
plot_lattice_pts = points(lattice_pts , rgbcolor =(0,0,0),

pointsize =2)
curve_pts = [coords for coords in lattice_pts if

g(coords [0], coords [1])==n]
if len(curve_pts)==0:

show(p+plot_lattice_pts , figsize = [5,5], xmin = -1,
xmax = viewsize , ymin = -1, ymax = viewsize ,
aspect_ratio =1)

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1), pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5,5], xmin = -1, xmax = viewsize , ymin = -1,
ymax = viewsize , aspect_ratio =1)

CHAPTER 13. SUMS OF SQUARES 220

13.3 A Lemma About Square Roots Modulo n

We’ll continue our formal investigation of what numbers are sums of two
squares by taking a look at a seemingly unrelated lemma about square roots.
In Section 14.1 we’ll see that square roots of negative one (thinking of −1 ∈ Z,
not Zn) are connected to sums of squares as well, so it is not completely im-
plausible to connect roots and these sums.

Before we do this, let’s codify something we already have discussed since
Question 7.1.1 at various times, e.g. in Fact 7.3.1 or Section 7.6.
Definition 13.3.1 We say that a number a has a square root modulo n if
there is some number x with

x2 ≡ a (mod n).

♢
As an example using this framework, here is an alternate proof of Exer-

cise 7.7.12.
Fact 13.3.2 For an odd prime p, the only way there is a square root of −1
modulo p is if p ≡ 1 (mod 4).
Proof. We will use group theory to prove this.

Assume there is a square root f , so that

f2 ≡ −1 (mod p).

Then the order of f in Up is four, since

f4 = (f2)2 ≡ (−1)2 = 1.

We know that the order
| Up |= p− 1

but then Lagrange’s (group theory) Theorem 8.3.12 says that four divides p−1.
Given that, the only possible kind of prime p solving this is the form 4k+1.

■
Remember, this means there can’t be a square root of minus one if p ≡

3 (mod 4). Of course, it also only means that there might be one if p ≡
1 (mod 4), so we certainly need the following lemma to confirm there is one.
(See its use in Subsection 16.1.1, where we combine everything into Fact 16.1.2.)

Lemma 13.3.3 For an odd prime p ≡ 1 (mod 4), there actually does exist a
square root of −1 modulo p. That is, there is an f such that

f2 ≡ −1 (mod p).
Before we start the proof, recall Wilson’s Theorem, which states that

(p− 1)! ≡ −1 (mod p) for primes.

Do you remember our proof? We paired up all the numbers from 2 to p− 2 in
pairs of multiplicative inverses (mod p), thus:

(p− 1)! = 1 · 2 · 2−1 · 3 · 3−1 · · · (p− 1) ≡ (p− 1) ≡ −1 (mod p).

Our strategy for this proof will be similar, using all numbers from 1 to p − 1,
but paired up in a different way.
Proof of Lemma 13.3.3. Pair up the numbers from 1 to p− 1 in a product, in

CHAPTER 13. SUMS OF SQUARES 221

pairs of additive inverses (mod p):

(p− 1)! = 1 · (p− 1) · 2 · (p− 2) · 3 · (p− 3) · · · p− 1

2
· p+ 1

2
=[

1 · 2 · 3 · · · p− 1

2

]
·
[
(p− 1) · (p− 2) · · · p+ 1

2

]
.

This makes sense because (p− 1)/2 is an integer halfway between 1 and p, as
p is odd.

If we rethink things (mod p), we can rewrite this in a more suggestive way.
Let

(
1 · 2 · 3 · · · p−1

2

)
be called f . This is also

(
p−1
2

)
!, of course. Then, keeping

in mind that p+1
2 = p− p−1

2 ,[
1 · 2 · 3 · · · p− 1

2

]
·
[
(p− 1) · (p− 2) · · · p+ 1

2

]

≡ f ·
[
−1 · −2 · −3 · · · − p− 1

2

]
≡ f · (−1)

p−1
2

[
1 · 2 · 3 · · · p− 1

2

]
≡ (−1)

p−1
2 f2.

Remember that our hypothesis is p ≡ 1 (mod 4). Then p = 4k + 1 for
integer k, so p−1

2 = 2k is even and by Wilson’s Theorem

−1 ≡ f2 (mod p)

■
What is neat about this proof is that it shows there are precisely two square

roots of negative one – as Lagrange’s (polynomial) Theorem 7.4.1 suggests. We
even have a formula for them:

f = ±
(
p− 1

2

)
!,

where the exclamation point here indicates the factorial. Especially given the
proof, an imaginative mind2 might call this, “The square root of Wilson’s
Theorem,” by analogy with Theorem 12.3.2.

Somehow this is a satisfying answer. We can check that these really are
square roots of −1 using Sage.

@interact
def _(p=(13,[q for q in prime_range (200) if q%4==1])):

f=mod(factorial ((p-1)/2),p)
pretty_print(html(r"The␣potential␣square␣roots␣of␣-1␣

are␣$\pm␣\left(\frac{%s -1}{2}\ right)!=%s,%s\text{␣
(mod␣}%s)$"%(p,f,-f,p)))

pretty_print(html(r"And␣we␣can␣compute␣that␣
${0}^2\ equiv {1}$␣and␣${2}^2\ equiv␣{3}$␣modulo␣
${4}$".format(f,f^2,-f,(-f)^2,p)))

Remark 13.3.4 A class act. An observant reader may have noticed that
when p ≡ 3 (mod 4) the Proof of Lemma 13.3.3 can still be used, mutatis
mutandis, to show that ±

(
p−1
2

)
! are square roots of 1 modulo p. (See Exer-

cise 13.7.24.) Of course, we already know everything about those; they are just
2Such as that of Abraham Holleran, to whom I am indebted for this point.

CHAPTER 13. SUMS OF SQUARES 222

±1 modulo p, as you can test out below.

@interact
def _(p=(11,[q for q in prime_range (200) if q%4==3])):

f=mod(factorial ((p-1)/2),p)
pretty_print(html(r"The␣potential␣square␣roots␣of␣1␣

are␣$\pm␣\left(\frac{%s -1}{2}\ right)!=%s,%s\text{␣
(mod␣}%s)$"%(p,f,-f,p)))

pretty_print(html(r"And␣we␣can␣compute␣that␣
${0}^2\ equiv {1}$␣and␣${2}^2\ equiv␣{3}$␣modulo␣
${4}$".format(f,f^2,-f,(-f)^2,p)))

Here comes the interesting part. If you play around with the interact, you
will notice that sometimes

(
p−1
2

)
! ≡ 1, and sometimes

(
p−1
2

)
! ≡ −1. It’s not

immediately evident whether there is a pattern here.
But there is a formula. Foreshadowing Definition 14.1.2, if we define the

number system {a+ b 1+
√
−p

2 | a, b ∈ Z} (ignoring whether that actually makes
sense to do), one can define a special group (recall Definition 8.3.3) called the
ideal class group of this number system. The order of this group is denoted
by h. Nearly miraculously, if p > 3 of this type, then(

p− 1

2

)
! ≡ (−1)(h+1)/2 (mod p).

The default setting of the interact above is for p = 11, and checking this
list we see that h = 1 and indeed

(
11−1

2

)
! = 120 ≡ −1 = (−1)(1+1)/2 modulo

11, while for p = 23 we have h = 3 and
(
23−1

2

)
! = 39916800 ≡ 1 = (−1)(3+1)/2

modulo 23.
There is a similar, but more complicated, formula when p ≡ 1 (mod 4). And

by ‘complicated’, I mean that if you’ve read this far, you’ve already guessed this
is one of the most advanced remarks of the text. The class number being greater
than one is closely related to the factorization question raised in Exercise 6.6.30;
note that the class number for p = 5 in this setting is 2. For more on all
this (accessible if you’ve had a decent introduction to rings and fields), see
[E.4.26, Chapters 10 and 26].

13.4 Primes as Sum of Squares
In the past few sections, one of the many things you may have conjectured
about sums of squares is that every prime of the form p = 4k + 1 can be
represented as the sum of two squares. Combined with Fact 13.1.9, limiting
the question to primes should be sufficient to finish analyzing the question for
any positive number. (See Theorem 13.5.5 for the final steps putting this all
together.)

It turns out it is true that p = 4k + 1 can always be written as a sum of
squares, and we will spend most of the remainder of this chapter proving it.
At the end of the chapter, we’ll add in Fact 13.1.1 about primes of the form
p = 4k + 3 to see exactly which numbers can be thus represented.
Remark 13.4.1 To keep with the theme of the unity of mathematics, we do
this geometrically, not algebraically as in most texts, though the core ideas
are similar with both proofs. We roughly follow [E.2.1, Chapter 10.6], but ex-
panded greatly to avoid any direct reference to Hermann Minkowski’s theorem
on lattice points in a convex symmetric set. Interestingly, [E.4.16, Theorems

http://www.numbertheory.org/classnos/
http://www.numbertheory.org/classnos/

CHAPTER 13. SUMS OF SQUARES 223

4.3 and 8.3] only states this and Lagrange’s four square theorem, precisely
because although Minkowski’s Theorem provides a general framework for ex-
istence of such points geometrically, one still requires information about qua-
dratic residues to provide lattice points to work on in the first place.

13.4.1 A useful plot
First, let’s look at the following plot on the integer lattice. As you can see,
I am plotting certain points on the circle x2 + y2 = n, with n = 5 to begin.
I have done some ‘magic’ to turn the square root of −1 (mod n) into these
points. Before telling you the magic, Figure 13.4.2 (and the interact following
it) will help us get ready.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 13.4.2 An additional lattice
To be precise, I’ve used this square root of −1 to create the regularly

spaced grid of blue points. You can think about it as a bunch of corners of
parallelograms.
Remark 13.4.3 Sometimes we call things like the set of blue dots a lattice,
though in this text I will usually use the word lattice only to refer to the usual
integer lattice of the black dots. A general lattice is something related to a
concept from linear algebra – vectors generated by a basis, except instead of
being vectors over Q or R, they are over Z.

Here is how I constructed the blue grid. First, assume that p is our prime
and pick f =

(
p−1
2

)
! as a square root of negative one (or its additive inverse, if

you prefer); we can use the residue modulo p for convenience. Then the blue
points are of the form (a, af + bp) for all integers a, b.

@interact
def _(p=(5,[q for q in prime_range (200) if q%4==1])):

f=mod(factorial ((p-1)/2),p)

CHAPTER 13. SUMS OF SQUARES 224

viewsize=ceil(math.sqrt(p))+2
g(x,y)=x^2+y^2
plot1 = implicit_plot(g-p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [1]-f*coords [0])%p==0]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1+plot_grid_pts+plot_lattice_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

For one final preliminary, let’s define one more thing for any old point (x, y)
in the integer lattice (and especially for our blue dots).

Definition 13.4.4 We call the norm of a point (x, y) the sum of squares,
N(x, y) = x2 + y2. ♢

13.4.2 Primes which are sums of squares
We are now ready to state our big theorem for the section. (See Fact 14.1.8
for a quite different proof.)

Theorem 13.4.5 Every prime p of the form 4k + 1 can be written as a sum
of squares.
Proof. The proof is fairly long. Here is the strategy; the first step will be
detailed in Subsection 13.4.3 and Subsection 13.4.4.

Suppose we find some blue dot (a, af + bp) such that

0 < N(a, af + bp) = a2 + (af + bp)2 < 2p.

Then we know, modulo p, that

N(a, af+bp) = a2+(af+bp)2 ≡ a2+(af)2 ≡ a2+a2f2 ≡ a2−a2 ≡ 0 (mod p),

so p in fact divides the norm of the point (a, af + bp).
So we have that 0 < a2 + (af + bp)2 < 2p and that p | a2 + (af + bp)2,

meaning the only possibility is p = a2 + (af + bp)2, which gives p explicitly
written as a sum of perfect squares. ■

Example 13.4.6 For instance, with p = 5, we have that f =
(
5−1
2

)
! = 2! = 2,

so we need to find a point (a, 2a+ 5b) such that

a2 + (2a+ 5b)2 < 2p.

Guess and check with a = 1 and b = 0 gives us

N(1, 2 · 1 + 5 · 0) = 12 + (2 · 1 + 5 · 0)2 = 5 < 2 · 5 = 10

so this point should work, and this does give the correct statement that

5 = 12 + 22.

□

CHAPTER 13. SUMS OF SQUARES 225

What remains to be shown is that there actually is such a blue dot.

13.4.3 Visualizing the proof
To prove the theorem that for any p = 4k + 1 we can write it as a sum of
squares, we need to prove there is a blue dot (somewhere) that is not at the
origin but also has norm smaller than 2p. We will prove this by heavy reference
to graphics, but all claims also make sense algebraically. Sometimes we need
help to be able to think about more involved proofs.

We include a variation on the graphic in Figure 13.4.7 to make this visually
clear. The bigger circle is the one we care about now – it has formula x2+y2 =
2p, so radius

√
2p. If we find a blue point inside the disk bounded by that

circle, but not at the origin, then the argument in the proof sketch given for
Theorem 13.4.5 shows this point must be on the smaller circle.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 13.4.7 The lattice with the second circle
Here is an interactive version.

@interact
def _(p=(5,[q for q in prime_range (200) if q%4==1])):

f=mod(factorial ((p-1)/2),p)
viewsize=floor(sqrt (2*p))+2
g(x,y)=x^2+y^2
plot1 = implicit_plot(g-p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot2 = implicit_plot(g-2*p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

CHAPTER 13. SUMS OF SQUARES 226

(coords [1]-f*coords [0])%p==0]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =10)
show(plot1+plot2+plot_grid_pts+plot_lattice_pts , figsize

= [5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

Very strangely, the best way to do this is by considering the areas of the
various circles, and showing that they are so big you just must have a blue
point in their interior (but not at the origin). Let’s see how this works.

The area of the bigger circle, which has radius
√
2p, is π(

√
2p)2 = 2πp.

Since π > 2, we have that 2π > 2(2) = 4, which mean that the area of the
bigger circle is bigger than 4p.

What we do now is to create a sublattice of the blue dots, which we will
color green. (This is just a subset of a lattice which still otherwise satisfies
the conditions for being a lattice.) To create the green sublattice, take all blue
dots, and just double their coordinates. Naturally, each green dot is still a blue
dot, including the origin. See Figure 13.4.8.

-4 -2 0 2 4 6 8 10

-4

-2

0

2

4

Figure 13.4.8 The lattice with two circles and triangles
Next, we take a look at certain triangles made by the different colored

dots; continue following Figure 13.4.8, or see the interact at the end of this
subsection.

Compare the thinnest such triangles one can form, with respect to the
vertical axis.

• The thinnest triangle made by blue dots would be of height one. A
typical one would have vertices the origin and the points (p, 0) (with
a = p, b = −f) and (−f, 1) (with a = −f, b = k where f2 + 1 = kp as
above).

• The thinnest triangle made by the green dots has height two. It has
width 2p (from the origin to (2p, 0), the previous point doubled); the
apex is the point (−2f, 2), which is (−f, 1) doubled.

This triangle has area 4p/2. (Note that depending on whether f is positive or
negative this triangle might be above or below the x-axis.)

Now consider the parallelogram with the solid red lines made of two of
these triangles – from the origin to (−2f, 2) to (2p, 0) to (2p + 2f,−2) and

CHAPTER 13. SUMS OF SQUARES 227

back. (Recall that f is a square root of −1 modulo p.) This quadrilateral has
area 4p, which means its area is smaller than that of the bigger circle.

In Figure 13.4.8 we have p = 5 and f = −3. To see this all interactively,
evaluate the interact; click triangles_on to see the green dot triangle and
parallelogram outlined in red.

@interact
def _(p=(5,[q for q in prime_range (200) if q%4==1]) ,

triangles_on=False):
f=mod(factorial ((p-1)/2),p)
viewsize =2*p
g(x,y)=x^2+y^2
plot1 = implicit_plot(g-p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot2 = implicit_plot(g-2*p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot3 = line ([[0,0], [2*p-2* Integer(f) ,2], [2*p,0],

[2* Integer(f) ,-2], [0,0]], rgbcolor =(1,0,0))
plot4 = line2d ([[0,0], [2*p,0]], rgbcolor =(1,0,0),

linestyle= ' -- ')
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [1]-f*coords [0])%p==0]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =10)
plot_lattice_pts2 = points ([[2* coords [0],2* coords [1]]

for coords in lattice_pts], rgbcolor =
(0,1,0),pointsize =20)

if triangles_on:
show(plot1+plot2+plot3+plot4 + plot_grid_pts +

plot_lattice_pts+plot_lattice_pts2 , xmin =
-viewsize/2, xmax = viewsize , ymin =
-viewsize/2, ymax = viewsize/2, aspect_ratio =1)

else:
show(plot1+plot2+plot_grid_pts + plot_lattice_pts +

plot_lattice_pts2 , xmin = -viewsize/2, xmax =
viewsize , ymin = -viewsize/2, ymax = viewsize/2,
aspect_ratio =1)

The last stage of the proof is very visual. Before we move on, make sure you
believe all the claims of this stage, especially the claims about areas. Those
are the ones we will analyze more closely to finish the proof of Theorem 13.4.5.
Remember always that we are trying to prove that there is a blue point con-
tained inside the disk bounded by the bigger blue circle, but away from the
origin.

13.4.4 Finishing the proof
Let’s take stock.

• We’ve created circles of various sizes to find points in, and two lattices
to examine.

• The area of the circle is more than the area (4p) of the smallest parallel-
ogram made by green dots.

CHAPTER 13. SUMS OF SQUARES 228

To finish the proof, we need to find a blue point other than the origin
interior to the bigger blue circle of radius

√
2p. The gist of the argument splits

into two parts.
First, we will pursue Claim 13.4.11:

• Because all points inside the parallelogram (not just green, blue, or lat-
tice points) will “repeat” outside of it in another parallelogram, 4p is
the biggest area of a region that you can have and not “repeat” some
point. (This parallelogram is often called a fundamental region in
more general treatments.)

• So, the interior of the circle, having a bigger area, must have two points
(not necessarily blue points, just points on the plane) which are “repeated”
by translation of this parallelogram.

We will expand on exactly what “repeat” means momentarily.
Secondly, we show why the previous claim leads to a proof in Claim 13.4.12:

• We start with the two points from Claim 13.4.11 in the disk bounded by
the circle (points which are not necessarily on any lattice, blue, green, or
even black).

• Then we use elementary geometry to construct a blue point (namely,
one of the form (a, af + bp)) which is strictly in the interior of the disk
bounded by the circle of radius

√
2p. In particular, this point is not the

origin.

The argument in Theorem 13.4.5 now finishes the proof.
Let’s begin the final push to prove the two claims with a fact and a definition

which explain what sort of points we are looking for.

Fact 13.4.9 Let L be the parallelogram with vertices (0, 0), (−2f, 2), (2p, 0),
and (2p + 2f,−2) and its interior (where f is a square root of −1 modulo p).
Any plane region is the union of its intersection with all possible translations
of L by rigidly moving L so that the origin is translated to another green point.
Proof. We are not going to prove topological facts in this text, nor explore
the further depths of lattices. So it suffices to note that every green point
(2a, 2af+2bp) can serve as the leftmost vertex of a unique parallelogram not just
congruent to, but translated from, L, and that by construction these cannot
overlap (other than possibly along their edges). ■
Definition 13.4.10 We say that two distinct points v, w in a plane region are
“repeated” if they are both rigid translations of the same point in L, where the
allowed translations are those described in Fact 13.4.9. ♢

We now prove the two remaining claims to finish the proof of Theorem 13.4.5,
after which we encourage the reader to explore the large interact in Exam-
ple 13.4.13 which ends the section.

Claim 13.4.11 Consider the circle of radius
√
2p centered at the origin. The

interior of the disk bounded by this circle has two points “repeated” by shifting
the parallelogram L.
Proof. Recall from Fact 13.4.9 that the disk is composed of all its intersections
with different parallelograms congruent to L.

Suppose that there are not two points “repeated” within the disk (not
including the boundary circle). Then every point thereof is a translation of a
different point of L. One can make this a one-to-one function from the disk to
L by sending each point in the disk to the corresponding one in L.

Because each such move is rigid, this function is area-preserving3, which

CHAPTER 13. SUMS OF SQUARES 229

means the area of the disk must be less than or equal to that of L.
However, at the end of Subsection 13.4.3 we asserted the opposite! So by

way of contradiction we have our two points. ■
Claim 13.4.12 Given two points v, w (in the interior of the circle of radius√
2p centered at the origin) which “repeat” from L, we can construct a point,

not the origin, of the form (a, af + bp).
Proof. Given how we defined “repetition”, we know that the line segments
from v and w to the leftmost vertex of their respective translations of L must
themselves be rigid translations of each other, hence the line segment connect-
ing v and w can be translated to a segment connecting the origin and another
green point. Give this point the name4 v − w.

Since v − w is of the form (2a, 2af + 2bp) by definition, then the point
halfway between it and the origin (or “(v − w)/2”) is a blue point of the form
(a, af + bp), and clearly not the origin since v − w itself is not the origin. It
remains to show that this blue point is in the interior of the circle.

To see this, consider the distance d between v and w. By definition of a
circle, it cannot possibly be further than twice the radius, so d is strictly less
than 2

√
2p. But then v − w cannot be more than d units from the origin, so

the point (a, af + bp), being exactly half that distance from the origin, is less
than distance

√
2p to the origin. By definition (a, af + bp) is in the interior of

the larger circle, as desired. ■
Example 13.4.13 In Figure 13.4.14 we see the picture of how Claims 13.4.11
and 13.4.12 find the blue point in the circle. The black points are v and w, the
arrows point between v and w and from the origin to v−w, and the midpoint
of the second arrow is indeed blue.

-4 -2 0 2 4 6 8 10

-4

-2

0

2

4

Figure 13.4.14 How to find the lattice point on the circle
□

3If you looked at this footnote because you want a proof of this, recall we do not prove
topological facts in this text! Next you’ll be wanting a proof of the Jordan curve theorem from
first principles. More seriously, we have to draw the line somewhere, and I find pedagogically
that students would find proving assertions of this kind similar to proving 1 + 1 = 2 using
Russell and Whitehead as a text. Convincing students that proving Fact 1.2.2 is useful is
hard enough.

4In fact, as vectors of course this is the point, but we minimize formal use of vectors in
this text.

CHAPTER 13. SUMS OF SQUARES 230

Sage note 13.4.15 Examining code is good for you. The next Sage cell
makes Figure 13.4.14 interactive. But don’t just use it to view the proof for
other primes; examine the code itself.

This is by far the longest code we’ve seen up to this point. It is a brute force
check of all movements of all points in the parallelogram to find two points in
the bigger circle. Can you think of ways to make it more efficient?

@interact
def _(p=(5,[q for q in prime_range (200) if q%4==1])):

f=Integer(mod(factorial ((p-1)/2),p))
big = math.floor(math.sqrt (2*p))
viewsize =2*p
g(x,y)=x^2+y^2
plot1 = implicit_plot(g-p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot2 = implicit_plot(g-2*p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot3 = line ([[0,0], [2*p-2*f,2], [2*p,0], [2*f,-2],

[0,0]], rgbcolor =(1,0,0))
plot4 = line2d ([[0 ,0] ,[2*p,0]], rgbcolor =(1,0,0),

linestyle= ' -- ')
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [1]-f*coords [0])%p==0]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =10)
big_lattice_pts = [[2* coords [0],2* coords [1]] for coords

in lattice_pts]
plot_lattice_pts2 = points(big_lattice_pts , rgbcolor =

(0,1,0),pointsize =20)
w = []
v = []
mw = []
for i in [1..2*p-1]:

for coords in [l for l in big_lattice_pts if
l!=[0 ,0]]:
if (i+coords [0]) ^2+(coords [1]-1)^2 < 2*p:

for coords2 in [k for k in big_lattice_pts
if k!=[0 ,0] and k!= coords]:
if (i+coords2 [0])^2 + (coords2 [1]-1)^2 <

2*p:
w = [i+coords [0], coords [1]-1]
v = [i+coords2 [0], coords2 [1]-1]
vmw = [v[0]-w[0],v[1]-w[1]]
break

if w: break
if w: break

if not v:
for i in [j for j in [f..p+f]]:

for coords in [l for l in big_lattice_pts if
l!=[0 ,0]]:
if (i+coords [0]) ^2+(coords [1]-1)^2 < 2*p:

for coords2 in [k for k in
big_lattice_pts if k!=[0 ,0] and
k!= coords]:

CHAPTER 13. SUMS OF SQUARES 231

if (i+coords2 [0])^2 +
(coords2 [1]-1)^2 < 2*p:
w = [i+coords [0], coords [1]-1]
v = [i+coords2 [0], coords2 [1]-1]
vmw = [v[0]-w[0],v[1]-w[1]]
break

if w: break
if w: break

if not v:
for i in [j for j in [p-f..2*p-f]]:

for coords in [l for l in big_lattice_pts if
l!=[0 ,0]]:
if (i+coords [0]) ^2+(coords [1]+1) ^2 < 2*p:

for coords2 in [k for k in
big_lattice_pts if k!=[0 ,0] and
k!= coords]:
if (i+coords2 [0]) ^2+(coords2 [1]+1) ^2

< 2*p:
w = [i+coords [0], coords [1]+1]
v = [i+coords2 [0], coords2 [1]+1]
vmw = [v[0]-w[0],v[1]-w[1]]
break

if w: break
if w: break

P1=point(v,pointsize =20, rgbcolor =(0,0,0))
P2=point(w,pointsize =20, rgbcolor =(0,0,0))
Z=point(vmw ,pointsize =20, rgbcolor =(0,0,0))
plot4 = arrow(w,v,rgbcolor =(0,0,0), thickness=1,

linestyle= ' -- ' , arrowsize =3)
plot5 = arrow ((0 ,0),vmw ,rgbcolor =(0,0,0), thickness=1,

linestyle= ' -- ' , arrowsize =3)
plot6 = point((vmw[0]/2,vmw [1]/2) ,pointsize =30)
show(plot1+plot2+plot3+plot4 + P1+P2+Z+plot4+plot5+plot6

+ plot_grid_pts + plot_lattice_pts +
plot_lattice_pts2 , figsize = [5,5], xmin =
-viewsize/2, xmax = viewsize , ymin = -viewsize/2,
ymax = viewsize/2, aspect_ratio =1)

Believe it or not, we’ve concluded the proof – whew!
Why was this so hard? I can think of three reasons.

• First, we are trying to prove something about squares by proving some-
thing about square roots. It works, but it means there will be many
steps.

• Secondly, we are not just algebraically proving it exists by solving an
equation; we are forced to prove our square root exists with inequalities,
which brings another set of complications.

• Third, we chose to examine those inequalities geometrically to gain in-
sight, so our proofs must use that insight – worthwhile, but stretching.

Historical remark 13.4.16 Hermann Minkowski. Many more theorems
of this kind, such as Lagrange’s four square theorem, can be proved using
similar techniques, which we are intentionally avoiding stating in their full
generality. The names of Minkowski and Blichfeldt are associated with theo-
rems using various symmetries and the notion of convexity in order to apply
things more generally. Those who have had some physics may have heard of

CHAPTER 13. SUMS OF SQUARES 232

Minkowski before, as his work nearly beat Einstein to the notion of special
relativity; his geometric framework for space-time gave Einstein the necessary
apparatus to generalize to curved spacetime and general relativity.

13.5 All the Squares Fit to be Summed
There is one loose end. What are all the numbers we can represent as a sum
of squares?

For instance, why are some composite numbers of the form 4k+1 not write-
able as the sum of two squares? Also, many even numbers are representable –
how do we tell which even numbers are writeable? We conclude our discussion
by proving the full statement, after a couple of preliminary lemmas.
Lemma 13.5.1 If N has only primes of the form 4k + 1 and 2 as factors, it
is writeable as a sum of two squares.
Proof. Each of those primes is representable, so we can use Fact 13.1.9 to write
all intermediate products as a sum of squares. Hence all such products are
representable. ■
Example 13.5.2 Consider this:

442 = 2 · 13 · 17 =
(
12 + 12

) (
32 + 22

)
· 17

=
[
(1 · 3− 1 · 2)2 + (1 · 2 + 1 · 3)2

] (
42 + 12

)
=
(
12 + 52

) (
42 + 12

)
= (1 · 4− 5 · 1)2 + (1 · 1 + 5 · 4)2 = 12 + 212.

□
Lemma 13.5.3 If the powers of prime factors of N of the form 4k + 3 are
only even powers, then N is writeable as a sum of two squares.
Proof. First, p2 (even if p is not prime) is trivially always representable, since
p2 = p2 + 02. Now, rather than using Fact 13.1.9, let P be the product of
all prime factors of the form 4k + 3, which is necessarily a perfect square
P = Q2, given that all the powers are even. We can simply multiply this by
N/Q2 = a2+b2, which is possible by Lemma 13.5.1 since Q2 removes all primes
of the form 4k + 3 in the prime factorization. This yields (aQ)2 + (bQ)2. ■
Example 13.5.4 Consider this:

35802 = 442 · 34 =
(
12 + 212

)
32 · 32

= 12 · 32 · 32 + 212 · 32 · 32 = 92 + 1892

□
Theorem 13.5.5 N can be written as a sum of two perfect squares precisely
if it has only even powers (including zeroth powers) of any primes of the form
4k + 3.
Proof. From 13.5.1 and 13.5.3, the only case left to consider if N has a prime
of the form p = 4k+3, but to an odd power. This seemed to be the bottleneck
in our exploration.

By way of contradiction, suppose that it is possible to write

N = a2 + b2.

First, divide this equation by any factors of p common to N , a, and b to get

M = c2 + d2

CHAPTER 13. SUMS OF SQUARES 233

The power of p we divided by (so that N = Mpℓ) must be an even power, since
each term on the right-hand side is a perfect square and can only contribute
even powers of primes by the Fundamental Theorem of Arithmetic.

Since N had an odd power of p, we know M still has an odd power of p
dividing it, yet p ∤ c, d.

Take everything modulo p to get the congruence

0 ≡ c2 + d2 (mod p).

Since p ∤ c, we can multiply this congruence by
(
c−1
)2 to get

0 ≡ 1 +
(
c−1
)2

d2 ⇒ −1 ≡
(
c−1d

)2 (mod p)

This is a contradiction, as by Fact 13.3.2 there is no square root of −1
modulo p for p = 4k + 3, finishing the proof! ■
Example 13.5.6 This theorem fully explains why 21 = 7 · 3 and the others
mentioned in Fact 13.1.2 cannot be written as a sum of squares. □

If the whole theorem still seems too neat and dried, it can be instructive to
get insight by plugging in different n below. When do you get an error, when
not?

n=20
print(factor(n))
print(two_squares(n))

2^2 * 5
(2, 4)

(As a bonus, can you turn this into an interactive cell? See Sage note 12.6.8.)

13.6 A One-Sentence Proof
There is a completely different approach to this problem which has gained
some notoriety. Often one wants multiple approaches in order to understand
a problem more deeply; here, we have picked a geometric approach.

It happens that D. Zagier provided the culmination of a series of proofs
using only sets and functions, and that proof takes only one sentence to write
down! This is reproduced from the famous article [E.7.2] with the following
title:
Proposition 13.6.1 A One-Sentence Proof that Every Prime p ≡ 1
(mod 4) is a Sum of Two Squares.
Proof. The involution on the finite set

S = {(x, y, z) ∈ N3 | x2 + 4yz = p}

defined by

(x, y, z) →


(x+ 2z, z, y − x− z) if x < y − z

(2y − x, y, x− y + z) if y − z < x < 2y

(x− 2y, x− y + z, y) if x > 2y

has exactly one fixed point, so |S| is odd and the involution defined by (x, y, z) →
(x, z, y) also has a fixed point. ■

CHAPTER 13. SUMS OF SQUARES 234

In Exercise Group 13.7.19–23, you will be asked to verify the various state-
ments that this proof depends on. Although perhaps it is not the easiest single
sentence after all, it is still fun – fun enough that you can watch a couple videos
about it from Numberphile!

13.7 Exercises
1. Prove that if n ≡ 3 (mod 4), then n cannot be written as a sum of two

squares (13.1.1).
2. Prove Fact 13.1.2.
3. Show that if n ≡ 7 (mod 8), then n cannot be written as a sum of three

perfect squares. (See also Exercise 14.4.6.)
4. Find two numbers that can be written as a sum of three squares in two

essentially different ways (not just 12 + 02 + 02 = 02 + 12 + 02 or even
32 + 42 + 12 = 02 + 52 + 12). (See also Exercise 14.4.4.)

5. Find as many integers n as possible which are only writeable as a sum of
squares via n = a2 + a2 = 2a2, i.e. n is not writeable as a sum of distinct
squares.

6. Verify Fact 13.1.7 by hand (i.e. write all the algebra out).
7. Let r2(n) be the number of different ways to write n ≥ 0 as a sum of

two squares, where every different way (not just essentially different) is
counted. For instance,

r2(2) = 4 because (−1, 1), (−1,−1), (1, 1), (1,−1) all work.

Prove that
r2 (2

m) = 4 for all m ≥ 1.

Let N be odd, and let N = a2+ b2 and N = c2+d2, where the pairs (a, b) and
(c, d) are both positive and not the same or just switched in order. Verify the
following to finish the proof of Fact 13.2.1.

8. It’s okay to assume that a and c are odd and b and d are even, with
a ≥ c and d ≥ b.

9. If this is the case, show that k = gcd(a−c, d−b) and n = gcd(a+c, d+b)
are both even.

10. Assuming the previous two exercises, show that a−c
k = d+b

n and d−b
k =

a+c
n .

11. Assuming everything else works, show that N is in fact the product of
the terms in question; this will involve a fair amount of cancellation!

12. Using the tools of this chapter, for each of the numbers 5095, 5096, 5097,
5098, and 5099, either write it as a sum of two perfect squares or explain
why it is impossible to do so.

Pick four random (to you) three digit numbers which are not of the form 4k+3.
13. Decide whether these numbers are a sum of two squares without using

Sage.
14. Pick two of those numbers and write them in all possible ways as a

sum of two squares.
15. Show a positive integer k is the difference of two squares if and only if

k ̸≡ 2 (mod 4).

https://www.youtube.com/watch?v=yGsIw8LHXM8
https://www.youtube.com/watch?v=yGsIw8LHXM8

CHAPTER 13. SUMS OF SQUARES 235

16. Prove that if n ≡ 12 (mod 16), then n cannot be written as a sum of two
squares.

17. Is there any congruence condition modulo 6 for which a number cannot
be written as a sum of two squares?

18. Referring to the proof of the main theorem (especially in Subsection 13.4.3):
Check that the pictures you get from some other primes with these lattices
really work.

Check every piece of the Zagier proof (Proposition 13.6.1).
19. The set S is finite. Try figuring out what S is for p = 5 or p = 13, the

smallest such primes.
20. Each (x, y, z) has exactly one of the three things to go to.
21. The function in question is an involution. That is, if you take the

output and apply the function a second time, you get your original
(x, y, z) back (this is a little tougher).

22. If (x, y, z) goes to (x, y, z) then it turns out that (x, y, z) = (1, 1, p−1
4)

(you will probably need to use the definition of S for this, and remem-
ber that we assume p ≡ 1 (mod 4)).

23. That if the map (x, y, z) → (x, z, y) has a point which is fixed (the
output is same as input) then this, combined with the definition of S,
means that p is writeable as the sum of two squares.

24. Prove the assertion about ±
(
p−1
2

)
! in Remark 13.3.4.

Summary: Sums of Squares
This chapter examines the question of what numbers may be written as a sum
of two perfect (integer) squares.

1. First an exploration of the problem is in order, including a geometric
interpretation and the famous identity Fact 13.1.7.

2. In Proposition 13.2.4 we show that prime numbers may essentially only
be written in one way as such a sum.

3. Defining the square root of a number, modulo n, is the content of Defin-
ition 13.3.1, which we then immediately use to find out when −1 has a
square root.

4. The proof of Theorem 13.4.5 that primes of the form 4k+1 can be written
as a sum of squares is a real geometric treat.

5. In the penultimate section we prove Theorem 13.5.5, which explains why
even though 21 can be written as 4k + 1, it cannot be written as a sum
of squares.

6. We finish with A One-Sentence Proof of the main theorem of this chapter.

The Exercises give practice filling in many of the smaller details of the proofs.

CHAPTER 13. SUMS OF SQUARES 236

Chapter 14

Beyond Sums of Squares

There are many fascinating topics that sums of squares connect to. This chap-
ter gives some interesting points of view on several.

14.1 A Complex Situation

14.1.1 A new interpretation
Let’s see another to interpret sums of squares. Suppose first that, as before,

n = a2 + b2.

Then, if we let the symbol i stand for a (putative) square root of negative one,
so that −1 = i2, we could legitimately factor the equation:

n = a2 − (i2b2) = (a+ bi)(a− bi)

Example 14.1.1 For instance, we could factor the prime number thirteen!!!

print (3^2+2^2)
print((3+2*i)*(3-2*i))

13
13

□
It turns out that there is a beautiful connection between the theory of

numbers representable as a sum of two squares and the following beautiful
definition.
Definition 14.1.2 Gaussian integers. The Gaussian Integers Z[i] may
be defined as the set

Z[i] = {a+ bi | a, b ∈ Z}

This does assume that we can have such a symbol i with i2 = −1; typically this
is considered to thus be a subset of the so-called complex numbers, denoted
C. ♢
Historical remark 14.1.3 Carl Friedrich Gauss. These are named after
our friend Gauss, who explored them a great deal, though others were at least
incipiently aware of them.

There are so many stories about Gauss that one can hardly know where to
begin. The most-quoted one is his quick solution to summing the numbers from

237

CHAPTER 14. BEYOND SUMS OF SQUARES 238

1 to 100 as a child; however, some of his most important work was in physics and
magnetism. As an adolescent he kept a fascinating notebook of stunning results.
He also was one contributor to the beginnings of modern statistics, proved the
fundamental theorem of algebra, helped survey a large part of Germany, and
in his own way mentored a number of important mathematicians, including
Eisenstein (see Section 17.2), Riemann (see Chapter 24) and Germain (see
Subsection 11.6.4, and below).

Gauss will come up again in Section 17.4 regarding solving congruences,
and when we continue exploring prime numbers in Section 21.2. Annoyingly,
he only published some of his many results (notably in number theory); most
relevant here is that Gaussian integers is something he actually did publish
about.

If we bring back our lattice of integer points, we can think of such numbers
as being points on the lattice, where the coordinate point (3, 2) corresponds to
3 + 2i, one of the ‘factors’ of 13. I’ll plot both ‘factors’ below.

-4 -2 2 4

-4

-2

2

4

Figure 14.1.4 Factors of 13 as a Gaussian integer
There are many amazing questions to ask about this, and wonderful con-

nections to abstract algebra. For example, the factorization

a2 + b2 = (a+ bi)(a− bi)

requires i, a “square root of negative one” over the integers, so we shouldn’t
be surprised that writing as a sum of squares has a connection with “square
roots modulo n”. This connection is actually more direct than we have seen,
and we will show some of it in the next section.

14.1.2 Revisiting the norm
How can we decide whether the verb “to factor” is legitimate to use in a given
number system? In the Gaussian integers, the reason we can is that prime
numbers can be defined for this new system as well.

CHAPTER 14. BEYOND SUMS OF SQUARES 239

Fact 14.1.5 Prime numbers in the Gaussian integers, or Gaussian primes,
are of three possible forms:

• Given a prime p ∈ Z of the form p = 4n+ 3, ±p ∈ Z[i] is prime.

• Given a prime p ∈ Z of the form p = 4n+ 3, ±p · i ∈ Z[i] is also prime.

• Given a prime p ∈ Z not of the form p = 4n + 3, any factors a + bi
and a− bi in Z[i] corresponding to writing p = a2 + b2 are prime (recall
Theorem 13.5.5).

The last point can be confusing. Since a and b could be positive or negative,
and may be distinct, it can be useful to think of the primes thus generated as
±a ± bi,±b ± ai. In Figure 14.1.4 this means that not only 3 ± 2i, but also
−3 ± 2i, 2 ± 3i, and −2 ± 3i are all Gaussian primes. This is related to the
notion of associates in ring theory; see also the end of this subsection.

Viewing these Gaussian primes is fun. Many authors have created beatiful
graphics1 such as the one in Figure 14.1.6.

-10 -5 5 10

-10

-5

5

10

Figure 14.1.6 Plot of Gaussian primes with coordinates less than 10 in ab-
solute value

You can keep exploring the beauty of this pattern in the following interact.

@interact
def _(viewsize =10):

lattice_pts = [[i,j] for i in [-viewsize .. viewsize] for
j in [-viewsize .. viewsize]]

plot_lattice_pts =
points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)

GG.<I> = GaussianIntegers ()
Gaussian_primes = [x for x in lattice_pts if

1You can even order serving napkins with them as the design online. The internet is
amazing.

http://sannydezoete.nl/product/servet-priemgetallen-linnen/

CHAPTER 14. BEYOND SUMS OF SQUARES 240

GG(x[0]+x[1]*I).is_prime ()]
plot_Gaussian_primes =

sum([polygon ([(G[0]+1/2 ,G[1]+1/2) ,
(G[0]+1/2 ,G[1] -1/2), (G[0]-1/2,G[1] -1/2),
(G[0]-1/2,G[1]+1/2)],alpha =.6) for G in
Gaussian_primes])

show(plot_Gaussian_primes+plot_lattice_pts ,
aspect_ratio =1)

pretty_print(html("Plot␣of␣Gaussian␣primes␣with␣
coordinates␣less␣than␣{0}␣in␣absolute␣
value".format(viewsize)))

The basic reason this even makes sense is that we can use the Euclidean
algorithm here. First, let’s use the same definition of norm as we used in
Definition 13.4.4 for the points, so that N(x+ iy) = x2 + y2.

Example 14.1.7 The norm of 3 + 2i is 32 + 22 = 13 while the norm of
13 = 13 + 0i is 169. □

The difference is that instead of saying simply that a = bq + r for r < b,
we will need to compare the norms of r and b. Namely, you can write two
Gaussian integers a and b as a = bq + r, where 0 ≤ N(r) < N(b). Continue
this process just as in Euclidean algorithm, and it ends by the Well-Ordering
Principle to define gcd(a, b). In this case ±1 and ±i are all possible stopping
points if a and b don’t share a factor.

Further, if g and h are “relatively prime” Gaussian integers (gcd(g, h) = ±1
or ±i), then there are other such integers x and y such that gx + hy = 1. So
we have a Bezout identity as well to play with.

Computing with Gaussian integers this way is possible in Sage.

ZZI.<I> = GaussianIntegers ()
(1+I).is_prime ()

True

Crucially, I am skipping whether we actually have unique factorization
in Z[i]. This is true, and is used below in Fact 14.1.8, but properly belongs in
an abstract algebra course.

14.1.3 A different approach to sums of squares
The Gaussian integers allow a quite different approach to the fact primes of the
form 4n+1 can be written as a sum of squares. We could use complex numbers
instead of geometry. Unfortunately, it requires us to take an algebraic fact on
faith instead of the fact we proved using geometry; there are no shortcuts. Still,
it’s worth looking at.

Fact 14.1.8 If p ≡ 1 (mod 4) is prime, then p can be written as a sum of two
squares. (This is Theorem 13.4.5.)
Proof. We already know, from the proof of Lemma 13.3.3 that

f =

(
p− 1

2

)
!

is a square root of −1 modulo p. But now, instead of doing geometry, let’s look
at what that means.

By definition of
f2 ≡ −1 (mod p)

CHAPTER 14. BEYOND SUMS OF SQUARES 241

we know that p | f2 + 1. Since f2 + 1 is f2 − i2, let’s factor:

f2 + 1 = (f + i)(f − i).

Clearly p = p + 0i does not divide either f + i or f − i evenly in Z[i], but
it does divide their product. So (crucially!), if we assume the Fundamental
Theorem of Arithmetic still holds for Gaussian integers, then p factors in Z[i]
and has a prime divisor of the form a + bi (in the sense of Subsection 14.1.2)
dividing f + i or f − i.

Given that a+ bi | p, it’s not hard to show that then a− bi also must divide
p. We’ll skip this (but see the discussion after Fact 14.1.5 for ideas).

To finish up, combine these facts to see that

(a+ bi)(a− bi) | p2 ⇒ a2 + b2 | p2

and the factor a2 + b2 is not equal to one, since a+ bi was a proper divisor of
p. Since p is an integer prime, the only possibility is

a2 + b2 = p.

■
To emphasize that the assumption about Theorem 6.3.2 really matters, see

Exercise 6.6.30.
Remark 14.1.9 As a final note to the complex point of view, one may note
that there is a way to view Pythagorean triples as Gaussian integers as well.
In this case one notes that if a2+ b2 = c2, then a+ bi could represent the triple
in question, and moreover one can use Fact 13.1.7 to combine two such triples.

Most remarkably, a variant of this operation applied to primitive triples can
be used to put a group multiplication on that set! See [E.7.29] for more details,
such as the multiplication involved and the structure of the group, which an
inquiring reader may wish to relate to Remark 3.4.8 and similar facts. (See
also Exercise 15.7.21.)

14.2 More Sums of Squares and Beyond
There are many interesting questions one can ask about sums of squares we
have not even touched upon. Each of these is very worthy of independent study
by undergraduates, and also ideal for computer exploration.

14.2.1 Summing more squares
Fact 14.2.1 Sums of three squares. A positive integer may be written as
a sum of three squares if and only if it does not have the form of a product of
an even power of two times an odd number which is congruent to seven modulo
eight.
Proof. We will skip the proof, but see Exercise 14.4.4 and Exercise 14.4.6. ■

One might think at this point that even an arbitrary sum of squares might
not represent every number, but we have this result (see also Exercise 14.4.7),
first conjectured by our old friend Bachet.
Fact 14.2.2 Lagrange’s four square theorem. Any nonnegative integer
may be written as a sum of four squares.
Proof. There are algebraic proofs using facts similar to Fact 14.1.8, and also
geometric proofs using (Minkowkskian, see Remark 13.4.1) ideas similar to

CHAPTER 14. BEYOND SUMS OF SQUARES 242

those in Subsection 13.4.4. Both types of proof are interesting, because on the
one hand an algebraic proof can use the extension of the complex numbers
called the quaternions2, while on the other hand a geometric proof shows
that geometric ideas can still work in more than two dimensions. ■

One can generalize in many ways.
Example 14.2.3 For example, one can ask how many ways one can write a
number as a sum of three, four, etc. squares. In Exercise 13.7.7 we defined
r2(n) as giving the number of ways to write n as a sum of two squares; the
equivalent functions here would be rk(n) for n ≥ 1. In that case, Lagrange’s
four square theorem above could be more succinctly stated as

r4(n) ≥ 1 for all n ≥ 0

But in general one may want to be able to compute this, or to give bounds for
it as a function of n. If you just can’t wait to learn more about the sort of
things known about rk(n), see Theorem 25.8.1. □

14.2.2 Beyond squares
There are other directions one can generalize our questions. For instance:
Question 14.2.4 What numbers can be written as a sum of …

• Two cubes?

• Three cubes?

• k cubes?

□
It turns out that any number can be written as a sum of at most nine

cubes. In the first half of the twentieth century, American mathematician
L. E. Dickson proved this, and with the assistance of very substantial tables
generated by hand by some of his assistants (before the advent of the digital
computer!) he showed that every number except 23 and 239 can be represented
by eight or fewer cubes!

Alternately, one could keep the number of powers the same, but change the
powers.
Question 14.2.5 What numbers can be written as a sum of …

• Two cubes?

• Two fourth powers?

• Two nth powers?

□
The reader should feel free to explore this in Exercise 14.4.8. Note that the

answers for odd powers will be very different if one allows negative numbers!
For a recent example of theory working with massive computation, see this
article about writing 33 as a sum of three cubes3.

Now it is time to recall our discussions in Section 3.4, alluded to in Re-
mark 13.1.4. In that situation, we essentially were looking for integer solutions

2See this excellent video by 3blue1brown (Grant Sanderson).
3To be precise, 88661289752875283 + (−8778405442862239)3 + (−2736111468807040)3 =

33. The status of all positive integers less than 100 is now known; see here.

https://www.quantamagazine.org/sum-of-three-cubes-problem-solved-for-stubborn-number-33-20190326/
https://www.quantamagazine.org/sum-of-three-cubes-problem-solved-for-stubborn-number-33-20190326/
https://www.youtube.com/watch?v=d4EgbgTm0Bg
https://www.quantamagazine.org/sum-of-three-cubes-problem-solved-for-stubborn-number-33-20190326/#42

CHAPTER 14. BEYOND SUMS OF SQUARES 243

to
x2 + y2 = z2

In fact, we characterized such triples x, y, z in Theorem 3.4.6.
But we can reinterpret this as a question in this context – when is a perfect

square a sum of two squares? In that case, the previous question can be further
specialized:
Question 14.2.6 What perfect …

• Cubes can be written as a sum of two cubes?

• Fourth powers can be written as a sum of two fourth powers?

• What about nth powers? What (integer) solutions are there to this?

xn + yn = zn

□
Ordinarily, as author I would now send the reader to explore some of these

questions in Exercise 14.4.9. However, as we saw in Exercise 3.6.17 (see the
discussion at Corollary 3.4.13), Fermat already proved that other than trivial
solutions (such as writing 04 + (−1)4 = 14) there were no solutions in the case
n = 4. This is the simplest case of Fact 14.2.7. Euler nearly proved the same
statement for n = 3, but made a hidden assumption – the same one we will
examine shortly in discussing Fact 15.3.5 (as there, see [E.4.14] for a correct
proof).

There is a huge field which developed from these observations, but we
will not digress much further upon it. If you recall the discussion in Subsec-
tion 11.6.4, it turns out Germain originally investigated n in the case where it
is one of the numbers now known as Germain primes (recall Subsection 11.6.4);
see [E.5.2, Chapter 11] for an accessible introduction to her plan.

Much of the field of algebraic number theory developed from pursuing this
question in the nineteenth and early twentieth centuries. Finally in 1995 An-
drew Wiles, along with his former student Richard Taylor, proved the following
result via a very deep investigation of (among other things) elliptic curves (re-
call the brief mention in Section 3.5).

Fact 14.2.7 Fermat’s Last Theorem. For n > 2, there are no three positive
integers x, y, z such that

xn + yn = zn

Proof. Hanc marginis exiguitas non caperet. ■

14.2.3 Waring’s problem
The English mathematician Edward Waring4 asked for an outrageous gener-
alization of these questions of sums of powers, which is still an active area
of research called Waring’s Problem. The most important result is truly
spectacular.
Fact 14.2.8 Hilbert-Waring Theorem. For each positive integer power
m, there is a number g(m) such that every nonnegative integer can be written
as a sum of g(m) mth powers.

There is even a potential formula that

g(m) = 2m +

⌊(
3

2

)m⌋
− 2

4According to [E.5.3, Section 11-1], John Wilson of Wilson’s Theorem was his student.

CHAPTER 14. BEYOND SUMS OF SQUARES 244

This has been verified for m out to many millions, and is conjectured to al-
ways be true. The aforementioned Dickson notes that this formula was first
conjectured by Euler’s son, Johann Albrecht. See [E.2.16, Section 7.6] for a
nice exposition of this, and see [E.4.26, Chapter 5] for Fact 14.2.8 itself.

On the other hand, the question of finding the smallest integer G(m) (for
a given m) such that every sufficiently large number can be written as a sum
of that many mth powers is still wide open. Perhaps you will explore it? (See
e.g. Exercise 14.4.10 and Exercise 14.4.11.)

14.3 Related Questions About Sums
There is yet another generalization that will serve better as a lead-in to the
next chapters. Think about the following two problems.

• What numbers can be written as x2 +2y2? (Think of it as x2 + y2 + y2.)

• What numbers can be written as x2 + 3y2?

These are very natural generalizations to the “two squares” question. How
could we approach them? Here’s one type of idea.
Fact 14.3.1 No number

n ≡ 5 or n ≡ 7 (mod 8)

can be written as x2 + 2y2.
Proof. Try all numbers modulo 8 and see what is possible! (See Exercise 14.4.3.)

■
Already Fermat (unsurprisingly) claimed a partial converse to Fact 14.3.1.

He stated that any prime number p which satisfies p ≡ 1 or p ≡ 3 (mod 8)
could be written as a sum of a square and twice a square.

This time, Euler wasn’t the one who proved it! But you could almost
imagine that by factoring

x2 + 2y2 = (x−
√
2iy)(x+

√
2iy)

you could start proving such things. When might a square root of two exist
modulo p …

Here are some numbers which can be written in this form.

@interact
def _(n=10):

pretty_print(html("Using␣a␣and␣b␣up␣to␣$%s$:"%n))
L=[a^2+2*b^2 for a in [0..n] for b in [0..n]]
L.sort(); print(L)

In Exercise 14.4.12, you will try to discover a similar pattern for x2 + 3y2.
See also Section 15.4.

14.4 Exercises
1. Look up the concepts of ‘Gaussian moat’, ‘Gaussian zoo’, and/or ‘Gauss-

ian prime spiral’ and tell what you think!
2. Look up ‘Eisenstein integers’. Can you find any interesting theorems along

these lines which they prove? What would Eisenstein primes look like?

http://www.ams.org/journals/bull/1936-42-12/S0002-9904-1936-06432-3/S0002-9904-1936-06432-3.pdf

CHAPTER 14. BEYOND SUMS OF SQUARES 245

What about “Eisenstein triples”? (See [E.7.17] and Exercise 3.6.20.)
3. Finish proving Fact 14.3.1.
4. Find numbers writeable in two essentially different ways as a sum of three

squares (not just 12+02+02 = 02+12+02 or even 32+42+12 = 02+52+12).
(This was also Exercise 13.7.4.)

5. Show that two (separate) instances of Pythagorean triples can yield an
answer to the previous exercise in a clever way. (Thanks to Samuel Pa-
quette.)

6. Show that an odd number which is congruent to seven modulo eight
may not be written as a sum of three squares, obviously without using
Fact 14.2.1. (This was also Exercise 13.7.3.)

7. Research Lagrange’s four-square theorem and write an essay about it;
which proof do you prefer?

8. Write a program in Sage (or another language) to explore which numbers
may be written as a sum of two cubes, two fourth powers, and so forth.

9. Write a program in Sage (or another language) to verify Fermat’s Last
Theorem for some small x, y, z and n.

10. Write a program in Sage (or another language) to compute g(m) and/or
G(m) in the Hilbert-Waring Theorem for small m.

11. For which m do results in this chapter give us information about g(m) or
G(m)? Be as specific as possible.

12. Look for a pattern, similar to the one we found for sums of squares, for
which primes can be written in the form x2 + 3y2. Prove that the primes
not of this form are impossible.

13. Yet another possible generalization of Pythagorean triples is to ask when
the sum of two perfect powers of the same degree is a perfect square, or
xn + yn = z2. Explain why this is not so interesting when n is even,
and why when n = 3 we already have seen at least one solution. Then
do some experiments to conjecture whether there are solutions for prime
n > 3. (See [E.4.23, p. 255].)

Summary: Beyond Sums of Squares
In this chapter, we examine some optional (but amazing) additional questions
and directions the sums of squares can take us.

1. Gauss reimagined many questions. His introduction of Gaussian integers,
a complex-valued analogue to our integers is not just related to sums of
squares, but provides its own interesting questions, such as those of what
complex prime numbers might look like in Fact 14.1.5.

2. The next section includes brief discussion of the topics surrounding three
amazing facts – Lagrange’s four square theorem, Fermat’s Last Theorem,
and the Hilbert-Waring Theorem.

3. We prepare to think about other sum questions that could be interpreted
geometrically in Section 14.3.

In keeping with its overall feel, the Exercises have more programming exercises
than usual, and some exploration.

CHAPTER 14. BEYOND SUMS OF SQUARES 246

Chapter 15

Points on Curves

We have already seen a lot of the geometric viewpoint of number theory; think
about Section 13.4, for instance.

The goal of the next several chapters is to examine what other questions
can one ask of a purely geometric nature – or how far geometry can go in
answering other questions.

This chapter returns to the notion of finding specific types of points on
graphs of number-theoretic equations. But instead of looking at lines as we
did before, there are a variety of curves we can consider.

For instance, our previous discussion about the sum of two squares was
essentially interpreted as asking when the curve x2 + y2 = n has an (integer)
lattice point on it or not. We have completely answered this question.

But if we were considering x2 + y2 = n to be about a circle of radius
√
n,

then x2 + 2y2 = n must be about an ellipse! Here is a visualization of points
on a couple of these ellipses.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 15.0.1 Integer points x2 + 2y2 = n for n = 3, 5

Notice that one of them has integer points, while the other does not. Try
more below.

var('x,y ')
@interact
def _(n=3):

plot1=implicit_plot(x^2+2*y^2-n, (x,-n,n), (y,-n,n),
plot_points =100)

grid_pts = [[i,j] for i in [-n..n] for j in [-n..n]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)

247

CHAPTER 15. POINTS ON CURVES 248

lattice_pts = [coords for coords in grid_pts if
(2* coords [1]^2+ coords [0]^2) ==n]

plot_lattice_pts = points(lattice_pts , rgbcolor =
(0,0,1),pointsize =20)

show(plot1 + plot_grid_pts + plot_lattice_pts ,
figsize =[5,5], aspect_ratio =1)

pretty_print(html("The␣ellipse␣$x^2+2y^2=%s"%n))

Questions like this are at the heart of modern number theory – plus, there
are such nice pictures! It turns out this investigation will have surprising
connections to calculus and group theory too.

With that in view, you may want to try to find integer points on the
following curves. Each exemplifies a type we will discuss in this chapter.

1. x3 = y2 + 2

2. x2 + 2y2 = 9

3. x2 − 2y2 = 1

What we will do is to slowly try to make our way to finding integer solutions
to some more difficult Diophantine equations, using an idea about rationals
which simplifies Pythagorean triple geometry. We’ll then return to the integer
setup once we’ve gotten this background.

15.1 Rational Points on Conics

15.1.1 Rational points on the circle
Remember that in Section 3.4 we thought of Pythagorean triples as solutions
to

x2 + y2 = z2.
Now, let’s divide the whole Pythagorean thing by z2:

x2

z2
+

y2

z2
= 1 ⇒

(x
z

)2
+
(y
z

)2
= 1.

Since we can always get any two rational numbers to have a common denomi-
nator, what that means is the Pythagorean problem is the same as finding all
rational solutions to the simpler formula

a2 + b2 = 1,

which seems to be a very different problem. Let’s investigate this.

var('x,y ')
@interact
def _(slope =-2/3):

plot1=implicit_plot(x^2+y^2-1, (x, -1.5 ,1.5),
(y, -1.5 ,1.5), plot_points =100)

plot2=plot(slope*(x-1),x, -1.5 ,1.5)
plot3=point (((slope ^2-1)/(slope ^2+1),

-2*slope/(slope ^2+1)), rgbcolor =(1,0,1),
pointsize =20)

show(plot1+plot2+plot3 + point ((1,0), rgbcolor =(0,0,0),
pointsize =20), figsize =[5,5], aspect_ratio =1)

CHAPTER 15. POINTS ON CURVES 249

In the interact above, the blue line intersects the circle x2 + y2 = 1 in the
point (1, 0) and has rational slope denoted by slope. If you change the variable
slope, then the line will change.

It is not a hard exercise to see that the line through two rational points on
a curve will have rational slope, nor what its formula is, so that every rational
point on the circle is gotten by intersecting (1, 0) with a line with rational slope.
This is not necessarily visible in Figure 15.1.1!

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 15.1.1 Intersecting a circle with a line of slope −2/3

It is a little harder to show that intersecting such a line with the circle
always gives a rational point, but this is also true! It is also far more useful,
as it gives us a technique to find all rational points and hence all Pythagorean
triples.

Fact 15.1.2 All lines with rational slope through (1, 0) intersect the unit circle
in a second rational point.
Proof. In fact, we can do even better than prove this; we can get a formula for
the points.

First, any line with slope t has formula y = t(x − 1). We can then obtain
all intersections with the circle x2 + y2 = 1 by plugging in y, so:

x2 + (t(x− 1))2 = 1 ⇒ x2 + t2x2 − 2xt2 + t2 = 1

We will skip the algebra (see Exercise 15.7.1) showing that the quadratic
formula yields the two answers t2±1

t2+1 .
Note that t2+1

t2+1 = 1 gives the point (1, 0) which we already knew. The
other, new, point is t2−1

t2+1 = x; plugging this in gives y = t
(

t2−1
t2+1 − 1

)
= −2t

t2+1 .

In summary, every rational slope t gives us the point
(

t2−1
t2+1 ,

−2t
t2+1

)
. ■

Even the inputs t = 0 and t = ∞ have an appropriate interpretation in this
framework. Such a description of the (rational) points of the circle is called a
parametrization. Plug in various t and see what you get!

Remark 15.1.3 You could start the whole process with (−1, 0) or (0, 1), use
all lines through it with rational slopes, and get a different parametrization.

CHAPTER 15. POINTS ON CURVES 250

15.1.2 Parametrization in general
But will this always work? Certainly not every curve gets rational points by
intersecting rational slope lines with it.

Example 15.1.4 Consider the curve given by y = x3 and the point (0, 0). A
rational slope line through that point would be y = p

qx. Substituting we get

p

q
x = x3 =⇒ p

q
x− x3 = 0 =⇒ x

(
p

q
− x2

)
= 0

which clearly will have irrational x-coordinates for most choices of the slope
p/q. □

In the quadratic context it works, though! Here is an amazing fact we will
not prove.
Fact 15.1.5 Suppose you have a curve given by a quadratic equation with
rational coefficients which contains at least one rational point. Then all lines
with rational slope (including vertical1 lines) through that point on the curve
intersect the curve in only rational points, and all rational points on the curve
are generated in this way.

Example 15.1.6 Here’s an example with x2 + 3y2 = 1.
As in the proof of Fact 15.1.2, the line going through (1, 0) has equation

y = t(x−1). Here, the ellipse has equation x2+3y2 = 1, so that we must solve
the equation

x2 + 3t2(x− 1)2 = 1 ⇒ x2 + 3t2x2 − 6t2x+ 3t2 − 1 = 0

for x to find a parametrization of x in terms of t. The following picture might
help visualize the process.

1The long reason for this is projective space; the short and not-quite-rigorous reason is
that ∞ = 1/0 is a rational fraction, right? … Right?

CHAPTER 15. POINTS ON CURVES 251

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 15.1.7 Intersecting an ellipse with a line of slope −1/2

Solving this equation seems daunting. Here are two strategies (see Exer-
cise 15.7.2 to try them).

• We already know that there is a solution x = 1, so that x− 1 must be a
factor of the expression! So we could factor it out if we wished.

• Alternately, we could use the quadratic formula and discard the solution
x = 1.

In either case you should get

x =
3t2 − 1

3t2 + 1
, y =

−2t

3t2 + 1

Now you can find all kinds of interesting solutions like
(
11
13 ,

−4
13

)
. □

Where does this go? One place these solutions lead is to integer solutions
of three-variable equations. In the previous example, since x and y have a
common denominator, we can just multiply through by the square of that
denominator to get

112 + 3(−4)2 = 132.
One could consider this to be an integer point on the surface given by x2+3y2 =
z2, which you may play around with in the following interact if you are online.

var('x,y ')
@interact
def _(viewsize =15):

plot1=plot3d(sqrt(x^2+3*y^2), (x,-viewsize ,viewsize),
(y,-viewsize/2,viewsize /2))

grid_pts = [[i,j,k] for i in [-viewsize .. viewsize] for j
in [-viewsize .. viewsize] for k in [0.. viewsize]]

lattice_pts = [coords for coords in grid_pts if

CHAPTER 15. POINTS ON CURVES 252

(coords [0]^2+3* coords [1]^2== coords [2]^2)]
plot_lattice_pts = point3d(lattice_pts , rgbcolor =

(1,0,0),pointsize =40)
show(plot1+plot_lattice_pts)

That is a rather non-obvious solution to this equation in three variables, to
say the least, and only one of many that this method can help us find.

15.1.3 When curves don’t have rational points
However, the rational slope method does not always work. Namely, you need
at least one rational point to start off with! And what if there isn’t one that
exists? It turns out that Diophantus already knew of some such curves.

Fact 15.1.8 The circle x2 + y2 = 15 has no rational points.
Proof. First, note this is a much stronger statement than what we already know,
which is that this curve has no integer points (see Fact 13.1.1). The way to
prove this is to correspond this to integer points on the surface x2 + y2 = 15z2.

Every rational point on the circle can be written using a common denomi-
nator as (p/q, r/q) for some p, r, q ∈ Z, where gcd(p, q) = 1 = gcd(r, q). Then
simply multiplying through by q gives integer points (x, y, z) = (p, r, q) on the
surface. (This isn’t a one-to-one correspondence, as the surface point (0, 0, 0)
shows.)

But now consider the whole equation p2 + r2 = 15q2 modulo 4. The reader
should definitely check that there are no legitimate possibilities! (See Exer-
cise 15.7.5; don’t forget that the rational points are written in lowest terms.)

■
As we can see experimentally in the interact below, there are no rational

points on a circle of radius
√
15 because there are no integer points on the

corresponding surface other than ones with x, y = 0 – and those correspond
to z = 0, which would give a zero denominator on the circle. Here is a place
where rational points are illuminated by questions of integer points rather than
vice versa.

var('x,y ')
@interact
def _(viewsize =15):

plot1=plot3d(sqrt(x^2+y^2)/sqrt (15), (x,0,viewsize),
(y,0,viewsize))

grid_pts = [[i,j,k] for i in [0.. viewsize] for j in
[0.. viewsize] for k in [0..3* viewsize]]

lattice_pts = [coords for coords in grid_pts if
(coords [0]^2+ coords [1]^2==15* coords [2]^2)]

plot_lattice_pts = point3d(lattice_pts , rgbcolor =
(1,0,0),pointsize =40)

show(plot1+plot_lattice_pts)

Let’s do another example.

Example 15.1.9 Try to find rational points on the ellipse 2x2 + 3y2 = 1.
Solution. A rational point would correspond to integer points on 2x2+3y2 =
z2. You can try looking at it modulo four, but that goes nowhere. Instead,
given the three as a coefficient, look at it modulo 3!

In this case it reduces to

2 ≡ (zx−1)2 (mod 3)

CHAPTER 15. POINTS ON CURVES 253

This is impossible since [0], [1], [2] all square to [0] or [1] in Z3. □

The point is that, at least sometimes, modular arithmetic and going back and
forth between integer and rational points helps us find points, or prove there
are no such points.

15.2 A tempting cubic interlude
It is interesting that our investigation of rational points, initially motivated by
integer points like Pythagorean triples, inevitably led back to integer points.
Soon we will look at some remarkable properties that sets of integer points on
certain curves have, and whether any such points even exist.

But before moving on, it is worth looking at some interesting tidbits relating
to another type of equation, x3 + ay3 = b.

For the first example, consider that sometimes mathematicians like to ex-
plore hard questions for their own sake. Sometimes proofs are very challenging,
indeed. Then again, sometimes a very easy proof is missed.

One example of this is the equation x3 − 117y3 = 5. At one point a well-
known number theorist specializing in Diophantine equations asserted this was
known to have few solutions. A few years later, using field theory, this was
proved.

Two years later, a note was published in an obscure Romanian journal show-
ing that if one reduces the original equation modulo nine, a simple congruence
is obtained which one can show has no solutions just by trying all possibilities
by hand (you can try it in Exercise 15.7.6). (See this MathOverflow question
for background.)

Another interesting story related to this is that of Henry Dudeney’s “Puzzle
of the Doctor of Physic”, related by Andrew Bremner of Arizona State Univer-
sity in [E.7.15]. Dudeney was one of the most famous puzzle constructors of a
century ago, and this puzzle is a doozy.

Question 15.2.1 Find the (rational) diameters of two spheres whose combined
volume is that of two spheres of diameters one foot and two feet. □

This is equivalent to finding rational points on the curve x3 + y3 = 9. The
puzzle itself gives the points (1, 2) and (2, 1), so the question is whether one
can find any other such points. Bremner takes the reader through a geometric
tour of trying to intersect this curve with various lines with rational slope in
the hope of finding a proper solution to this problem.

Figure 15.2.2 gives a potential first step, using the tangent line to the curve
at (2, 1).

http://mathoverflow.net/questions/42512/awfully-sophisticated-proof-for-simple-facts

CHAPTER 15. POINTS ON CURVES 254

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

5

Figure 15.2.2 Finding a rational point on Dudeney’s curve
It turns out that this point is not acceptable as a solution (why?). In fact,

it takes several more steps of connecting points to arrive at a solution, namely(
415280564497

348671682660
,
676702467503

348671682660

)
which does seem a bit excessive but is sure fun2.

There are endless variations on such questions. If we consider Dudeney’s
problem as an example of summing two perfect squares to make a perfect cube,
we have a more general question that Diophantus and al-Karaji explored for
their rational rational solutions.

We are now ready to begin our discussion of more integer points on curves.
As mentioned before, we’ll try to find integer points on the following types of
curves:

• x3 = y2 + 2 (sometimes called the Bachet equation)

• x2 + 2y2 = 9 (a well-known friend, the ellipse)

• x2 − 2y2 = 1 (a hyperbola with surprising connections to
√
2)

2For an even more fun puzzle that swept the internet a few years back, see this Quora
answer, based on a paper by Bremner and Macleod.

https://www.quora.com/How-do-you-find-the-positive-integer-solutions-to-frac-x-y+z-+-frac-y-z+x-+-frac-z-x+y-4
https://www.quora.com/How-do-you-find-the-positive-integer-solutions-to-frac-x-y+z-+-frac-y-z+x-+-frac-z-x+y-4
http://ami.ektf.hu/uploads/papers/finalpdf/AMI_43_from29to41.pdf

CHAPTER 15. POINTS ON CURVES 255

15.3 Bachet and Mordell Curves
Let’s start by talking about x3 = y2 + 2 as a type of curve. Recall from
Historical remark 3.5.3 that Bachet de Méziriac first asserted this had one
positive integer solution in 1621, very early in the development of modern
number theory.

Example 15.3.1 What is that solution? (Even if you don’t remember, you
should be able to find it quickly.) □

Recall also that Fermat, Wallis, and Euler also studied this equation and
gave various discussions and proofs of the uniqueness of its solution. As we
first saw in Section 3.5, this equation is actually one of a more general class of
equations called the Mordell equation:

x3 = y2 + k , k ∈ Z.
Historical remark 15.3.2 Louis Mordell. Louis Mordell was an early 20th-
century American-born British mathematician. He proved some remarkable
theorems about this class of equations. We have already seen that these are
nontrivial, and that some have no solution (Proposition 7.6.3, or see below
Fact 15.3.3). Even deciding whether there are no solutions or not turns out to
be quite tricky; Helmut Richter has a somewhat old website with some tables
of what is known about integer solutions.

Notice that Mordell’s set of curves are not quadratic/conic, but rather a set
of cubic curves. Actually, as mentioned before, they are examples of a special
type of elliptic curves, which makes them more mysterious (and, as it happens,
more useful for cryptography – we allude to this briefly in Subsection 11.5.1).

One of Mordell’s remarkable theorems states that, for a given k, the equa-
tion can only have finitely many integer points (in fact, there are even useful
bounds for how many that depend only on the prime factorization of k). At
the same time, Mordell curves are apparently “simple” enough that they can
still have infinitely many rational points (see Theorem 15.3.6). Gerd Faltings
won a Fields Medal for proving that higher-degree curves cannot have infinitely
many rational points. If you are online, see which points you can find in the
interact below.

var('x,y ')
@interact
def _(k=(2 ,[-15..15]),viewsize =10):

g(x,y)=x^3-y^2
plot1 = implicit_plot(g-k, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]^3- coords [1]^2==k)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1+plot_grid_pts+plot_lattice_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize)

pretty_print(html("Integer␣points␣on␣the␣Mordell␣
equation␣$x^3=y^2+%s$␣in␣this␣window"%k))

http://hr.userweb.mwn.de/numb/mordell.html

CHAPTER 15. POINTS ON CURVES 256

15.3.1 Verifying points don’t exist
Proving things about Mordell’s equation is quite tricky, but once in a while
there is something you can do. For instance, we can verify something we can
see in the interact above.
Fact 15.3.3 There are no integer solutions to x3 = y2 − 7.
Proof. Recall that we nearly finished the proof of this in Proposition 7.6.3! We
had reduced to showing that

y2 + 1 = (x+ 2)(x2 − 2x+ 4)

was impossible if no prime of the form p = 4n+ 3 could divide y2 + 1.
This is not possible, because Fact 13.3.2 implies there are no square roots

of −1 modulo p for this type of p. ■
Fact 15.3.3 is a simple version of the following far more general statement.

Theorem 15.3.4 If the following hold:
• M ≡ 2 (mod 4),

• N ≡ 1 (mod 2), and

• all prime divisors p of N are of the form 4k + 1.

Then there is no solution to

x3 = y2 − (M3 −N2).
Proof. The proof basically follows the same outline as Proposition 7.6.3 with
Fact 15.3.3. See Exercise 15.7.8. ■

One can prove lots of similar statements using only congruence consider-
ations3. The previous theorem is [E.4.9, Theorem 14.1.2], and that text has
several other interesting variants. See Conrad’s notes and [E.2.8, Theorem
7.4C.1] for even more special cases. See Subsection 17.5.4 for some other ex-
amples (without proof) of how knowing when square roots exist helps solve
Mordell equations.

But there is a larger point to make, based on the very specific conditions
on M and N . Namely, if we want to prove anything about such equations with
methods we currently have access to in this text, we have no hope of getting
any interesting general results.

15.3.2 More on Mordell
Let’s see what I mean by “no hope” here by returning to Bachet’s original
equation, x3 = y2 + 2. What are some naive things we can say?

• It should be clear that x and y must have the same parity.

• If they are both even then x3 is divisible by 4, but y2 + 2 ≡ 2 (mod 4),
which is impossible.

• So x and y are both odd.

That doesn’t really narrow things down much.
Now, Euler nearly proves the following fact.

Fact 15.3.5 The only positive solution to the Bachet equation is x = 3, y = 5.
3As one might expect, with more power more can be done. See [E.2.16, Section 11.6] or

[E.4.9, Section 14.2] for results using the class number from Remark 13.3.4.

http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/mordelleqn1.pdf

CHAPTER 15. POINTS ON CURVES 257

Proof. Proving this is already a little sophisticated, and is closely connected to
the use of complex numbers in Section 14.1. Here we will give the idea behind
Euler’s ‘proof’.

In examining a2 + b2, we factored it as (a+ bi)(a− bi) using a square root
of negative 1 (relative to Z). Similarly, we would like to factor the y2 +2. But
it can’t be done in Z[i].

Instead, we could try to use the square root of −2, and define

Z[
√
−2] = {a+ b

√
−2 | a, b ∈ Z}

Then
x3 =

(
y −

√
−2
) (

y +
√
−2
)

We haven’t done anything with cubes yet …
Here is the tricky bit. In the integers, if x3 = pq and gcd(p, q) = 1, then

p and q must both be perfect (integer) cubes. So Euler assumes this works in
Z[
√
−2] as well, and that the factors of y2 + 2 are “coprime” (whatever that

means in this new number system). (A very nice discussion of this is in [E.4.14],
including a full proof in its appendix.)

Then some basic algebraic manipulation of

y −
√
−2 =

(
a+ b

√
−2
)3

and divisibility considerations end up showing that b | 1 and a = ±b, which
ends up implying y = ±5 and x = 3. (We will not take this further; see
Exercise 15.7.10.) ■

Where’s the problem? It turns out you can say that if a product of co-
prime numbers is a cube, then the factors are cubes in this situation; however,
it requires some (geometrically motivated) proof, just like with Z[i]. In his
1765 “Vollständige Anleitung zur Algebra”, sections 187-188 and 191, Euler
explicitly says that this just works – in any number system with Z[

√
c]. He

solves the original Bachet equation in section 193, and solves x3 = y2+4 using
the same technique in section 192, without realizing he had not proved this im-
plicit assumption. (This is the same assumption he tacitly made in examining
Fermat’s Last Theorem for the case n = 3.)

But we shouldn’t be too hard on Euler! He was one of the first people to
even consider some essentially random new number system obtained by adjoin-
ing

√
c (for some integer c) to the integers. And as noted in Example 3.5.4,

in 1738 he gave a correct and full proof of the observation that 8 and 9 is the
only time a perfect square is preceded by a perfect cube, which is Mordell’s
equation for k = −1. (See also Question 3.5.5.)

If you are interested in more information about how to prove cases of
Mordell’s equation, there are many good resources, including a nice one on
Keith Conrad’s website. But even finding a bound on the size of solutions to
Mordell’s equation for a given k is tricky.

• Mordell, Siegel, and Thue all had a part after World War I in showing
there are finitely many solutions for a given k, but said nothing about
how big x and y might be.

• An early bound on the size of the numbers was that

|x| < e10
10|k|10

4

which is of course ridiculously huge.

http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/mordelleqn1.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/mordelleqn1.pdf

CHAPTER 15. POINTS ON CURVES 258

• More recent conjectures are that x has absolute value less than eC |k|2+ϵ,
where ϵ is as small as you want and C seems to pretty close to one,
probably less than two.

We cannot close discussion of this topic without a final very famous result
carrying Mordell’s name. Recall that these curves can have infinitely many
rational points, even if they have finitely many (or zero) integer points. The
following is a bit of a surprise, then; the rational points can still be described
finitely.

Theorem 15.3.6 Mordell’s Theorem. Essentially, the set of (rational)
points on a Mordell curve is a combination of finitely many “cyclic” (recall
Fact 14.2.7) groups (in a very specific way I will not describe), and so it can
be described using finitely many of the rational points.

If you like, the number of rational points might be infinite, but not too
infinite.

15.4 Points on Quadratic Curves
On the other hand, finding lattice points on a quadratic curve is much more
tractable. This is because we understand conic sections so well, after having
worked with them for two thousand years!

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Figure 15.4.1 Integer points on x2 + 2y2 = 9

In Figure 15.4.1 we see our second prototype, x2+2y2 = 9. You can see that,
in addition to the obvious solution where y = 0, there is the (nearly as obvious,
because the numbers are small, but still interesting) solution x = 1, y = 2.

In general, for our purposes an ellipse is special because there are only
finitely many lattice points to check. So much for the computational problem
– just get a fast computer!

However, in this chapter I’d like to just start investigating where a general
theory for such things might come from. After all, it gets harder to check with
“industrial strength” ellipses, and we want theorems. This section gives two

CHAPTER 15. POINTS ON CURVES 259

hints of an algebraic nature; we will take a third, more geometric hint, a bit
further in the end of the chapter.

15.4.1 Transforming conic sections
Although it’s being removed from the curriculum nowadays, students in high
school mathematics or first-year college calculus often learn how to use matrices
to transform one conic section to another of the same type.

Example 15.4.2 We can get from the circle x2+y2 = 9 to the ellipse x2+2y2 =

9 by multiplying the vector (x, y) by the matrix
(
1 0

0 1/
√
2

)
; that would not

stretch the x-axis, but shrinks the y axis by the appropriate amount. □
Since this approach uses matrices with non-integer coefficients, it might not

seem promising to use matrices. However, one can also think of both conics in
such a transformation as coming from matrices.

Compare the following so-called quadratic forms:

(
x y

)(1 0

0 1

)(
x

y

)
= x2 + y2

(
x y

)(1 0

0 2

)(
x

y

)
= x2 + 2y2.

Fermat’s question essentially asked what integers n can be represented as the
first one; Gauss was interested in extending this to ask numbers are repre-
sentable in by a more general expression of the form ax2 + 2bxy + cy2. This
generalizes the sum of squares where a = 1 = c, b = 0, and is achieved by using

the matrix
(
a b

b d

)
instead. It turns out that many such expressions represent

precisely the same sets of integers (recall Section 14.3).
The Sage reference manual uses our example to demonstrate. Consider two

seemingly unrelated expressions:

(
x y

)(1 0

0 2

)(
x

y

)
= x2 + 2y2 and

(
x y

)(1 1

1 3

)(
x

y

)
= x2 + 2xy + 3y2

By the theory of quadratic forms, Fermat’s result (recall the discussion around
Fact 14.3.1) that a prime number congruent to 1 or 3 modulo 8 can be written
as a sum of a square and twice a square should apply to the second expression
as well.

As an example, both should represent the number 11. Clearly 11 = 32+2·12
works for the first one, but what about x2 + 2xy + 3y2? One can try this out
in the interact below.

var('x,y ')
@interact(layout =[[' a ' , ' b '],[' c ' , ' d '],[' output ']])
def _(a=1,b=1,c=1,d=3,output =11):

viewsize=ceil(math.sqrt(output)+1)
g(x,y)=a*x^2+(b+c)*x*y+d*y^2
plot1 = implicit_plot(g-output , (x,-viewsize ,viewsize),

(y,-viewsize ,viewsize), plot_points = 200)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)

http://doc.sagemath.org/html/en/reference/quadratic_forms/sage/quadratic_forms/binary_qf.html

CHAPTER 15. POINTS ON CURVES 260

lattice_pts = [coords for coords in grid_pts if
(a*coords [0]^2 + (b+c)*coords [0]* coords [1] +
d*coords [1]^2 == output)]

plot_lattice_pts = points(lattice_pts , rgbcolor =
(0,0,1),pointsize =20)

show(plot1+plot_grid_pts+plot_lattice_pts , figsize =
[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

pretty_print(html("Integer␣lattice␣points␣on␣
$%sx^2+% sxy+%sy^2=%s$"%(a,b+c,d,output)))

Looks like x = 2, y = 1 will do it!
In this case, the mystery is not deep; we can go between the two expressions

with the coordinate transformation

x2 + 2xy + 3y2 = (x+ y)2 + 2y2.

In general there is some very deep theory involved in deciding which integers
can be represented by various forms, which is another place where lie the
beginnings of algebraic number theory, just like with the Gaussian integers.
But we’ll let it rest there.

15.4.2 More conic sections
Let’s trace back to looking for integer points on a given curve. Assuming that
ellipses are doable by simply counting, what is next?

The parabola comes to mind. A straightforward parabola could look like
ny = mx2; this can be thought of more directly as y = ax2, with a = m/n in
lowest terms.

Then I can just check all x ∈ Z such that n | mx2. Since gcd(m,n) = 1
(again, lowest terms), we would just need to check that n | x2 (so if n is prime,
n | x suffices).

Example 15.4.3 If y = mx2 for integer m, any x will do. That makes sense;
integer input had better give integer output, which would be a lattice point!

□
Example 15.4.4 If 2y = x2, we just look at it as requiring 2 | x. Then any
even x will yield a lattice point, and odd x will not.

-6 -4 -2 2 4 6

5

10

15

Figure 15.4.5 Integer points on 2y = x2

CHAPTER 15. POINTS ON CURVES 261

□
It is not hard to come up with simple divisibility criteria for other parabolas.

Try the following interact to check your own hypotheses.

@interact
def _(m=1,n=2):

viewsize =3*n
f(x)=(m/n)*x^2
plot1 = plot(f,-viewsize ,viewsize)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [0.. viewsize ^2*(m/n)]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(m*coords [0]^2==n*coords [1])]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1+plot_grid_pts+plot_lattice_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin = -1,
ymax = (m/n)*viewsize ^2)

One might think this is all there is to say about points on the parabola.
But before we go on, I want to point out something very interesting.

Look at Figure 15.4.6. In both graphics we examine 2y = x2 and look at
some lines. In the first one I create a line (solid red) through two integer points
on the conic, in the other I create the tangent line through one integer point.
Then in both cases I translate this line so it goes through the points (0, 0) and
(−2, 2) of the parabola.

-10 -5 5 10

10

20

30

40

50

-10 -5 5 10

10

20

30

40

50

Figure 15.4.6 More integer points on 2y = x2

In both cases the dashed line intersects the parabola in a second point.
But in these examples the new point has integer coordinates! Could this be
coincidence?

15.5 Making More and More and More Points
Recall from Fact 15.1.5 that the following two strategies should give new ra-
tional points on a conic section. We will give these strategies names.

CHAPTER 15. POINTS ON CURVES 262

Algorithm 15.5.1 Getting New Rational Points. Two ways to obtain
new rational points on a conic from rational points you already have are:

• Connect two points with a secant line, and then make a line with the same
slope but through another (rational) point. We call this adding points.

• Find the tangent line through a point, and then make a line with the same
slope but through another point. We call this doubling a point.

Fact 15.5.2 The set of rational points on a conic section is an Abelian group.
Assuming you have a point selected as an identity element, the group opera-
tion on two points P and Q is given by the first, “adding points”, operation
Algorithm 15.5.1. That is, you connect P and Q by a secant line of slope m,
and then connect the identity to a fourth point P + Q with a line of slope m.
Adding a point P to itself uses the slope of the tangent line at P , the second,
“doubling points”, operation in Algorithm 15.5.1.

15.5.1 Toward integer points
More germane to our investigation, our limited experience in the previous
section suggests these processes may often give you integer points. This is not
a coincidence; in general, we should try to add or double points to get (new)
integer points.

As we are only guaranteed rational points, this doesn’t always work. Below,
I try this on the ellipse from the beginning of Section 15.4.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Figure 15.5.3 Trying to find more integer points on an ellipse
Rotten luck. But in some circumstances, this strategy works very well

indeed. Figure 15.5.4 gives an example of the simple family of hyperbolas
x2 − dy2 = 1 where d = 2.

CHAPTER 15. POINTS ON CURVES 263

-10 -5 0 5 10
-10

-5

0

5

10

Figure 15.5.4 The hyperbola x2 − 2y2 = 1

So let’s try the strategy of Algorithm 15.5.1. What happens when we take
the tangent line to the curve x2 − 2y2 = 1 at the point (3, 2), and then create
a new line with the same slope through (1, 0)? See Figure 15.5.5.

0 5 10 15 20

0

5

10

15

Figure 15.5.5 The hyperbola x2 − 2y2 = 1 with more points
It intersects in a new integer point, amazing! And if we repeat the process

with the new point, we get another one – use the interact to see. Hmm …

d=2
var('x,y ')
@interact
def _(x_0=3,y_0=2,lattice=False ,auto_update=False):

g(x,y)=x^2-d*y^2
x_1 ,y_1=x_0 ^2+2* y_0^2,2*x_0*y_0
plot1 = implicit_plot(g-1,(x_0 -4,x_1+4) ,(x_0 -4,x_1 +4),

CHAPTER 15. POINTS ON CURVES 264

plot_points = 200)
grid_pts = [[i,j] for i in [x_0 -4.. x_1+4] for j in

[x_0 -4.. x_1 +4]]
plot_grid_pts = points(grid_pts , rgbcolor =(0,0,0),

pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]^2-d*coords [1]^2==1)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
line1 = plot((x_0 /(2* y_0))*(x-x_0)+y_0 ,x_0 -4,x_1+4,

color= ' red ')
line2 = plot((x_0 /(2* y_0))*(x-1),x_0 -4,x_1+4,

color= ' red ' , linestyle= ' -- ')
if lattice:

show(plot1 + plot_grid_pts + plot_lattice_pts +
line1 + line2 , figsize = [5,5], xmin = x_0 -4,
xmax = x_1+4, ymin = y_0 -4, ymax = y_1+4,
aspect_ratio =1)

else:
show(plot1+plot_lattice_pts+line1+line2 , figsize =

[5,5], xmin = x_0 -4, xmax = x_1+4, ymin = y_0 -4,
ymax = y_1+4, aspect_ratio =1)

pretty_print(html("The␣new␣points␣are␣$x_1=%s$␣and␣
$y_1=%s$"%(x_1 ,y_1)))

As it turns out, this is quite an old idea. Finding integer solutions to this
hyperbola is called solving Pell’s equation, and has been studied in this form
since the seventeenth century. But a process very similar to this was already
rigorously discussed by Brahmagupta centuries before that!
Historical remark 15.5.6 Brahmagupta. Brahmagupta is one of the
earliest Indian mathematicians we have records from, though as was typical
for mathematicians around the world for over a millennium, he was the head
of an astronomical observatory. In addition to working on Pell’s equation (see
for example Wikipedia), we saw earlier the Brahmagupta-Fibonacci identity,
and he also had prescient results in approximation and geometry.
Historical remark 15.5.7 Stigler’s Law. In the event, Pell did not have
anything to do with these equations; it was all based on a misunderstanding.
But names stick. In mathematics this phenomenon of not naming things after
the actual discoverer is sometimes called Boyer’s law, more generally Stigler’s
law of eponymy (which are themselves self-referential).

15.5.2 A surprising application
The particular equation x2 − 2y2 = 1 was studied by Greeks such as Theon
of Smyrna (though not in this generality) to shed light on

√
2. Why would

solutions to this equation help?
Well, imagine that (x, y) fulfill the equation. Then divide and rearrange

the original equation to get
x2

y2
= 2 +

1

y2

If you can find a solution to this equation with a big y, then x2

y2 should be
pretty close to 2, which means x/y itself is pretty close to

√
2.

Let’s see this in action. We already tried to find integer points on the curve
in the following interact.

https://mathshistory.st-andrews.ac.uk/Biographies/Brahmagupta/
https://en.wikipedia.org/wiki/Brahmagupta#Pell's_equation

CHAPTER 15. POINTS ON CURVES 265

var('x,y ')
@interact
def _(viewsize=slider (10,20,1),d=2):

f(x,y)=x^2-d*y^2
plot1 = implicit_plot(f-1, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 200)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]^2-d*coords [1]^2==1)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1+plot_grid_pts+plot_lattice_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

pretty_print(html("Points␣on␣the␣curve␣$x^2-%sy^2=1$"%d))

The easy one for d = 2 was (3, 2). And after all, 3
2 = 1.5 isn’t too far from√

2 ≈ 1.414. There seems to be another point if we zoom out, but that would
be a tedious way to compute them …

Example 15.5.8 What if we double the point and take the tangent at (3, 2)?
(See Algorithm 15.5.1.) Then we take that slope, and make a new line through
the “base” point (in this case, (1, 0)).

Then the next point we get is (17, 12). (See Exercise 15.7.14.) Indeed,
172 − 2 · 122 = 1 and 17/12 ≈ 1.417, already correct to three significant digits.
Those Greeks! □

15.6 The Algebraic Story

15.6.1 Computing the hyperbola
Now we can use our geometric intuition to reveal what is happening alge-
braically here. The algebra is not hard, but a little dense; follow this proof
closely.

Proposition 15.6.1 Doubling integer points on the hyperbola x2 − 2y2 = 1
yields more integer points.
Proof. Algebraically, if x2−2y2 = 1, then the tangent line at any point (x0, y0)
other than (±1, 0) is given by implicit differentiation to be y′ = x0

2y0
. So we

start there.
What is the line through (1, 0) with that same slope? It’s

y =
x0

2y0
(x− 1),

of course. Let’s check where else this intersects the hyperbola, if at all.
Start off with plugging the line into the hyperbola:

x2 − 2y2 − 1 = x2 − 2

(
x0

2y0
(x− 1)

)2

− 1 =

(
1− x2

0

2y20

)
x2 +

(
x2
0

y20

)
x+

(
−1−

(
x2
0

2y20

))
= 0.

CHAPTER 15. POINTS ON CURVES 266

This can be simplified and then solved, unbelievably (via the quadratic formula
or factoring out x− 1):

(2y20 − x2
0)x

2 + 2x2
0x+ (−2y20 − x2

0) = 0

x =
−2x2

0 − 4y20
−2x2

0 + 4y20
=

x2
0 + 2y20

x2
0 − 2y20

= x2
0 + 2y20

Finally, do a slick substitution of the original point:

y =
x0

2y0
(x− 1) =

x0

2y0
(x2

0 + 2y20 − (x2
0 − 2y20)) = 2x0y0.

To recap, given a point (x0, y0) we have achieved a new point (x2
0+2y20 , 2x0y0).

■
Now let’s try this with actual points in Sage! I have provided both a

numerical and a graphical interact.

@interact
def _(x_0=17,y_0 =12):

x_1=x_0 ^2+2* y_0^2
y_1=2* x_0*y_0
pretty_print(html("Initial␣point␣was␣$(%s,%s)$;␣new␣

point␣is␣$(%s,%s)$."%(x_0 ,y_0 ,x_1 ,y_1)))
pretty_print(html(r"And␣indeed␣$%s^2-2\ cdot%s^2$␣equals␣

$%s$"%(x_1 ,y_1 ,x_1^2-2*y_1^2)))

d=2
var('x,y ')
@interact
def _(x_0=3,y_0=2,lattice=False ,auto_update=False):

g(x,y)=x^2-d*y^2
x_1 ,y_1=x_0 ^2+2* y_0^2,2*x_0*y_0
plot1 = implicit_plot(g-1, (x_0 -4,x_1+4),

(x_0 -4,x_1+4),plot_points = 200)
grid_pts = [[i,j] for i in [x_0 -4.. x_1+4] for j in

[x_0 -4.. x_1 +4]]
plot_grid_pts = points(grid_pts , rgbcolor =(0,0,0),

pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]^2-d*coords [1]^2==1)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1), pointsize =20)
line1 = plot((x_0 /(2* y_0))*(x-x_0)+y_0 ,x_0 -4,x_1+4,

color= ' red ')
line2 = plot((x_0 /(2* y_0))*(x-1),x_0 -4,x_1+4,

color= ' red ' , linestyle= ' -- ')
if lattice:

show(plot1 + plot_grid_pts + plot_lattice_pts +
line1 + line2 , figsize = [5,5], xmin = x_0 -4,
xmax = x_1+4, ymin = y_0 -4, ymax = y_1+4,
aspect_ratio =1)

else:
show(plot1+plot_lattice_pts+line1+line2 , figsize =

[5,5], xmin = x_0 -4, xmax = x_1+4, ymin = y_0 -4,
ymax = y_1+4, aspect_ratio =1)

pretty_print(html("The␣new␣points␣are␣$x_1=%s$␣and␣

CHAPTER 15. POINTS ON CURVES 267

$y_1=%s$"%(x_1 ,y_1)))

Awesome!

15.6.2 Yet more number systems
As mentioned earlier, Brahmagupta knew how to do this. Of course, he did
it both without our geometric interpretation (which was only made possible
by Descartes and Fermat’s introduction of coordinate systems, though at least
Fermat when he examined these was not thinking geometrically) and also with-
out the benefit of symbolically representing

√
2, which provides this alternate

description of what we did.

Fact 15.6.2 If (x0, y0) is a solution to x2 − 2y2 = 1, then so is (x1, y1) where

(x0 +
√
2y0)

2 = x1 +
√
2y1.

If you were to do the algebra out here to get a formula for (x1, y1) in terms of
(x0, y0), you’d get exactly the same answer as we did above (Exercise 15.7.16).

Moreover, notice that once again we seem to have created a new number
system, though this time we have added to the integers the square root of a
positive, not negative number! (And yes, it turns out that finding solutions to
this equation is related to Z[

√
2] · · ·.4)

Furthermore, the “point doubling” procedure precisely corresponds to mul-
tiplying a group element by 2. That is to say:

[5] + [5] ≡ 3 (mod 7) is the same type of operation as (3, 2)+ (3, 2) = (17, 12).

It turns out that there is a more general formula that corresponds to taking
the line through two (integer) points and then creating a line with the same
slope that goes through the original point (1, 0):

Example 15.6.3 If both (x1, y1) and (x2, y2) are solutions of x2 − 2y2 = 1,
then so is

(x1x2 + 2y1y2, x1y2 + y1x2).

If you apply this to two points opposite each other on the same branch of the
hyperbola, such as (3, 2) and (3,−2), you will get

(3 · 3 + 2 · 2 · (−2), 3 · (−2) + 3 · 2) = (1, 0).

In this sense, if we treat (1, 0) as an identity element in the sense of group
identity, then (3,−2) may be considered the additive inverse of (3, 2). □

@interact(layout =[[' x_0 ' , ' y_0 '],[' x_1 ' , ' y_1 '],
[' auto_update ']])

def _(x_0=3,y_0=2,x_1=17,y_1=12, auto_update=False):
if x_0 != x_1:

x_3 ,y_3=x_1*x_0+2*y_1*y_0 ,x_1*y_0+y_1*x_0
pretty_print(html("Initial␣points␣were␣$(%s,%s)$␣and␣

$(%s,%s)$;␣new␣point␣is␣
$(%s,%s)$."%(x_0 ,y_0 ,x_1 ,y_1 ,x_3 ,y_3)))

pretty_print(html(r"And␣indeed␣$%s^2-2\ cdot%s^2$␣
equals␣$%s$"%(x_3 ,y_3 ,x_3^2-2*y_3^2)))

elif y_0==y_1:

4For more details connecting the topics of this section more directly to abstract algebra,
see [E.2.7, Sections 5.3-5.4]; for a more geometric viewpoint, see the same author’s Numbers
and Geometry, Chapters 4 and 8.

CHAPTER 15. POINTS ON CURVES 268

x_3 ,y_3=x_0 ^2+2* y_0^2,2*x_0*y_0
pretty_print(html("Initial␣points␣were␣$(%s,%s)$␣and␣

$(%s,%s)$;␣new␣point␣is␣
$(%s,%s)$."%(x_0 ,y_0 ,x_1 ,y_1 ,x_3 ,y_3)))

pretty_print(html(r"And␣indeed␣$%s^2-2\ cdot%s^2$␣
equals␣$%s$"%(x_3 ,y_3 ,x_3^2-2*y_3^2)))

else:
print("Input␣correct␣numbers!")

This procedure ends up working for any n. Just change all the 2s above to
ns. Let’s see this “by hand” for n = 3, where we solve x2 − 3y2 = 1 with

22 − 3 · 12 = 1.

That is, I use
x′ = x2 + 3y2 and y′ = 2xy

@interact
def _(x=2,y=1, auto_update=False):

x,y=x*x+3*y*y,x*y+y*x
pretty_print(html(r"$%s^2-3\ cdot%s^2=%s$"%(x, y,

x^2-3*y^2)))
pretty_print(html("New␣point␣is␣$(%s,%s)$"%(x, y)))

15.6.3 The general solution (any n)
The general solution, given two points (x1, y1) and (x2, y2), would be, for n > 0
and not a perfect square,

x′ = x1x2 + ny1y2 and y′ = x1y2 + x2y1.

Even more generally, the same formula works for combining solutions of
two different equations like the Pell.
Fact 15.6.4

If x2
0 − ny20 = k and x2

1 − ny21 = ℓ

then x = x0x1 + ny0y1, y = x0y1 + y0x1 solves x2 − ny2 = kℓ.
Proof. See Exercise 15.7.17. ■

This is particularly nice if k = ℓ = −1, because getting a solution for that
would then give a solution to the Pell equation!

Brahmagupta used analogous techniques for his time (and more sophisti-
cated things) to solve very hard ones, as did the later English mathematicians
who answered the following challenges of Fermat.
Question 15.6.5 Find nontrivial solutions to these equations:

• x2 − 61y2 = 1.

• x2 − 109y2 = 1.

Solution. Fermat knew that the smallest solution to the second one is

x = 158070671986249, y = 15140424455100,

which we can check below. The great mathematician André Weil [E.5.8, II.XIII]
finds that Fermat’s comment to his counterparts that the numbers 61 and 109
were ones selected to not give too much trouble was ‘mischievously’ said; do
you agree? □

CHAPTER 15. POINTS ON CURVES 269

158070671986249^2 -109*15140424455100^2

1

Considering that Brahmagupta says that finding the solution x = 1151, y =
120 to the equation x2 − 92y2 = 1 within a year proved the person “was a
mathematician”, we can be very thankful for computers!

15.7 Exercises
1. Do the algebra which we skipped in Fact 15.1.2.
2. Do the algebra which we skipped in Example 15.1.6.

Find a parametrization (similar to Fact 15.1.2) for rational points on the fol-
lowing curves.

3. The ellipse x2 + 3y2 = 4.
4. The hyperbola x2 − 2y2 = 1.

5. Finish proving (Fact 15.1.8) that x2 + y2 = 15 cannot have any rational
points, including the claim about writing x and y in terms of p, q, r.

6. Finish the proof that x3 − 117y3 = 5 has no integer solutions, looking
modulo nine.

7. Show that the equation x3 = y2 − 999 has no integer solutions. (This is
also Exercise 7.7.14.)

8. Fill in some (or all) of the details of Theorem 15.3.4.
9. Use Theorem 15.3.4 to come up with three Mordell curves we haven’t yet

mentioned which have no integer solutions.
10. Fill in the details of divisibility to finish Euler’s ‘proof’ of Fact 15.3.5.
11. Look up the current best known bound on the number of integer points

on a Mordell equation curve.
12. Get the tangent line at (2, 1) to the Dudeney curve (see Question 15.2.1)

and find the point of intersection; why can it not give an answer to the
original problem?

13. Research Boyer’s or Stigler’s laws. What is the most egregious example
of this, in your opinion?

14. Fill in the details of Example 15.5.8, and then find an integer point with
even bigger values than in that example.

15. Show that the Pell equation with d = 1 (x2−y2 = 1) has only two integer
solutions. Generalize this to when d happens to be a perfect square.

16. Show that algebraically expanding the identity in Fact 15.6.2 to solve for
x1, y1 yields the formulas for x and y in the proof of Proposition 15.6.1.

17. Verify that if
x2
0 − ny20 = k and x2

1 − ny21 = ℓ

then

x = x0x1 + ny0y1, y = x0y1 + y0x1 solves x2 − ny2 = kℓ.
18. Explain why the previous problem reduces to the method from Section 15.5

where we were trying to use a tangent line to find more integer solutions.

CHAPTER 15. POINTS ON CURVES 270

19. Find a non-trivial integer solution to x2 − 17y2 = −1, and use it to get a
nontrivial solution to x2 − 17y2 = 1.

20. Recreate the geometric constructions in Section 15.5 using tangent lines
on the hyperbola with x2 − 5y2 = 1, and use it to find three (positive)
integer points on this curve with at least two digits for both x and y. Yes,
you will have to find a non-trivial solution on your own; it’s not hard,
there is one with single digits.

21. Recall Remark 14.1.9 that the set of primitive Pythagorean triples can
form a group, which evidently might be related to the graphs of circles
x2 + y2 = c2. Find the article [E.7.38] connecting the same set, as a
group under a different multiplication, to the hyperbolas x2 − y2 = a2,
and compare this to the story in Section 15.6. Which ones seems more
interesting, or more computable?

Summary: Points on Curves
There is surprising depth, but also surprisingly accessible questions, when in-
vestigating integer and rational points on simple nonlinear curves.

1. We start with rational points on conics. Fact 15.1.2 gives a famous param-
etrization of the points on the unit circle, though we also see in Fact 15.1.8
that some conics don’t have any rational points at all.

2. In Section 15.2 we explore a few more fun, though less crucial, cubic
questions.

3. The next section begins our exploration of integer points, including facts
such as Fact 15.3.5 about some curves with none or one.

4. Then in Section 15.4 the conic (quadratic) cases begin.

5. We use hyperbolas to bring in the wonderful geometric Algorithm 15.5.1
for using existing points to get us more and more of them.

6. Can this strategy be made algebraic? The final section does so, culminat-
ing in the most general proposition Fact 15.6.4 of this type we present.

The Exercises focus a lot on filling in proof details, as well as the excitement
of exploring for actual integer points.

Chapter 16

Solving Quadratic Congruences

We have been doing a lot of work until now with squares. It is almost time
to see one of the great theorems of numbers, which gives us great insight into
the nature of squares in the integer world – and whose easiest proof involves
lattice points!

This theorem (Quadratic Reciprocity, in the next chapter) will come from
our trying to find the solution to a useful general problem, which I like to
think of as the last piece of translating high school algebra to the modular
world. That is the task of solving quadratic congruences, the modular
equivalent to the well-known quadratic equations.

Recall that a (single-variable) quadratic expression is one of the form ax2+
bx + c, and a quadratic equation would be of the form ax2 + bx + c = 0. In
high school, students worldwide typically use the so-called quadratic formula
to solve this:

x =
−b±

√
b2 − 4ac

2a
.

Indeed, this formula goes back in one form or another nearly four millennia
(see the end of this article for just one reference to an Old Babylonian problem
of this type).

Example 16.0.1 The presence of the square root in the general formula does
not mean every solution requires irrational numbers. Often there are solutions
of simpler types.

We can solve x2 − 5x+ 4 = 0 over the positive integers fairly easily, as

x2 − 5x+ 4 = (x− 4)(x− 1) = 0 implies x = 4 or x = 1.

The equation 4x2 +4x+1 = 0 requires us to move to the rational numbers
(Q), since

4x2 + 4x+ 1 = (2x+ 1)2 = 0 implies 2x+ 1 = 0 so x = −1

2
.

On the other hand, sometimes we need to even go beyond the real numbers.
The solutions of something like x2 +5x+5 = 0 will still be real, as the radical
in the quadratic formula gives

√
52 − 4 · 1 · 5 =

√
5. But solving x2+5x+7 = 0

requires
−5±

√
52 − 4 · 1 · 7
2 · 1

= −5

2
±

√
−3

2

which only makes sense in the complex numbers C (recall Definition 14.1.2).
□

271

http://www-groups.dcs.st-and.ac.uk/history/HistTopics/Babylonian_mathematics.html

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 272

The previous example may be considered in a different way. Namely, for
different number systems like Z or R, we may ask which quadratic expres-
sions have a solution in the system. Then if we let a quadratic congruence be
something of the form

ax2 + bx+ c ≡ 0 (mod n)

we can ask for which groups Zn there exists a solution!

Example 16.0.2 Since x2−5x+4 = (x−4)(x−1), we should be able to solve
it as a congruence for any n, but we might wonder whether the other examples
would have solutions always since they don’t have integer solutions.

Consider 4x2 + 4x + 1 ≡ 0 (mod 5); this is equivalent to −x2 − x + 1 ≡ 0,
and simple guess and check reveals that x ≡ 2 is a solution!

We leave it to the reader to check that x2 + 5x+ 5 ≡ 0 has a (very) simple
solution if considered modulo n = 5. Perhaps most interestingly, x2+5x+7 ≡
0 (mod n) has solutions for no fewer than four different 1 < n < 20. (See
Exercise 16.8.1.) □

This chapter will see how far we can extend all of these concepts to the
modular world. We will begin by considering the notion of square root in that
context.

16.1 Square Roots

16.1.1 Recalling existing answers
To use the quadratic formula in full generality, one needs to know whether one
can take square roots (for example, if they are complex, you won’t have a real
solution). So too, our first task for modular arithmetic will be finding such
square roots.

Given our work in Chapter 7, e.g. Fact 7.2.2, it should be sufficient to solve

x2 ≡ n (mod pe),

finding square roots modulo pe where p is prime. In most cases, we can proceed
as in Examples 7.2.5 and 7.2.6 to reduce to finding solutions to x2 ≡ n (mod p),
though since f ′(x) = 2x our version of Hensel’s Lemma is not strong enough
to fully reduce when p = 2. We will ignore this caveat and focus on solving for
square roots modulo a prime.

We have already done some of this! We restate here a fact in the proof of
Theorem 12.3.2 and the combination of Fact 13.3.2 and Lemma 13.3.3.
Fact 16.1.1 The congruence x2 ≡ 1 (mod p), for p prime, always has the
solution(s) x ≡ ±1. So if p = 2 there is one solution, and otherwise 1 has two
square roots modulo p.

Fact 16.1.2 The congruence x2 ≡ −1 (mod p), for p prime, does not always
have solutions. It does precisely when p = 2 (where x ≡ 1) and when p ≡ 1
(mod 4), which has the two solutions

x ≡ ±
(
p− 1

2

)
!

where again the exclamation point here indicates the factorial.

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 273

16.1.2 Finding more answers
We know the full answer (any modulus) for square roots of +1 from Fact 7.3.1.
What about finding out when −1 has a square root for non-prime moduli? We
can ask Sage about this:

var(' x ')
@interact
def _(n=50):

for i in [2..n]:
sols = [sol [0] for sol in solve_mod ([x^2==-1],i)]
l = len(sols)
if l!=0:

pretty_print(html("$x^2= -1\\ text{␣(mod␣}%s)$␣has␣
$%s$␣solutions ,␣$%s$"%(i,l,sols)))

Let’s see a few examples of how to be more systematic about this.
Example 16.1.3 Prime power modulus. For instance, let’s go from p to
p2 by trying a bit of Example 7.2.5 from earlier. Here, f(x) = x2 + 1 is what
we want a solution for. If we are looking (mod 25), then we already know that
(mod 5) we have x ≡ 2 as a solution. Then a solution (mod 25) will look like
2 + k(5) (again recall Example 7.2.5).

Remembering that f ′(x) = 2x, in fact it will satisfy

22 + 1

5
+ k(2 · 2) ≡ 0 (mod 5)

which is 1+4k ≡ 0, which has solution k ≡ 1; hence a solution (mod 25) should
be 2 + 1(5) ≡ 7. And indeed 72 + 1 = 50 is divisible by 25 as expected!

(Notice that 5 ∤ f ′(2) = 4, so the technical condition is granted; otherwise
we’d have 1 ≡ 0 to solve!) □

Example 16.1.4 Composite moduli. Suppose I want solutions to x2 ≡ −1
(mod 14). I should immediately note that although x2 ≡ −1 (mod 2) has a
solution, x2 ≡ −1 (mod 7) does not (it’s a prime of the form 4k + 3) so there
will be no solutions modulo 14 either.

But if I am looking (mod 65), since 65 = 5 · 13 and x2 ≡ −1 has solutions
both (mod 5) and (mod 13), I can use the Chinese Remainder Theorem to
combine them:

• x ≡ 2 (mod 5)

• x ≡ 5 (mod 13)

We combine them thus:

x ≡ 2 · 13 · (13−1 (mod 5)) + 5 · 5 · (5−1 (mod 13))

≡ 26 · 2 + 25 · 8 ≡ 252 ≡ 57 (mod 65)

And that also is consistent with the computations in the Sage interact above!
□

As we can see, we can usually obtain a complete answer to this and similar
questions by using Theorem 7.2.3 and Theorem 5.3.2.
Algorithm 16.1.5 To solve a polynomial modulo a given modulus n, the
following information suffices, granted the technical condition for the first bullet
that gcd(p, f ′(x)) = 1 for a solution x modulo a prime factor1 p | n.

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 274

• If we can solve, for a given prime p,

f(x) ≡ 0 (mod p),

we can solve
f(x) ≡ 0 (mod pe).

• If we can solve, for coprime integers p and q, f(x) ≡ 0 (mod p) and (mod q),
then we can solve

f(x) ≡ 0 (mod pq).
Returning to square roots, it should be clear that, as far as just determining

whether a solution exists, all we need to examine is prime moduli and powers
of two. Everything else is taken care of by previous work.

To avoid the complication of powers of two, and because of a similar compli-
cation in completing the square in Algorithm 16.2.4, in the rest of this chapter
and the next we will focus on the case of odd moduli. It can be a useful class-
room exercise to explore both when solutions exist and the actual square roots
modulo 2e; else see [E.2.1, Theorem 7.14, Examples 7.13-14].

16.2 General Quadratic Congruences
The equation x2+k is not the only quadratic game in town. What about other
quadratics, such as x2 + 2x + 1? It turns out that we can use something you
are already familiar with to reduce the whole game to the following.

Question 16.2.1 For what primes p is there a solution to x2 ≡ k (mod p)?
□

Let’s confirm this with a look at general quadratic congruences.
First let’s try computing. As an example, take x2 − 2x + 3 (mod 9). The

Sage function solve_mod works, if a little naively.

solve_mod ([x^2-2*x+3==0] ,9)

[(5,), (6,)]

Sage note 16.2.2 Commands of more sophistication. Notice that the
solve_mod command is more complicated than divmod. solve_mod returns a
list of tuples, where a tuple of length one has a comma to indicate it’s a tuple.
(If you tried to solve a multivariate congruence you would find it returns a
longer tuple.)

The result shows that x2 − 2x+3 ≡ 0 (mod 9) has two solutions. But how
might I solve a general quadratic congruence?

16.2.1 Completing the square solves our woes
The key is completing the square! First let’s do an example.

Example 16.2.3 Completing the square for x2 − 2x+ 3 is done by

x2 − 2x+ 3 =

(
x2 − 2x+

(
2

2

)2
)

+ 3−
(
2

2

)2

= (x− 1)2 + 2,

1Why not prime power factor? Because in the construction of Theorem 7.2.3 solutions
modulo pe are also solutions modulo p. So if p divides f ′(xe) for a solution xe, it will already
divide f ′(x) for a solution modulo p.

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 275

so solving the original congruence reduces to solving

(x− 1)2 ≡ −2 (mod n)

Then assuming I have a square root s of −2 (mod n), I just compute s + 1
and I’m done! Go ahead and try this for a few different n, including of course
n = 9, with Sage.

solve_mod ([x^2== -2] ,9)

[(4,), (5,)]

□
Should you not have particularly enjoyed completing the square in the past,

here is the basic idea for modulus n.
Algorithm 16.2.4 Completing the square modulo n. To complete the
square for ax2 + bx + c ≡ 0, the key thing to keep in mind is that we do not
actually divide by 2a, but instead multiply by (2a)−1. Here are the steps.

• Multiply by four and a: 4a2x2 + 4abx+ 4ac ≡ 0

• Factor the square: (2ax+ b)2 − b2 + 4ac ≡ 0

• Isolate the square: (2ax+ b)2 ≡ b2 − 4ac

So to solve, we’ll need that 2a is a unit (more or less requiring that n is odd),
and then to find all square roots of b2 − 4ac in Zn.
Fact 16.2.5 The full solution to

ax2 + bx+ c ≡ 0 (mod n)

is the same as the set of solutions to

x ≡ (2a)−1(s− b) (mod n), where s2 ≡ b2 − 4ac (mod n).

Note that this means gcd(2a, n) = 1 must be true and that s2 ≡ b2 − 4ac must
have a solution.
Example 16.2.6 Let’s do all this with x2 + 3x+ 5 ≡ 0 (mod n). Notice that
b2 − 4ac = 9 − 20 = −11, so this equation does not have a solution over the
integers, or indeed over the real numbers. Does it have a solution in Zn for
some n, though?

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 276

L = [(n,solve_mod ([x^2==-11],n)) for n in prime_range (3 ,100)]
for l in L:

L1 = [m[0] for m in l[1]]
modulus = l[0]
pretty_print(html(r"Modulo␣$%s$,␣$x^2\ equiv␣ -11$␣has␣the␣

solutions:␣%s"%(modulus ,L1)))
if L1 != []:

try:
LS = [mod(2*1, modulus)^(-1)*(m-3) for m in L1]
pretty_print(html(r"For␣each␣of␣these ,␣$x\equiv␣

(2\ cdot␣1)^{-1}(s-3)$:␣%s"%(LS)))
LS = [ls^2+3*ls+5 for ls in LS]
pretty_print(html("And␣x^2+3x+5␣gives␣for␣each␣

of␣these:␣%s\n\n"%(LS)))
except ZeroDivisionError:

pretty_print(html("Since␣2␣doesn ' t␣have␣an␣
inverse␣modulo␣$%s$,␣we␣can ' t␣use␣
this.\n\n"%modulus))

□
In the previous example, note that we could not proceed as over the rational

numbers by writing

x2 + 3x+ 5 =

(
x− 3

2

)2

+

(
5−

(
3

2

)2
)

since there is no element 3/2 ∈ Zn; this motivates part of the multiplication
by 4a in Algorithm 16.2.4.

16.3 Quadratic Residues
As the previous section makes clear, my belief is that finding when square roots
exist (mostly for odd modulus) is the core of finding a complete solution. The
remainder of this chapter and most of the next will focus on resolving this
question.

16.3.1 Some definitions
We first introduce two definitions, a little more formal in nature.

Definition 16.3.1 Assume that a ̸≡ 0 (mod p), for p a prime.
• If there is a solution of x2 ≡ a (mod p) we say that a is a quadratic

residue of p (or a QR).

• If there is not a solution of x2 ≡ a (mod p) we say that a is a quadratic
nonresidue of p.

Although some authors also define this notion for composite moduli (as does
Sage, see Sage note 16.3.3), we will go with the majority of them and reserve
these terms for prime moduli. ♢

Note that this is the same thing as saying that a does or does not have a
square root modulo p, but the focus changes to a instead of the square root
itself.

It is not so easy at all to determine even when something is a QR, much
less to compute the square roots, so we will take some significant time on this.

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 277

Remark 16.3.2 By the way, the terminology is explained by the fact (recall
Section 4.4) that the equivalence classes [a] are called residues, so one which is
a perfect square is justly called quadratic2.
Sage note 16.3.3 Quadratic residues. Sage can calculate these for us, of
course.

quadratic_residues (17)

[0, 1, 2, 4, 8, 9, 13, 15, 16]

Notice that Sage counts zero as a quadratic residue (since 02 = 0 always);
there are technical reasons not to consider it as one in our theoretical treatment,
as will be seen soon.

A separate function gives the smallest nonresidue, in case you need it.

least_quadratic_nonresidue (17)

3

16.3.2 First try for new square roots
To get more of a flavor for this, let’s explore for which p it is true that x2 ≡ 2
(mod p) has a solution. Or, to put it another way, when does two have a square
root modulo p?

First do some by hand; for what primes up to 20 does 2 have a square root?
Once you’ve done this, then evaluate the next Sage cell to look at more

data.

@interact
def _(odd_primes_up_to =50):

for p in prime_range (3, odd_primes_up_to):
solutions=solve_mod ([x^2==2] ,p)
if len(solutions)!=0:

pretty_print(html(r"$x^2\ equiv␣2\text{␣(mod␣
}%s)$␣has␣solutions␣$%s$␣and␣
$%s$"%(p,solutions [0][0] , solutions [1][0])))

else:
pretty_print(html("No␣solutions␣modulo␣$%s$"%p))

Question 16.3.4 What do you think? Do you see any patterns in when a
square root of two exists? □

As it turns out, it is quite hard to prove any such patterns you may find
without the benefit of powerful theoretical machinery. Which means it is hard
to even know whether there is a solution to a given congruence without such
machinery!

2The now-standard terminology for nonresidues can cause confusion. For example, at
this writing (January 2021) the Wikipedia page for a related concept used both ‘quadratic
nonresidue’ and ‘non-quadratic residue’. But the Google Ngram Viewer suggests that most
academic mathematicians now use ‘quadratic nonresidue’. Then again, some older papers
(including one by Sylvester) definitely use the term, as well as at least one instance on the
OEIS and some newer books, so perhaps there is an interesting paper on the linguistics of
higher mathematics waiting to be written.

https://en.wikipedia.org/wiki/Legendre_symbol
https://books.google.com/ngrams/graph?content=quadratic+nonresidue%2Cnon-quadratic+residue&case_insensitive=on&year_start=1900&year_end=2008&corpus=15&smoothing=3&share=&direct_url=t1%3B%2Cquadratic%20nonresidue%3B%2Cc0
https://oeis.org/A156749
https://oeis.org/A156749

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 278

16.3.3 Some history
In fact, it is even hard to conjecture patterns for harder cases unless you are
quite clever. Euler was one of the first to do so. In a very unusual paper, he
included nary a proof, just closely related conjectures to this question.

We list here three links related to the paper. Note that if you read it
carefully, you will have hints to a solution of Question 16.3.4 in the previous
subsection; look for numbers of the form a2 − 2b2.

• Euler archive listing for original paper

• Euler archive translation of the paper into English

• Euler’s work in this paper explained by Ed Sandifer (focusing on the
cases a2 + nb2)

Next, look at two tables made by the great Italian-French mathematician
Lagrange, courtesy of the French National Library and its online repository,
Gallica. (The license does not allow for commercial use of these images.)

Formule des nombres proposés. t2+ au2.
Formule de leurs diviseurs impairs, et premiers à a.. py2 ± 2qyz + rz' = 4 an + b.

TABLE III.

Figure 16.3.5 Lagrange’s Table III
from “Recherches d’arithmétique”

In Figure 16.3.5, Lagrange is referring
to integers of the form t2 + au2, and
then what form their divisors can have.
That this corresponds to what we have
seen is clear in that a = 1 just means
that primes can divide a sum of squares
if they are themselves of the form y2+z2

when they are of the form 4n+ 1. (See
the discussion around Theorem 13.5.5.)
For more on these tables and their his-
tory, see the excellent book Mathemat-
ical Masterpieces [E.5.7].

http://www.math.dartmouth.edu/~euler/pages/E164.html
http://arxiv.org/pdf/math/0606057v1
http://eulerarchive.maa.org/hedi/HEDI-2005-12.pdf
http://gallica.bnf.fr

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 279

Formule des nombresproposés. t2
Formulede leurs diviseurs impairs, et premiersà a.. py2 ± 2qyz — rz2 = 4an +

TABLE IV.

Figure 16.3.6 Lagrange’s Table IV
from “Recherches d’arithmétique”

In Figure 16.3.6, Lagrange is referring
to divisors of integers of the form t2 −
au2 instead. When a = 2, this should
correspond to primes for which one may
have a square root of two. Note that the
formulas for the divisors are for 4an +
b, so that when a = 2, the table says
that we will have (odd) prime divisors
of the form 8n±1 (and only that form).
Does this correspond with your pattern
searching in the previous subsection?
See also Theorem 42 of Euler’s paper,
and Theorem 16.7.1 where we will con-
firm this pattern.

Historical remark 16.3.7 Joseph-Louis Lagrange. Originally from what
is now Italy, Lagrange was Euler’s successor in Berlin in the court of Frederick
the Great, after Euler went back to Russia under the stable (if despotic) regime
of Catherine the Great. One interesting point to make about him is that
Lagrange gave proofs of many of the patterns in quadratic forms (what numbers
look like a2 + b2, a2 + 2b2, etc.) that Fermat and Euler talked about.

Although he isn’t always mentioned quite as highly in the undergraduate
literature as his contemporaries Euler or Gauss, note that we’ve already seen
two of his theorems (7.4.1 and 8.3.12), and Euler himself anointed him as the
best mathematician in Europe. Later he moved to France and remained quite
influential (as well as managing to survive the Terror, which was not true for all
academics at the time). And if you ever read any science fiction or space stuff
that talks about stable places to orbit being called Lagrange points – that’s
him too!

16.4 Send in the Groups
What made the theory of quadratic residues/square roots work out best in the
end was a couple of key innovations of the French mathematician Adrien-Marie
Legendre; Gauss in particular made great use of them.
Historical remark 16.4.1 Adrien-Marie Legendre. Legendre was La-
grange’s successor in Paris. Like many mathematicians of the eighteenth cen-
tury, Legendre worked in many areas, including function theory and mathe-
matical physics. Notably, as increased professionalization of studies of higher
mathematics came about in post-Revolutionary French engineering studies (a
development historian of mathematics Judith Grabiner argues led to rigoriza-
tion of calculus), he wrote a widely used geometry textbook.

https://www-history.mcs.st-and.ac.uk/Biographies/Legendre.html

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 280

While approaching the topic historically can be beneficial, since we have
the advantage of having developed the basics of groups and primitive roots,
we will be able to simplify the exposition of quadratic residues a great deal by
(somewhat anachronistically) using these concepts.

16.4.1 Quadratic residues form a group
Definition 16.4.2 Consider the set of all non-zero quadratic residues modulo
some prime p. We call this the group of quadratic residues Qp. ♢

This terminology suggests that I have a proof in my pocket for the following
theorem.
Theorem 16.4.3 The set of (non-zero) quadratic residues Qp modulo a prime
p really is a group, and is even a subgroup of the group of units Up.
Proof. We will proceed by showing the group axioms hold under multiplication.
Since we exclude zero and p is prime, Qp is a subset of Up essentially by
definition, which will imply it is a subgroup of Up as well.

Let’s look at the three main axioms.

• It is clear that 1 ∈ Qp, since 1 ≡ 12. So there is an identity.

• Next, if a and b are both in Qp (with a ≡ s2 and b ≡ t2), then ab is also
a quadratic residue (since (st)2 ≡ s2t2 ≡ ab).

• All that remains is to check that this set has inverses under multiplication.

To show this last point, assume that a ≡ s2 ∈ Qp, and consider s−1 as an
element of Up. Then(

s−1
)2

a ≡
(
s−1
)2

s2 ≡
(
s · s−1

)2 ≡ 1.

So by definition of inverses (
s−1
)2

= a−1,

which means that if a ∈ Qp then a−1 ∈ Qp as well. ■
Remark 16.4.4 For those with some additional algebraic background, it turns
out Qp is in fact a quotient group of Up as well, but we will not delve further
into this here.

16.4.2 Quadratic residues connect to primitive roots
You might be wondering how this piece of Up connects to the most important
thing we’ve seen so far about Up. Recall that Up was cyclic, that it had a
generator whose powers gave us all units modulo p. We called such an element
a primitive root of p (recall Chapter 10).

g=mod(primitive_root (19) ,19); g

2

So let’s compare the primitive root’s powers and the quadratic residues.
Shouldn’t be too hard … if you aren’t computing this with Sage, just try it by
hand with an even smaller modulus, like seven or eleven.

g=mod(primitive_root (19) ,19)
L=[g^n for n in range (1,19)]

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 281

print(L)
print(quadratic_residues (19))

[2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5,
10, 1]

[0, 1, 4, 5, 6, 7, 9, 11, 16, 17]

Note the pattern of which elements of U19 (as powers of the primitive root)
are quadratic residues! This exemplifies a major fact.
Fact 16.4.5 For odd prime modulus p, the quadratic residues are precisely the
even powers of a primitive root g.
Proof. Certainly g2n = (gn)

2, so the even powers of g are QRs.
Now we need the other set inclusion. Suppose that a ∈ Qp and a = s2.

Then first note that s and a are themselves still powers of g (by definition of
g). So let s = gn and a = gm for some n,m. Then we have the implication

a = gm ≡ g2n (mod p) =⇒ m ≡ 2n (mod p− 1).

This is only possible if m is even since p− 1 and 2n are even. ■
Example 16.4.6 This is a very strong statement, because it does not depend
upon the primitive root! For example, if p = 11, one can verify both 2 and
8 are primitive roots modulo eleven; then they are clearly nonresidues, and
moreover are odd powers of each other:

81 ≡ 23 and 21 ≡ 87 (mod 11).

□
This fact will turn out to be a fantastically useful theoretical way to find

Qp. It will show up in lots of proofy settings. Here is a first example, a very
nice result about when a composite number is a QR.

Proposition 16.4.7 If n = ab is a factorization (not necessarily nontrivial)
of n, then n is a QR of p precisely when either both a and b are QRs of p or
both a and b are not QRs of p.
Proof. Modulo p, write a ≡ gi and b ≡ gj for some i, j. Then n = ab ≡ gi+j ,
and i + j is even when i and j have the same parity. Because of Fact 16.4.5,
this is exactly the same thing as the conclusion of the proposition. ■

Hence if one of a, b is a QR and the other one isn’t, neither is n = ab.
Example 16.4.8 Let’s assume that we have the pattern observed in Ques-
tion 16.3.4 and try to decide whether 21 is a QR (mod 23).

Our first step is to try to make 21 a product of two numbers we already
know something about. Since 21 ≡ −2 (mod 23), we can look at −1 and 2
separately. Then recall that −1 is not a QR (since 23 ≡ 3 (mod 4)) but 2 is,
from our explorations. So we would conjecture 21 is not a QR either.

quadratic_residues (23)

[0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]

We can use the same trick for other numbers congruent to −2 modulo p.
For instance, I can immediately decide that −2 ≡ 9 is a QR (mod 11) by the
fact that neither −1 nor 2 is a QR modulo 11.

quadratic_residues (11)

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 282

[0, 1, 3, 4, 5, 9]

We will soon revisit this idea in Proposition 17.1.1. □
There is yet another way to view the tension between primitive roots and

quadratic residues. Before moving on to the next interactive graphic, try to
answer the following question.
Question 16.4.9 Do you see why a quadratic residue automatically can’t
be a primitive root? (This follows from results earlier in this chapter; see
Exercise 16.8.10.) □

Now try our familiar graphic again, this time concentrating on which rows
correspond to primitive roots and which ones to quadratic residues.

0 2 4 6 8 10 12

1

3

5

7

9

11

1

3

5

7

9

11

Figure 16.4.10 Colored table of powers modulo n = 13

The second column (labeled 1) contains all the residues, and by definition
the quadratic residues are the colors located in the third column (labeled 2 as
they are squares). See how that column is symmetric about the middle of the
rows, with two of each of the QR colors appearing. Further, these are the same
colors as the ones appearing in every other column in rows with a primitive
root (the rows with every color represented); naturally, the order may be quite
different. Finally, the second column’s color in each row that has every color
(including black) never shows up in the third column (the one for squares);
this corresponds to the fact that a primitive root can’t be a quadratic residue.

Try it out interactively until the connection between the known facts and
the graphical pattern seems plausible.

import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator , FuncFormatter
@interact
def power_table_plot(p=(13, prime_range (50) [2:])):

mycmap = plt.get_cmap(' gist_earth ' ,p-1)
myloc = IndexLocator(floor(p/5) ,.5)
myform = FuncFormatter(lambda x,y: int(x+1))
cbaropts = { ' ticks ' :myloc , ' drawedges ' :True ,

' boundaries ' :srange (.5,p+.5,1)}
P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in range(1,p)

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 283

for b in srange(p+1)]),cmap=mycmap , colorbar=True ,
colorbar_options=cbaropts , ticks=[myloc ,myloc],
tick_formatter =[None ,myform])

show(P,figsize =6)

These observations may not seem as interesting, but they will pay off; in the
next section we will obtain a crucial criterion for computing quadratic residues
by observing a similar pattern!

16.5 Euler’s Criterion
As it happens, Fact 16.4.5 is a terrible way to actually find quadratic residues
for a given p in general, since it involves finding a primitive root and listing
lots of powers. We need both theory and practice.

There is a much easier way. First recall our observation in Theorem 12.3.2:

a(p−1)/2 ≡ ±1 for all a not divisible by p.

We visualized it as the middle column in this graphic.

0 2 4 6 8 10 12

1

3

5

7

9

11

1

3

5

7

9

11

Figure 16.5.1 Colored table of powers modulo n = 13

But as so often in mathematics, solving one question leads to another; after
all, Theorem 12.3.2 didn’t say when we got plus or minus 1, just that these are
the only possibilities. Observe carefully above which rows start with the colors
corresponding to squares (the column labeled 2), comparing them to whether
the middle column is black or white.

Don’t go on until you have tried this (interactively below, or even by hand
with p = 7 or p = 11). It’s important to understood what is being asked before
looking for patterns.

import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator , FuncFormatter
@interact
def power_table_plot(p=(13, prime_range (50) [2:])):

mycmap = plt.get_cmap(' gist_earth ' ,p-1)

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 284

myloc = IndexLocator(floor(p/5) ,.5)
myform = FuncFormatter(lambda x,y: int(x+1))
cbaropts = { ' ticks ' :myloc , ' drawedges ' :True ,

' boundaries ' :srange (.5,p+.5,1)}
P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in range(1,p)

for b in srange(p+1)]), cmap=mycmap ,colorbar=True ,
colorbar_options=cbaropts , ticks=[myloc ,myloc],
tick_formatter =[None ,myform])

show(P,figsize =6)

Hopefully you did notice a pattern. Let’s formalize it as follows.
Theorem 16.5.2 Euler’s Criterion. If p is an odd prime, then for all
integers a not a multiple of p, the sign of the following expression determines
whether a is a QR.

a(p−1)/2 ≡ ±1 (mod p)

We obtain +1 if a is a QR, otherwise −1.
Proof. Let g be a primitive root of p, so that a ≡ gi for some i. Then if we let
h = g(p−1)/2, Fermat’s Little Theorem shows that

h2 = gp−1 ≡ 1 (mod p).

Since g is a primitive root, h ≡ 1 is impossible, so h ≡ −1. But then

a(p−1)/2 ≡
(
gi
)(p−1)/2 ≡

(
g(p−1)/2

)i
≡ hi ≡ (−1)i.

This is +1 when i is even and −1 when i is odd. Finally, according to
Fact 16.4.5, this is precisely when a is a quadratic residue and nonresidue,
respectively. ■
Example 16.5.3 This immediately gives the result in Fact 16.1.2 that −1 has
a square root modulo an odd prime p precisely when p ≡ 1 (mod 4), because
(−1)(p−1)/2 = +1 precisely when (p − 1)/2 is even, or p ≡ 1 (mod 4). That is
much easier than our previous ad-hoc way of doing it! □
Example 16.5.4 Let’s use this to confirm, for p = 17, two of the values
implicit in the list we obtained in Sage note 16.3.3.

First, that list included 2 as a QR. Since (p − 1)/2 = 8, the calculation is
fairly simple:

28 = 162 ≡ (−1)2 ≡ 1 (mod 17),

as expected.
Can we confirm that 3 should not be on the list? Using Euler’s Criterion,

we have
38 = 94 ≡ (−8)4 ≡ 84 ≡ 163 ≡ (−1)3 ≡ −1 (mod 17),

which correctly shows 3 is not a quadratic residue. □
We will now greatly amplify the power of our work thus far.

16.6 Introducing the Legendre Symbol
Consider the lowly notion of congruence, along with its symbol ≡. It is easy to
explain; yet Gauss revolutionized number theory and made it more accessible
to others with it.

In Legendre’s research into questions of residues, he discovered that certain
powers were always either ±1, omitting multiples of what we would today call

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 285

the modulus. Some of what he found was essentially Theorem 16.5.2. This
enabled the great innovation of Legendre’s we alluded to earlier.

What of the plus or minus 1; why is this so innovative? To quote an article
[E.7.5] on this subject, if one has a symbol for it, it becomes

… more than a notational convenience … Legendre reifies this con-
cept, and makes it into an object of independent study.

—Steven H. Weintraub

In our modern terms, Legendre takes advantage of the fact that a = gi is an
even power exactly when a is a QR, and (−1)i = 1 precisely when i is even
(and hence precisely when a is a QR). This is the so-called Legendre symbol.
(However, he did not use the term QR, just the symbol3.)

Definition 16.6.1 We write
(

a
p

)
for the Legendre symbol. Given that p is an

odd prime, for a coprime to p we set(
a

p

)
= 1 if a is a QR modulo p, and

(
a

p

)
= −1 otherwise.

We define the Legendre symbol of a modulo p to be zero if p | a. ♢
Example 16.6.2 We can now restate the main content of Fact 16.1.2: For
odd p, we have that

(
−1
p

)
= 1 if and only if p ≡ 1 (mod 4). □

Example 16.6.3 We can also restate Example 16.5.4 as
(

2
17

)
= 1 and

(
3
17

)
=

−1. □
The command in Sage is pretty straightforward. We use it, and then demon-

strate it via an interact.

legendre_symbol (-2,11)

1

@interact
def _(p=(17, prime_range (50))):

for n in [q for q in quadratic_residues(p) if q != 0]:
pretty_print(html(r"$%s$␣is␣a␣QR␣of␣$%s$␣and␣

$\left(\frac{%s}{%s}\right)=%s$"%(n, p, n,p,
legendre_symbol(n,p))))

Remark 16.6.4 A brief note is in order regarding the special status of zero in
Definition 16.3.1, especially since Sage includes zero as a QR.

First, this recognizes the special case that only 02 = 0, while 1 = 12 = (−1)2

(and everything else) usually have two square roots modulo a prime.
A deeper reason is that this status allows us to conveniently ignore the only

integer from 0 to p− 1 which is not in Up. In fact, the multiplicative property
Proposition 16.4.7 ensures you can consider x 7→

(
x
p

)
to be a function from

Up to {1,−1} of the kind we call a group homomorphism. (Indeed, it
gets us from a cyclic group of order p − 1 to a cyclic group of order 2, with
“kernel” the cyclic subgroup of order (p − 1)/2 that we already mentioned in

3Unfortunately, despite the suggestion of “a on p” for pronouncing it, there does not seem
to be a standard way to read this aloud.

https://mathoverflow.net/questions/15447/is-there-a-standard-way-to-read-the-legendre-symbol

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 286

Theorem 16.4.3.)
Here’s a final introductory experiment with Legendre symbols. What is the

sum of all Legendre symbols for a given (odd) prime? (As usual, you can do
this by hand for small primes if you aren’t computing.)

@interact
def _(p=(19, prime_range (100) [1:])):

L = [legendre_symbol(a,p) for a in [0..p-1]]
pretty_print(html(r"All␣Legendre␣symbols␣

$\left(\frac{a}{%s}\right)$␣can␣be␣listed:"%p))
print(L)
pretty_print(html("And␣they␣sum␣up␣to␣$%s$"%sum(L)))

This is cool, and a nice example of the kind of fun one can have experi-
menting. What do you think? Do you think we can prove it? Try doing so in
Exercise 16.8.8. (For harder exercises of this type, see [E.4.6, Exercise 9.7].)

16.7 Our First Full Computation
We will now complete our investigations begun in Subsection 16.3.2 by calcu-
lating

(
2
p

)
using Euler’s Criterion. (There are many proofs of the following

fact; a nice one using only the existence of a primitive root is [E.7.16].)

Theorem 16.7.1 When Two is a Quadratic Residue. The quadratic
residue of two modulo an odd prime p is as follows.

•
(

2
p

)
= 1 if p ≡ ±1 (mod 8)

•
(

2
p

)
= −1 if p ≡ ±3 (mod 8)

Proof. We will show this by writing (p − 1)! in two different ways below in
Proof 16.7.1. ■
Example 16.7.2 It is easiest to approach the proof first with an example. We
will take p = 11.

We can write

(11− 1)! = 10! = 1(2)(3)(4)(5)(6)(7)(8)(9)(10)

= (2 · 4 · 6 · 8 · 10) · (1 · 3 · 5 · 7 · 9)

= 25 · (1 · 2 · 3 · 4 · 5) · (1 · 3 · 5 · 7 · 9).

Notice that 1, 3, 5 repeat; these are all the odd numbers less than or equal to
11−1

2 = 5.
Now we will try to create 10! again from the numbers on the right after we

have factored out 2. In this case, the only ones repeated are 1, 3, 5, so we are
almost there.

But observe that −1,−3,−5 ≡ 10, 8, 6, which are exactly the missing pieces
of 10!. So I will factor out −1 from those three, thus:

10! = 25 · (1 · 2 · 3 · 4 · 5) · (1 · 3 · 5 · 7 · 9)

≡ 25 · (1 · 2 · 3 · 4 · 5) · (−1)3 · (−1 · −3 · −5) · (7 · 9)

≡ 25 · (−1)3 · (1 · 2 · 3 · 4 · 5) · (10 · 8 · 6)(7 · 9) ≡ (−1)3 · 25 · (10!) (mod 11).

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 287

Finally, cancel 10! from the first and last element of the preceding chain of
congruences, and we get

1 ≡ 25(−1)3 =⇒ 2(11−1)/2 ≡ 25 ≡ (−1)3 ≡ −1 (mod 11)

and so 2 is not a QR of 11. □
Proof of Theorem 16.7.1. Proving the general case basically follows the pro-
cedure in the previous example to its natural conclusion; there was nothing
special in the above argument about p = 11.

After writing (p − 1)! and factoring out 2(p−1)/2, the “repeated” numbers
will be the odd numbers between 1 and (p − 1)/2. Clearly the only “missing”
numbers are even ones between (p − 1)/2 and p, which are just congruent to
the negatives of the “repeated” odd numbers, so the same argument as above
with (p− 1)! will work.

It remains to check when we have a QR and when we do not.

• If p ≡ 3 (mod 4), like p = 11, then (p− 1)/2 is odd so there will be(
p− 1

2
− 1

)
1

2
+ 1 =

p+ 1

4

repeated factors, as 1, 3, 5 above.

• If p ≡ 1 (mod 4) (like p = 17), on the other hand, then (p− 1)/2 is even
and there are exactly (

p− 1

2

)
1

2
=

p− 1

4

repeated factors (in that case, 1, 3, 5, 7).

In either case, whether the number of repeated factors ((p+ 1)/4 or (p− 1)/4,
respectively) is even or odd determines whether 2 is a quadratic residue.

Now we simply confirm the formula given in Theorem 16.7.1 in all four
possible cases:

• If p ≡ 1 (mod 4) and p−1
4 is even,

(
2
p

)
= 1. These conditions imply p ≡ 1

(mod 8), so 2 is a QR when p ≡ 1 (mod 8).

• If p ≡ 1 (mod 4) and p−1
4 is odd,

(
2
p

)
= −1. These conditions imply

p ≡ 5 (mod 8), so 2 is not a QR when p ≡ 5 (mod 8).

• If p ≡ 3 (mod 4) and p+1
4 is even,

(
2
p

)
= 1. These conditions imply p ≡ 7

(mod 8), so 2 is a QR when p ≡ 7 (mod 8).

• If p ≡ 3 (mod 4) and p+1
4 is odd,

(
2
p

)
= −1. These conditions imply

p ≡ 3 (mod 8), so 2 is not a QR when p ≡ 3 (mod 8).

■
The following Sage cell shows off Theorem 16.7.1, incidentally confirming

a computation in Example 16.5.4.

@interact
def _(p = (17, prime_range (3 ,100))):

l = legendre_symbol (2,p)
r = p%8
pretty_print(html(r"The␣prime␣$%s\equiv␣%s\text{␣(mod␣

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 288

}8)$␣and␣$\left(\frac {2}{%s}\right)=%s$."%(p,r,p,l)))

In the next chapter, we will vastly expand our repertoire of Legendre sym-
bols, and see many applications.

16.8 Exercises
1. Fill in all the details of Example 16.0.2 for the congruences x2 +5x+5 ≡

0 (mod 5) and x2 + 5x+ 7 ≡ 0 (mod n).
2. Prove that if e > 1, then there is no solution to

x2 ≡ −1 (mod 2e).

Use our knowledge of squares modulo 4.
3. For what n does −1 have a square root modulo n? (Hint: use prime

factorization and the previous problem along with results earlier in the
chapter.)

4. Clearly 4 has a square root modulo 7. Find all square roots of 4 modulo
73 without using Sage or trying all 343 possibilities. Why is this exercise
not as challenging as it seems, and what would you do to make it harder?

5. Solve x2 +3x+5 ≡ 0 (mod 15) using completion of squares and trial and
error for square roots.

Solve the following congruences without using a computer.
6. x2 + 6x+ 5 ≡ 0 (mod 17)
7. 5x2 + 3x+ 1 ≡ 0 (mod 17)

8. Prove that if p is an odd prime

p−1∑
a=1

(
a

p

)
= 0.

9. Explore and conjecture a formula for∑
a∈Qp

a,

possibly dependent upon some congruence class for p.
10. Show that a quadratic residue can’t be a primitive root if p > 2.
11. Show that if p is an odd prime, then there are exactly p−1

2 − ϕ(p − 1)
residues which are neither QRs nor primitive roots. (Hint: don’t think
too hard – just do the obvious counting up.)

12. Use Euler’s Criterion to find all quadratic residues of 13.
13. Evaluate Legendre symbols for all a ̸= 0 where p = 7, using Euler’s

Criterion.
14. Explore for a pattern for when −5 is a quadratic residue. Try not to use

any fancy criteria, but just to seek a pattern based on the number.
15. Use Euler’s Criterion and the ideas of Proof 16.7.1 to prove that 3 has a

square root modulo p if p ≡ 1 (mod 12). (See Proposition 17.3.4 for full
details of

(
3
p

)
.)

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 289

16. Explore for a pattern for, given p, how many pairs of consecutive residues
are both actually quadratic residues. Then connect this idea to the fol-
lowing formula, which you should evaluate for the same values of p:

p−2∑
a=1

(
a

p

)(
a+ 1

p

)
(A harder problem is to prove your evaluation works for all p.)

Summary: Solving Quadratic Congruences
This chapter continues discussion of quadratic entities, but returns to the con-
text of solving congruences. Just like in high school algebra, one can move
from solving linear to quadratic!

1. Section 16.1 continues our usual practice of review and exploration, this
time by reminding us of many square roots modulo n we have already
found.

2. Next, we become systematic in finding an equivalent to the quadratic
formula, by Completing the square modulo n.

3. The next section introduces the important definition of quadratic residues
in Definition 16.3.1, along with some examples and history.

4. It turns out that the set of (non-zero) quadratic residues for a given
modulus is a group (Theorem 16.4.3), and we immediately use this in
Fact 16.4.5 to characterize them in a way that we will use again and
again.

5. We then reinterpret the middle column of Figure 16.5.1 as the incredibly
useful Euler’s Criterion.

6. The second-to-last section gives us a symbolic way to treat quadratic
residues, via the Legendre symbol (Definition 16.6.1).

7. Finally, we bring all of this together in computing When Two is a Qua-
dratic Residue.

The Exercises give a wide variety of practice, from solving full congruences to
interesting theory and getting lists of residues.

CHAPTER 16. SOLVING QUADRATIC CONGRUENCES 290

Chapter 17

Quadratic Reciprocity

So far, we have determined at least when some quadratic congruences have
solutions, but at the pace set thus far, most cases should seem beyond reach.
We certainly won’t want to use Theorem 16.5.2 directly for every single one.

It turns out that finding out when numbers have square roots (mod p) is
not hopeless – quite the opposite is true! After raising our spirits with some
simple but powerful observations, we will make our way to the great theorem
that is the title of this chapter. Using it, we will derive almost effortlessly
results regarding quadratic residues that originally took a great deal of work.

17.1 More Legendre Symbols
Let’s begin by calculating some more individual Legendre symbols. Now that
we have seen a little bit of harder theory, we may appreciate some straight-
forward techniques that can work in lucky circumstances. (Seeing that these
techniques are limited may also motivate our theoretical work in the remainder
of the chapter.)

First, recall we proved the following as Proposition 16.4.7:

Proposition 17.1.1 If n = ab is a factorization (not necessarily nontrivial)
of n, then n is a QR of p precisely when either both a and b are QRs of p or
both a and b are not QRs of p. In terms of Legendre symbols:(

ab

p

)
=

(
a

p

)(
b

p

)
Example 17.1.2 Let’s try to compute

(
8
19

)
. Here, factoring will help;(

8

19

)
=

(
4

19

)
·
(

2

19

)
.

Since 4 is a perfect square, its symbol is one, and by Theorem 16.7.1 we know
that two is not a QR modulo 19. Multiplication yields 1 · −1 = −1, so eight
doesn’t have a square root there either. □

There is another useful computational fact that comes from the observation
that x2 ≡ a (mod n) if and only if x2 ≡ a+ n (mod n).
Proposition 17.1.3 (

a+ p

p

)
=

(
a

p

)

291

CHAPTER 17. QUADRATIC RECIPROCITY 292

Example 17.1.4 What is
(
62
19

)
? On the one hand,(

62

19

)
=

(
62− 19− 19− 19

19

)
=

(
5

19

)
but we don’t know this yet either. On the other hand,(

62

19

)
=

(
62 + 19

19

)
=

(
81

19

)
Since 81 is a perfect square in any modulus, the symbol equals 1. □

We can use these ideas to calculate a lot more Legendre symbols! Here is
some more practice.
Example 17.1.5 Before continuing, alternately try each of these strategies
until you either get to a perfect square or a number we already know is (or
isn’t) a residue. (See also Exercise 17.7.3.)

•
(
55

17

)

•
(
83

17

)

•
(
45

17

)

•
(
41

31

)

•
(
27

31

)

•
(
22

31

)
□

Sage note 17.1.6 Check your work. You can always check your work, if
you wish, using Sage.

It turns out you can resolve some theoretical questions with these tech-
niques.
Fact 17.1.7 There are always consecutive quadratic residues for p > 5.
Proof. First, we know that 1, 4, 9 are all quadratic residues. Thus, if at least
one of 2, 5, 10 was also a QR, then we could guarantee that there were always
consecutive quadratic residues somewhere!

As it turns out, if p = 5 this doesn’t work, because the only (nonzero) QRs
are ±1 for that prime. But if p = 7, then a = 1 and a = 9 ≡ 2 are consecutive.

Now suppose p > 7 is prime. Then at least one of 2, 5, 10 must be a QR,
since one of these things must be true:

• 2 could be a QR

• 5 could be a QR

CHAPTER 17. QUADRATIC RECIPROCITY 293

• If 2 and 5 both aren’t, then the computation(
10

p

)
=

(
2

p

)(
5

p

)
= (−1)(−1) = 1

means 10 is a QR!

■
Thus we see that calculation and theory must go hand in hand; they are

not separate.

17.2 Another Criterion
Now, we might want to do something more general than just try to compute
Legendre symbols one by one. Notice that what we did in using the Euler’s
Criterion to find

(
2
p

)
was to look at numbers of the form 2x and factor out

2. So one might ask whether something like this calculation could work with
general a and numbers like ax to find a better theoretical result.

It turns out that this is true. We are going to follow the steps of Gauss’
protege Gotthold Eisenstein here to find a way to evaluate

(
a
p

)
for p an odd

prime and gcd(a, p) = 1. It will be slow, and we won’t see the payoff until we
prove Theorem 17.4.1, but it will give us good practice in thinking about the
numbers themselves.
Historical remark 17.2.1 Gotthold Eisenstein. Gotthold Eisenstein
was yet another brilliant young mathematician who came out of nowhere but
died young because he couldn’t find a job which could help him financially
enough to deal with his chronic illness. His work in several areas of algebra
and function theory is still considered forward-looking. Of particular interest
for this text is the Eisenstein integers, a generalization of the Gaussian integers
(see Exercise 14.4.2).

I say “yet another” because this is similar to the story of Niels Abel (after
whom Abelian groups are named), and quite likely would have been the story
of Évariste Galois if he hadn’t been killed in a duel first; unfortunately, their
mathematics is mostly outside the bounds of this text.

17.2.1 Laying the foundation
First, let’s introduce a new set and look at a couple of properties. I strongly
advise following along with a prime like p = 11 or p = 13.
Definition 17.2.2 Fix an odd prime p. Let E be the set of positive even
numbers less than p. That is,

E = {2, 4, 6, . . . , p− 1}.

Next, given a coprime to p, let the set of multiples of a by even numbers be
denoted

aE = {2a, 4a, 6a, . . . , (p− 1)a}.

Finally, find the remainder of each element of aE modulo p, as a nonnegative
integer. The set of all such remainders we call aE; for convenience we may
write ae− kp = ra,e for the remainder (and quotient k). ♢

The construction of this should ring bells, because just as in Theorem 16.7.1
and Lemma 13.3.3 we could potentially factor out (p−1)/2 factors of a from a

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Eisenstein.html
https://mathworld.wolfram.com/EisensteinInteger.html

CHAPTER 17. QUADRATIC RECIPROCITY 294

product of the elements of aE. (Also, here and elsewhere we are not considering
the numbers in aE as elements of Zp, but as integers.)

Claim 17.2.3 Consider the set of (least nonnegative) remainders modulo p of
numbers of the form (−1)xx for x ∈ aE. Then as sets we have

{ Remainder of (−1)xx | x ∈ aE} = E.
Proof. First, we claim both sets only contain even numbers. Recall that
everything in aE is less than p.

• If x is even, then (−1)xx is just x, which will then be the remainder.

• If x is odd, then (−1)xx = −x has remainder p − x, which (as the
difference of two odds) is also even.

It remains to show the elements of the set in question are all different.
Suppose any two such numbers were the same; then for some even numbers

e and e′, and quotients k and k′, we have

(−1)ae−kp(ae− kp) ≡ (−1)ae
′−k′p(ae′ − k′p) (mod p).

We can reduce this further by ignoring multiples of p, and even further by
observing that gcd(a, p) = 1 so we can cancel a from the remaining congruence.
Then

e ≡ ±e′.

If e and e′ are different then e ̸≡ e′, so the only option would be e ≡ −e′.
This directly yields e+ e′ ≡ 0. But numbers in E are positive and less than p,
so 0 < e + e′ < 2p. Since p is odd we also cannot have the sum of two evens
e+ e′ = p, so the only remaining choice is that e = e′. ■
Example 17.2.4 For instance, with p = 11 and a = 3 we get

E = {2, 4, 6, 8, 10} and aE = {6, 1, 7, 2, 8}.

The set in the claim is then

{(−1)66, (−1)11, (−1)77, (−1)22, (−1)88} ≡ {6, 10, 4, 2, 8}.

□

17.2.2 Getting the new criterion
Now we will try to use this set to arrive at something similar to Euler’s Crite-
rion. Our goal would be to use it (since we know it corresponds to Legendre
symbols), but with something different and hopefully easier to compute. Still,
we would need to arrive at a(p−1)/2 in the end, so let’s follow some steps that
might lead us in that direction.

As mentioned above, the most crucial thing to notice is that the desired
exponent (p − 1)/2 is exactly the number of elements in E. So a first step
would be to multiply all the elements of aE:∏

e∈E

ae = a(p−1)/2
∏
e∈E

e.

Now let us reduce modulo p; recall the notation ra,e for the remainder of ae in
Definition 17.2.2. This gives a congruence:∏

e∈E

ra,e ≡ a(p−1)/2
∏
e∈E

e.

CHAPTER 17. QUADRATIC RECIPROCITY 295

Focus temporarily just on the product of es on the right hand side. Using
Claim 17.2.3 and factoring out all the powers of (−1), we can write∏

e∈E

e ≡
∏
e∈E

(−1)ra,era,e ≡ (−1)
∑

e∈E ra,e

∏
e∈E

ra,e.

Now substitute everything in the congruences. We obtain∏
e∈E

ra,e ≡ a(p−1)/2
∏
e∈E

e ≡ a(p−1)/2(−1)
∑

e∈E ra,e

∏
e∈E

ra,e.

Now if we cancel the product of the remainders and note that dividing and
multiplying by powers of (−1) is the same thing, we can connect to Theo-
rem 16.5.2:

a(p−1)/2 ≡ (−1)
∑

e∈E ra,e .
Example 17.2.5 For instance, with p = 11 and a = 3 we can write

∏
e∈E ae

in two different ways, using first simple reduction and then Example 17.2.4:

6 · 12 · 18 · 24 · 30 ≡ 6 · 1 · 7 · 2 · 8

6 · 12 · 18 · 24 · 30 ≡ 35 · 2 · 4 · 6 · 8 · 10 ≡ 35(−1)6+1+7+2+8 · 6 · 1 · 7 · 2 · 8.

Checking, we see that 6+1+7+2+8 is even. So by Theorem 16.5.2 a should
be a QR modulo p, and 11+11+3 = 25 = 52 so in this case it is easy to verify
by hand that

(
3
11

)
= 1. □

More generally, we have the following fact.
Fact 17.2.6 (

a

p

)
= (−1)

∑
e∈E ra,e

Proof. Use Euler’s Criterion and the above steps. ■
What have we done? We have reduced evaluating the Legendre symbol

(and hence deciding whether things have square roots modulo p) to calculating
the parity of a certain sum. Given that in the previous chapter we had to
calculate fairly large powers of modular integers, this could be an important
improvement.

Remark 17.2.7 Transforming such computations to a simple parity (or other)
check is very common in algebra and number theory.

17.2.3 The final form
Fact 17.2.6 is still somewhat unwieldy, so there is a final simplification.

Recall that these ra,e come from remainders of e ∈ E. Indeed, we could
have used Division Algorithm directly in defining them:

ae = p

⌊
ae

p

⌋
+ ra,e

So if we add up all the remainders, we get∑
e∈E

ra,e =
∑
e∈E

ae− p
∑
e∈E

⌊
ae

p

⌋
But we only care about the parity of this sum! So we can remove the whole

piece with e in it, as that’s all even, and we can replace the −p by 1, since they
are the same modulo 2. This leaves the following much simpler criterion.

CHAPTER 17. QUADRATIC RECIPROCITY 296

Theorem 17.2.8 Eisenstein’s Criterion for the Legendre Symbol. Let
p and a be as throughout, and E = {2, 4, 6, . . . , p− 1}; then(

a

p

)
= (−1)

∑
e∈E⌊ ae

p ⌋.

Remark 17.2.9 The name of the criterion is long to avoid confusion with
another famous criterion that Eisenstein discovered. (See David Cox’s excellent
2011 Monthly article [E.7.4], which won the Lester R. Ford award, on whether
Theodor Schönemann deserves the credit for that criterion.)
Example 17.2.10 To continue Example 17.2.5 where p = 11 and a = 3, let’s
compute this exponent:⌊

6

11

⌋
+

⌊
12

11

⌋
+

⌊
18

11

⌋
+

⌊
24

11

⌋
+

⌊
30

11

⌋
= 0 + 1 + 1 + 2 + 2 = 6.

Once again this is even, so 3 is confirmed to be a QR modulo 11. □
Example 17.2.11 Let’s try to compute the exercise in Example 17.1.5 where
p = 17 and a = 45 ≡ 11. Then we need to compute this exponent:⌊

22

17

⌋
+

⌊
44

17

⌋
+

⌊
66

17

⌋
+

⌊
88

17

⌋
+

⌊
110

17

⌋
+

⌊
132

17

⌋
+

⌊
154

17

⌋
+

⌊
176

17

⌋
= 1 + 2 + 3 + 5 + 6 + 7 + 9 + 10 = 43.

This is odd, so 45 is not a QR modulo 17. □
This very abstruse-seeming criterion will actually be the key to proving the

soon-to-come Theorem 17.4.1. See Laubenbacher and Pengelley’s article [E.7.8]
for an excellent exposition, which I have expanded on significantly above.

17.3 Using Eisenstein’s Criterion
Let’s calculate for a bit using this criterion. It says that we can tell whether a
number a has a square root modulo p simply by checking whether

∑
even e, 0<e<p

⌊
ae
p

⌋
is even or odd. So let’s apply it to evaluating

(
3
p

)
for odd primes p. Equiva-

lently, we can answer this question, which we only began answering in Exer-
cise 16.8.15.
Question 17.3.1 When does 3 have a square root modulo p? □

If you liked some of the integer-point counting arguments earlier, you will
like this. For the case a = 3, we care about∑

even e, 0<e<p

⌊
3e

p

⌋
.

Said another way, we are adding the integer parts of y
p for y a multiple of six

that is less than 3(p− 1).

Example 17.3.2 Let’s try with p = 7: We have⌊
6

7

⌋
+

⌊
12

7

⌋
+

⌊
18

7

⌋
= 0 + 1 + 2 = 3

so Theorem 17.2.8 asks for (−1)3 = −1, so
(
3
7

)
= −1 and 3 ̸≡ s2 (mod 7) for

any s.

CHAPTER 17. QUADRATIC RECIPROCITY 297

What about with p = 11? Calculating the exponent gives⌊
6

11

⌋
+

⌊
12

11

⌋
+

⌊
18

11

⌋
+

⌊
24

11

⌋
+

⌊
30

11

⌋
= 0 + 1 + 1 + 2 + 2 = 6

This is even, and we already saw several times that this correctly implies 3 is
a QR. □

What will a fact like this look like in general? All we care about is the
parity of this sum. So, we can really ignore the terms in the sum that are 0 or
2, as they won’t change the parity! That means we are really only looking at⌊
3e
p

⌋
for 3e that are between p and 2p, since ones less than p go to zero and

there can’t be any number bigger than 3p if we only let e go up to e = p− 1.
This means we are considering precisely even e such that p < 3e < 2p, or

all integers y such that the multiples of 6 give

p < 6y < 2p ⇒ p

6
< y <

p

3
.

Notice we have reduced the entire computation to finding the parity of the
cardinality of this small set of integers.

It should be clear that as we think of different p, the change in the set of
y would come when p moves above or below a multiple of six. So it seems
reasonable to look at primes of the form p = 6k+r when examining this. That
gives

p

6
< y <

p

3
⇒ 6k + r

6
< y <

6k + r

3
⇒ k +

r

6
< y < 2k +

r

3

⇒ r

6
< y < k +

r

3
.

(This works because the cardinality of the sets will be the same if we subtract
integers from the endpoints.)

Claim 17.3.3 Both of the parities we are adding can be easily computed:
• The parity of k.

• The parity of the size of the set of integers y such that r
6 < y < r

3 .

The sum of these two parities should be the parity of the set between r
6 and

k + r
3 .

Proof. We will actually compute both parities directly. The parity of k has
two options.

• If k is even, then k = 2ℓ and p = 6k + r = 12ℓ+ r.

• If not, then k = 2ℓ+ 1 and p = 6k + r = 12ℓ+ 6 + r.

To compute the second part, we first note that for prime p, the only possible
residues r modulo 6 are r = 1 or r = 5.

• If r = 1, we are looking for y such that 1
6 < y < 1

3 , of which there are
none.

• If r = 5, we are looking for y such that 5
6 < y < 5

3 , of which there is one.

■
Proposition 17.3.4 Three is a quadratic residue (or not) in the following
circumstances.

•
(

3
p

)
= 1 if p ≡ ±1 (mod 12)

CHAPTER 17. QUADRATIC RECIPROCITY 298

•
(

3
p

)
= −1 if p ≡ ±5 (mod 12)

Proof. Combine the facts in Claim 17.3.3. We see that
• If p = 12ℓ+ 1 we add two even numbers, so 3 is a QR.

• If p = 12ℓ+ 5, we add an even number and 1, so 3 is not a QR.

• If p = 12ℓ+ 6 + 1 = 12ℓ+ 7, we add an odd and zero, so 3 is not a QR.

• If p = 12ℓ+ 6 + 5 = 12ℓ+ 11, we add an odd and 1, which is even, so 3
is a QR.

■
Try it!

@interact
def _(p=prime_range (5,50)):

L = solve_mod(x^2==3,p)
pretty_print(html(r"$%s\equiv␣%s\text{␣(mod␣}12)$␣and␣

$\left(\frac {3}{%s}\right)=%s$"%(p,p%12,p,
legendre_symbol (3,p))))

if L:
pretty_print(html(r"And␣it␣turns␣out␣$%s^2\ equiv␣

%s$,␣$%s^2\ equiv␣%s$␣(mod␣
$%s$)"%(L[0][0] ,L[0][0]^2 ,L[1][0] ,L[0][0]^2 ,p)))

Compare to Exercise 16.8.15 as well as Example 16.5.4.

17.4 Quadratic Reciprocity
Now, if we had to do this prime by prime, it would still be horrible. Instead, we
will end up computing all Legendre symbols

(
a
p

)
with a ̸= −1, 2 by reducing

them to
(

−1
p

)
or
(

2
p

)
using techniques from Section 17.1 and the main theorem

of the chapter.
As we’ve already alluded more than once, it is venerable. Parts were conjec-

tured and proved by Euler, and all of it was conjectured by Legendre in terms
of remainders (some commentators say he proved it as well). Carl Friedrich
Gauss provided no fewer than eight proofs over the course of his lifetime. See
Subsection 17.6.3 for a few more comments.

17.4.1 The theorem
Theorem 17.4.1 Quadratic Reciprocity. If p and q are odd primes not
equal to each other, then(

p

q

)(
q

p

)
= (−1)(

p−1
2)(q−1

2).

Proof. See Section 17.6. ■
Remark 17.4.2 Note that the exponent has fractions, not Legendre symbols!
We can multiply them to rewrite the exponent in a way some authors prefer:(

p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

CHAPTER 17. QUADRATIC RECIPROCITY 299

Example 17.4.3 Computing with QR. We immediately apply this to
vastly simplify the calculations in Section 17.3. Let q = 3 and p > 3.

Let’s write the theorem out for this case. Since (3− 1)/2 = 1, we have(
3

p

)(p
3

)
= (−1)(p−1)/2, or

(
3

p

)
= (−1)(p−1)/2

(p
3

)
.

There are two parts to this:

• Since 1 ∈ Q3 and 2 /∈ Q3, the Legendre symbol on the right is:(p
3

)
= 1 if p ≡ 1 (mod 3) and

(p
3

)
= −1 if p ≡ 2 (mod 3).

• We can also compute the power of −1:

(−1)(p−1)/2 = 1 if p ≡ 1 (mod 4) and (−1)(p−1)/2 = −1 if p ≡ 3 (mod 4).

Combine these together and we get that
(

3
p

)
= 1 exactly when one of these

two cases occurs:

• p ≡ 1 (mod 3) and mod (4)

• p ≡ 3 (mod 4) and ≡ 2 (mod 3)

This is precisely p ≡ 1, 11 ≡ ±1 (mod 12) as in Proposition 17.3.4! □
It’s amazing that this can work so easily. Compare to all of Example 16.5.4,

Exercise 16.8.15, and Proposition 17.3.4.

17.4.2 Why is this theorem different from all other theo-
rems?

17.4.2.1 What does it mean?

What does the term “quadratic reciprocity” even mean?
It means that there is a reciprocating relationship1 between Legendre sym-

bols, and hence between whether there is a square root of two primes modulo
each other.

One way to think of this relation is to assert that the following table is
almost symmetric about the (empty) diagonal – and that we have a simple
formula for finding where it isn’t symmetric.

1There are vast generalizations of these laws that take the reciprocation to a very deep
level; see [E.4.23, Chapter 19] for an accessible and engaging take on quadratic reciprocity
in this context.

CHAPTER 17. QUADRATIC RECIPROCITY 300

p\q 3 5 7 11 13 17 19 23 29 31 37
3 -1 -1 1 1 -1 -1 1 -1 -1 1
5 -1 -1 1 -1 -1 1 -1 1 1 -1
7 1 -1 -1 -1 -1 1 -1 1 1 1
11 -1 1 1 -1 -1 1 -1 -1 -1 1
13 1 -1 -1 -1 1 -1 1 1 -1 -1
17 -1 -1 -1 -1 1 1 -1 -1 -1 -1
19 1 1 -1 -1 -1 1 -1 -1 1 -1
23 -1 -1 1 1 1 -1 1 1 -1 -1
29 -1 1 1 -1 1 -1 -1 1 -1 -1
31 1 1 -1 1 -1 -1 -1 1 -1 -1
37 1 -1 1 1 -1 -1 -1 -1 -1 -1

Figure 17.4.4 Quadratic reciprocity as near symmetry of table of
(

p
q

)
Try making bigger tables (represented as matrices) in the Sage cell below.

ls=prime_range (3,40)
M=matrix(len(ls),[legendre_symbol(a,b) for a in ls for b in

ls])
show(block_matrix (2,[0, matrix(1,len(ls),ls),

matrix(len(ls),1,ls), M]))

Remark 17.4.5 Here is another way to say it. For odd primes p and q,(
p

q

)
=

(
q

p

)
except when p ≡ q ≡ 3 (mod 4). Or see Remark 17.4.2 for yet another way;
both are often how Theorem 17.4.1 is stated in texts.

17.4.2.2 What does it do?

What does quadratic reciprocity do?
It makes computation of Legendre symbols

(
a
p

)
very, very easy if you have

a prime factorization of a (and all the intermediate steps). You just need to
use the following facts we already proved, in addition to quadratic reciprocity.

•
(
−1

p

)
= 1 ⇐⇒ p ≡ 1 (mod 4)

•
(
2

p

)
= 1 ⇐⇒ p ≡ ±1 (mod 8)

Algorithm 17.4.6 Any Legendre symbol can be computed using the following
steps, not necessarily in this order and often multiple times:

• Factor the top and use Proposition 16.4.7, then computing each one sep-
arately.

• Reduce modulo the bottom and/or use Proposition 17.1.3 to get convenient
tops (especially perfect squares).

• When you get to an odd prime on the top and bottom, use Theorem 17.4.1.

• When the top is −1 or 2, use Example 16.6.2 or Theorem 16.7.1 to finish
your computation.

CHAPTER 17. QUADRATIC RECIPROCITY 301

Proof. Read the chapter up to this point, plus the proof of Theorem 17.4.1.
■

Example 17.4.7 Let’s calculate
(

99
167

)
.

• Since they are coprime factors,
(

99
167

)
=
(

9
167

)
·
(

11
167

)
.

• Since both 11 and 167 are prime and congruent to 3 modulo four,
(

9
167

)
·(

11
167

)
=
(

32

167

)
· −
(
167
11

)
• Reducing, we get

(
32

167

)
· −
(
167
11

)
= −1 ·

(
2
11

)
• Finally, we use Theorem 16.7.1 and note that 11 ≡ 3 (mod 8) to get

−1 ·
(

2
11

)
= −1 · −1 = 1 and we see that ninety-nine is a QR modulo one

hundred sixty-seven.

□
Example 17.4.8 In a classroom experience, try these. (Else, see Exercise 17.7.16.)

•
(

83

103

)

•
(
219

383

)

•
(
646

877

)
And we can check them, of course.

print(legendre_symbol (83 ,103))
print(legendre_symbol (219 ,383))
print(legendre_symbol (646 ,877))

1
1
-1

□
We can also come up with congruence criteria like above for other primes. See
the exercises, such as 17.7.19 and 17.7.20.

17.4.2.3 The Jacobi symbol

What else does quadratic reciprocity do? Indirectly, it allows us to compute
Legendre symbols

(
a
p

)
without factoring a.

Definition 17.4.9 Let n be an odd number which factors as

n = pe11 pe22 · · · pekk .

Then the Jacobi symbol,
(
a
n

)
, is just the product of the relevant Legendre

symbols: (a
n

)
=

(
a

p1

)e1 (a

p2

)e2

· · ·
(

a

pk

)ek

♢
Amazingly, the Jacobi symbol has all the same properties the Legendre

http://en.wikipedia.org/wiki/Jacobi_symbol

CHAPTER 17. QUADRATIC RECIPROCITY 302

symbol has – even quadratic reciprocity and the values for a = −1, 2 (see
Exercise 17.7.12). Moreover, if

(
a
n

)
= −1 then a is not a QR of n. (Showing

all this essentially just uses Chinese Remainder Theorem and Hensel’s Lemma,
but we will not go into details here.)

The only thing not the same as for Legendre symbols is this:

Fact 17.4.10 If n is not prime, then
(
a
n

)
= 1 does not necessarily imply a is

a QR of n.
Proof. See Exercise 17.7.13. ■
Sage note 17.4.11 Names of functions may vary. In Sage, this is named
after yet another generalization called the Kronecker symbol.

print(kronecker_symbol (8,15))
print(quadratic_residues (15))

1
[0, 1, 4, 6, 9, 10]

The goal of introducing the Jacobi symbol is not to use the definition to do
anything. That would be pointless.

Instead, you can use the Jacobi symbol to help calculate Legendre symbols!
After all, they follow almost all the same rules. You’d only need to factor here
in order to make sure you don’t have an even number in the denominator of
the symbol.

It turns out this leads to an algorithm which needs only about the square
of the number of digits of p steps to evaluate a given symbol. Generically this
is far fewer steps than one would need if one had to factor first (as far as we
currently know).

Some examples, like
(

83
103

)
, would be just as fast doing it either way. But

others would be much slower, because you’d have to factor several times. Here’s
an example; note that 943 is not prime.
Example 17.4.12(

943

997

)
=

(
997

943

)
since 997 ≡ 1 (mod 4)

=

(
54

943

)
=

(
2

943

)(
27

943

)
= (+1)

(
27

943

)
since 943 ≡ −1 (mod 8)

= −
(
943

27

)
since both are ≡ 3 (mod 4)

= −
(
25

27

)
= −1 because 25 = 52

And we can check this out with Sage:

kronecker_symbol (943 ,997)

-1

□
Compare this example with having to first factor 943 and then still do the

whole reciprocity dance. Also, this strategy is much easier to implement on
a computer for automatic evaluation. (By the way, factoring 943 = 23 · 41 is
itself not a gimme ‘by hand’.)

CHAPTER 17. QUADRATIC RECIPROCITY 303

Before we go on, if you haven’t tried to compute lots of things with qua-
dratic reciprocity, don’t go on until you do. You won’t appreciate the power
and usefulness of the proof until you’ve struggled with some ‘by hand’. It’s
just the way these things are.

Example 17.4.13 To put this into practice, let’s redo
(
646
877

)
:(

646

877

)
=

(
2

877

)(
323

877

)
= (−1)

(
323

877

)
since 877 ≡ 5 (mod 8)

= −
(
877

323

)
= −

(
231

323

)
since 877 ≡ 1 (mod 4)

= −
(
−
(
323

231

))
=

(
92

231

)
since both are ≡ 3 (mod 4)

=

(
4

231

)(
23

231

)
= (+1)

(
23

231

)
because 4 = 22

= −
(
231

23

)
= −

(
1

231

)
= −1 since both are ≡ 3 (mod 4).

Check again with Sage:

kronecker_symbol (646 ,877)

-1

□

17.5 Some Surprising Applications of QR
What else can quadratic reciprocity do? The answer is, a lot. This section
collates various interesting applications of QR, as well as some places where
being able to efficiently calculate quadratic residues by its means is generally
helpful.

17.5.1 Factoring, briefly
As an example, it can help us with factoring large integers n; Gauss used it.
The process itself is a little too long to describe here, but it’s important to get
the flavor.

The essential idea is that if a is a QR of n, then a is a QR of any prime
p | n. QRs often have congruence conditions associated with them, so n must
obey all of the congruence conditions for

(
a
p

)
for all the p which divide it.

This might be a lot of conditions, which narrows the field considerably.
Then we can use a variant on the Fermat factoring method to check for

possible a for which a prime divisor p of n definitely is or definitely is not a QR
(again, quadratic reciprocity can help), and then one can compute Legendre/
Jacobi symbols of possible p | n to reduce to just having to check a very few
bigger possible prime factors.

17.5.2 Primality testing
Another application is that it can help us check primality. For instance, a
test similar in spirit to the Miller-Rabin (probabilistic) primality test, but

CHAPTER 17. QUADRATIC RECIPROCITY 304

which uses Legendre/Jacobi symbols, is the Solovay-Strassen test. (See Exer-
cise 17.7.22.)

A specific example where quadratic reciprocity is helpful is with the so-
called Fermat numbers. Recall (Subsection 12.1.1) that Euler blasted the fol-
lowing conjecture of Fermat’s out of the water by disproving it for n = 5:

Fn = 22
n

+ 1 is always prime for n ≥ 0.

But what about bigger Fn; surely they are inaccessible to the usual factoring
techniques?

Analogously to Mersenne numbers (Subsection 12.1.3), for which the Lucas-
Lehmer test can check for primality (remember GIMPS?), there is a test called
Pépin’s test which can check for primality of Fermat numbers. (Pépin did this
work in the late 1800s.) It turns out that no bigger Fermat numbers have
turned out to be prime, all the way through n = 31. See the Distributed
Search for Fermat Number Divisors or http://www.prothsearch.com/fermat.html

for which Fermat numbers still need more factors2, or the relevant member of
the excellent Prime Pages.

Here is the test implemented naively in Sage:

@interact
def _(n=(1 ,[1..6])):

F=2^(2^n)+1
pretty_print(html("The␣$%s$th␣Fermat␣number␣is␣

$%s$"%(n,F)))
test = mod(3,F)^((F-1)/2)
if test == -1:

pretty_print(html(r"Since␣$3^{(%s-1) /2}\ equiv␣%s$,␣
this␣Fermat␣number␣is␣prime"%(F,test)))

else:
pretty_print(html(r"Since␣$3^{(%s-1) /2}\ equiv␣%s$,␣

this␣Fermat␣number␣is␣not␣prime"%(F,test)))

You can already see from this code that it is checking Euler’s criterion
modulo Fn, and looking for a negative answer. Why would this test primality?
Let’s formally state and prove the criterion.

Fact 17.5.1 Pépin’s Test. For n > 0, Fn = 22
n

+ 1 is prime exactly when

32
2n−1

≡ −1 (mod 22
n

+ 1)

Proof. We will try to connect this with Euler’s Criterion. Note that (Fn −
1)/2 = 22

n−1, the power of three in the statement.
First, let’s assume Fn is prime. Since Fn is one more than a multiple of

four, clearly
Fn ≡ 1, 5, or 9 (mod 12).

Let’s examine a few cases.
• If Fn ≡ 1 (mod 12), then 3 | 22n = Fn − 1, which cannot be true.

• If Fn ≡ 9 (mod 12), then Fn is a number greater than three which is
divisible by three – but it’s prime, so that’s not possible.

• So Fn ≡ 5 (mod 12).

Since Fn is prime, that means by Proposition 17.3.4 we know 3 is not a QR mod
Fn. (Quadratic reciprocity is implicit here, though we happened to calculate

2As of this writing (January 2021) F20 has been known to be composite for over thirty
years, yet we still do not know any of its factors.

https://en.wikipedia.org/wiki/Solovay–Strassen_primality_test
http://www.fermatsearch.org/factors/faclist.php
http://www.fermatsearch.org/factors/faclist.php
http://www.prothsearch.com/fermat.html
https://primes.utm.edu/glossary/page.php?sort=FermatNumber
https://primes.utm.edu/glossary/page.php?sort=FermatNumber

CHAPTER 17. QUADRATIC RECIPROCITY 305

this before we had stated it.) Thus Theorem 16.5.2 should give that 3(Fn−1)/2 =
−1.

For the converse, let’s assume that Euler’s Criterion gives this answer of −1
for a = 3. Then square both sides to get

3Fn−1 ≡ 1 (mod p)

for all primes p dividing Fn. Now, what order does 3 have here?

• Since Fn − 1 = 22
n , that means 3 has order some power of 2 (in Up).

• But 3 can’t have order 22
n−1 (or less), because it isn’t the identity when

taken to that power.

• So it must have order 22
n .

The only way 3 can have that big an order is if p is at least 22
n

+ 1 = Fn. So
since p | Fn, they must be equal! ■
Remark 17.5.2 Interestingly, Mersenne numbers can sometimes also be shown
to be composite using quadratic residues. For instance, 2p − 1 with expo-
nent p ≡ 3 (mod 4) which is itself a Germain prime must be composite. See
[E.2.13, Theorem 7.6], and see [E.2.4, Exercises 9.1.37-40] for many more crite-
ria like this.

17.5.3 Yes, even cryptography
Suppose we have two primes p and q that are both of the form 4n + 3. Then
it should (probabilistically) be possible to find a number a such that(

a

p

)
= −1 =

(
a

q

)
so that

(
a

pq

)
= 1

where the latter symbol is a Jacobi symbol (recall Definition 17.4.9).
Then the Goldwasser-Micali cryptosystem uses the fact that it isn’t obvious

whether a Jacobi symbol which equals one implies a is actually a quadratic
residue to create a public-key cryptosystem.

Now, does this really use quadratic reciprocity? It’s true that decryption
is possible using criteria like Euler’s if you have the factorization n = pq, and
the Legendre/Jacobi symbol would be multiplicative with or without Theo-
rem 17.4.1. But to my mind one wouldn’t have even had the thought to create
such a system (or even the Jacobi symbol itself) without the full theorem, so
it seems appropriate to mention this application here.

17.5.4 Solving equations
There is even more! As one example, quadratic reciprocity (or at least the
Legendre symbol, which we most easily compute using reciprocity) helps us
solve Mordell equations. For instance, Fact 15.3.3 and similar facts implicitly
use

(
−1
p

)
. The next easiest cases use

(
2
p

)
and multiplicativity. But more

advanced ones need to compute more complicated square roots. Here are two
examples, without proof.

• The equation x3 = y2 + 16 has no integer solutions. (Uses
(

−8
p

)
.)

• The equation x3 = y2 − 46 has no integer solutions. (Uses
(

−18
p

)
.)

https://en.wikipedia.org/wiki/Goldwasser–Micali_cryptosystem

CHAPTER 17. QUADRATIC RECIPROCITY 306

There are many others solvable with the help of knowledge of values of the
Legendre symbol. See for example [E.4.6, Theorem 9.12] or [E.2.8, Section
7.4C], the latter of which explicitly uses quadratic reciprocity.

17.5.5 Artin’s conjecture
Let’s return to the test for Fn’s primality in Fact 17.5.1. A careful look at
the proof shows that 3 is a primitive root for Fn, if Fn is prime. Thus, if we
had infinitely many Fermat primes (and not just five of them), we’d have an
integer which is a primitive root of infinitely many primes.

Such would provide a proof of at least one explicit case for the following
long-standing question.
Conjecture 17.5.3 Artin’s Conjecture. Every nonsquare integer except
−1 is a primitive root for infinitely many primes.

This conjecture is interesting for several reasons.

• Although it is mostly believed to be true, currently there are no integers
known to be a primitive root for infinitely primes.

• Weirder, it is known that at least one of 3, 5, or 7 is a primitive root for
infinitely many primes) but we don’t know which one!

• Weirdest, it has been proved that there are at most two exceptions to
this conjecture, yet we also know of no integers which do not satisfy it!
That is, there are at most two nonsquare integers which are not a primi-
tive root for infinitely many primes, yet we do not have a single specific
integer which we can prove that for.

There is some historical connection as well. Gauss spent some time inves-
tigating the patterns of repetitions in simple decimal expansions of fractions,
like 1

3 = .333 . . . or 2
7 = .285714285714 It turns out that this is directly con-

nected to whether 10 is a primitive root for a given prime (see Exercise 17.7.21).
Likewise, when Euler found that F5 = 4294967297 was composite (recall Sub-
section 12.1.1) he would have been helped along quite a bit by information
about this conjecture, as his proof looked directly at factors of powers of 2
(plus one) and their possible form, not powers of 3.

@interact
def _(n=(1 ,[1..6])):

F = 2^(2^n)+1
a = mod(3,F)
if a.multiplicative_order ()==F-1:

pretty_print(html("3␣is␣a␣primitive␣root␣of␣
$F_{%s}=%s$"%(n,F)))

else:
pretty_print(html("Not␣prime ,␣no␣primitive␣root!"))

We can use these ideas to find another possible way to attack Artin’s Con-
jecture. It’s not directly related to reciprocity per se, but still connects all our
theoretical ideas of the last several sections.
Example 17.5.4 We put this in the form of several steps. Verifying several
facts in these steps is left to Exercise Group 17.7.8–11.

Recall from the very end of Section 11.6 that if q and p = 2q+1 are both odd
primes, then we call q a Germain prime. In that case, every residue of p other
than a = −1 and a = 0 is a primitive root or a QR. One way to interpret this is

CHAPTER 17. QUADRATIC RECIPROCITY 307

as complementing Fact 16.4.5, which characterizes even powers of a primitive
root as being QRs; namely, for p nearly all odd powers must be primitive roots.

Such a prime p must be of the form p ≡ 3 (mod 4). This follows because q
is odd so q = 2k + 1 for some integer k, yielding

p = 2(2k + 1) + 1 = 4k + 3.

(This is how we know that −1, which is clearly not a primitive root, also isn’t
a QR; recall Fact 16.1.2.)

In this case, not only are all residues other than 0,−1 either a primitive
root or a QR, but a is one of these things precisely when p−a is the other. We
know that

12, 22, 32, . . . , q2

are all different modulo p, and of course all of these are QRs (and so not
primitive roots).

Here is the key; that means that the additive inverses of perfect squares,
p− k2, for 2 ≤ k ≤ q, must all be primitive roots. The smallest of these, p− 4,
must thus be a primitive root for any such (safe; recall Subsection 11.6.4) prime
p = 2q + 1. □

So if there were infinitely many such Germain primes, we would also have
an explicit example of Artin’s conjecture … but, so far, no such luck.

The largest currently known (as of this writing, discovered in early 2016)
Germain prime, due to James Scott Brown, is

2618163402417 · 21290000 − 1

which is a number with close to four hundred thousand digits. (The previous
record had about half as many, so this is a huge advance.)

@interact
def _(q=(11,[r for r in prime_range (3 ,100) if

is_prime (2*r+1)])):
p = 2*q+1
a=mod(p-4,p)
if a.multiplicative_order ()==p-1:

pretty_print(html("-4␣is␣a␣primitive␣root␣of␣
$%s$"%p))

else:
pretty_print(html("Mistake!"))

17.6 A Proof of Quadratic Reciprocity
You are most likely now exhausted by the many applications and uses of qua-
dratic reciprocity. Now we must prove it.

Recall the statement (Theorem 17.4.1): For odd primes p and q, we have
that (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

That is to say, the Legendre symbols are the same unless p and q are both of
the form 4k + 3.

Before beginning, let’s recall the tools we will need on our jouney. First,
p and q are odd primes in the context of this proof. Also, we will use the

http://primes.utm.edu/top20/page.php?sort=SophieGermain

CHAPTER 17. QUADRATIC RECIPROCITY 308

criterion of Eisenstein’s 17.2.8 used earlier in the chapter. With that in mind,
let

R =
∑

even e, 0<e<p

⌊
qe

p

⌋
be the exponent in question, so that(

q

p

)
= (−1)R.

17.6.1 Re-enter geometry

The key to our proof will be geometrically interpreting
⌊
qe
p

⌋
. We can think of

it as being the biggest integer less than qe
p , which means we can think of it as

an integer height.
The following features are present in the next graphic, which should clarify

how we’ll think of it geometrically. Each type of object is highlighted with a
different color.

• The line through the origin with slope q/p (dotted blue).

• All the grid points in (not on) the box of width p and height q (box red,
points black).

• Points with even x-coordinate corresponding to the highest that one can
get while staying under the line of slope q/p (points blue).

• The box of width p−1
2 and height q−1

2 (green), which we’ll need in a
moment.

2 4 6 8 10

1

2

3

4

5

6

7

Figure 17.6.1 Representing
⌊
qe
p

⌋
geometrically

It should be clear that each blue stack has the same height as
⌊
qe
p

⌋
for some

even e. Check that for the case (p = 11, q = 7) in Figure 17.6.1 we should have
a total of ⌊

7 · 2
11

⌋
+

⌊
7 · 4
11

⌋
+

⌊
7 · 6
11

⌋
+

⌊
7 · 8
11

⌋
+

⌊
7 · 10
11

⌋
=

CHAPTER 17. QUADRATIC RECIPROCITY 309⌊
14

11

⌋
+

⌊
28

11

⌋
+

⌊
42

11

⌋
+

⌊
56

11

⌋
+

⌊
70

11

⌋
=

1 + 2 + 3 + 5 + 6 = 17 ≡ 1 (mod 2),
which makes sense since 7 and 11 are both congruent to 3 modulo four, so the
Legendre symbols would be opposing.

The core point of the overall proof is to convince ourselves of the following
geometric claim:

Claim 17.6.2 The number of blue points (which is R) has the same parity as
the total number of positive points in and on the green box which are under
the dotted line.
Proof. See Subsection 17.6.2. ■

Along with Eisenstein, we call this second number µ. One may note that

µ =

(p−1)/2∑
f=1

⌊
qf

p

⌋
.

When I first saw this proof, it seemed pretty opaque. I highly recommend
getting online and trying the interactive version of the graphic below to con-
vince yourself of the plausibility of Claim 17.6.2, or at the very least that R
and µ really are given as claimed.

@interact
def _(p=(11, prime_range (3 ,100)),q=(7, prime_range (3 ,100))):

E = [2,4..p-1]
plot4 = plot((q/p)*x,(x,0,p),linestyle= ' -- ')
plot3 = line ([[0,0],[p,0],[p,q],[0,q],[0,0]],

rgbcolor =(1,0,0))
plot2 = line ([[0,0], [(p-1)/2,0], [(p-1)/2,(q-1)/2],

[0,(q-1)/2], [0,0]], color= ' green ')
grid_pts_1 = [[i,j] for i in [1..p-1] for j in [1..q-1]]
grid_pts_2 = [[i,j] for i in [1..(p-1)/2] for j in

[1..(q-1) /2]]
plot_grid_pts =

points(grid_pts_1 ,rgbcolor =(0,0,0),pointsize =10)
lattice_pts1 = [coords for coords in grid_pts_1 if

(coords [0]*q-coords [1]*p>0 and coords [0]<p and
coords [0] in E)]

if len(lattice_pts1)!=0:
plot_lattice_pts1 = points(lattice_pts1 , rgbcolor =

(0,0,1),pointsize =20)
else:

plot_lattice_pts1 = Graphics ()
show(plot2+plot3+plot4 + plot_grid_pts +

plot_lattice_pts1 , xmax=p,ymax=q,ymin =0)
forms = ' $ ' + ' + ' .join([r ' \left\lfloor\frac{%s\cdot␣

%s}{%s}\right\rfloor ' %(q,e,p) for e in E])+ ' $ '
pretty_print(html("The␣blue␣dots␣represent␣"+forms))
forms2 = ' $ ' + ' + ' .join([r ' \left\lfloor\frac{%s}{%s}␣

\right\rfloor ' %(q*e,p) for e in E])
forms3 = ' + ' .join([' %s ' %(floor(q*e/p)) for e in

E])+r ' =%s\equiv%s\text{␣(mod␣
}2)$ ' %(sum([floor(q*e/p) for e in
E]),sum([floor(q*e/p) for e in E])%2)

pretty_print(html("This␣simplifies␣to␣
"+forms2+ ' = ' +forms3))

CHAPTER 17. QUADRATIC RECIPROCITY 310

Once the geometry is out of the way, we are almost there.
Claim 17.6.3 Suppose that we have proved Claim 17.6.2. Then we can quickly
prove Quadratic Reciprocity.
Proof. Essentially all we do is take the previous claim and use it for both
Legendre symbols; then we add and get the result. Let’s see Claim 17.6.2 in
action for each symbol.

• First, to get
(

q
p

)
, we can safely ignore R to just focus on the number

(indeed, parity) of µ, the number of positive lattice points below the
dotted line in and on the green box.

• The same argument applies to
(

p
q

)
; we can safely ignore the exponent

R′ =
∑

even e′, 0<e′<q

⌊
pe′

q

⌋

and instead focus on the number (indeed, parity) of positive lattice points
in and on the green box to the left of the dotted line, which we may for
convenience call µ′.

A useful way to think about this is that the previous two steps switch the role
of the vertical and horizontal axes.

Now consider the total exponent of −1 we expect from
(

q
p

)(
p
q

)
. It will be

the sum of those two amounts µ+ µ′ – which, geometrically, is the number of
(positive, still) points in and on the green box. (There is no overlap, because
q and p are coprime, so there are no lattice points on the dotted line until we
get to (p, q), which is well outside the green box.)

How many total points is this? The green box, by design, has dimensions
p−1
2 and q−1

2 , so that would mean

p− 1

2
· q − 1

2
≡

∑
even e, 0<e<p

⌊
qe

p

⌋
+

∑
even e′, 0<e′<q

⌊
pe′

q

⌋
(mod 2),

so that (
q

p

)(
p

q

)
= (−1)R+R′

= (−1)
p−1
2 · q−1

2 .

■

17.6.2 Proving proper parity
So to finish the proof via Claim 17.6.2, we must show that the number of blue
points (points under the line with even x-coordinate) has the same parity as
the number of positive points in the green box under the line. Equivalently,
we will show R ≡ µ (mod 2).

In the next graphic, there is a lot going on, all of which we will use for
the proof (note especially the new, green, points). We will clarify each of the
pieces below.

CHAPTER 17. QUADRATIC RECIPROCITY 311

2 4 6 8 10

1

2

3

4

5

6

7

Figure 17.6.4 The full picture of proof of QR
Combined with our previous knowledge, can you check the blue and green

dots in the small triangle represent

µ =

⌊
7 · 1
11

⌋
+

⌊
7 · 2
11

⌋
+

⌊
7 · 3
11

⌋
+

⌊
7 · 4
11

⌋
+

⌊
7 · 5
11

⌋
?

Let’s take a closer look at the two sets of green dots.

• One set is on top, the lattice points with even x-coordinates greater than
p−1
2 which have y-coordinate less than q which are above the dotted line.

• The other set is similar, but on the bottom, with odd positive x-coordinates
less than p−1

2 which have positive y-coordinate and are below the line.

You can think of the first set as filling in the even columns greater than
p−1
2 , while the latter set fills in the triangle for odd columns less than p−1

2 (in
both cases, strictly inside the red box of size p by q). To further understand
this, in the interactive form of the text you may wish to try q relatively large
compared to p to see this more clearly. Try several different values!

@interact
def _(p=(11, prime_range (3 ,100)),q=(7, prime_range (3 ,100))):

E = [2,4..p-1]
plot4 = plot((q/p)*x,(x,0,p),linestyle= ' -- ')
plot3 = line ([[0,0],[p,0],[p,q],[0,q],[0,0]],

rgbcolor =(1,0,0))
plot2 = line ([[0,0], [(p-1)/2,0], [(p-1)/2,(q-1)/2],

[0,(q-1)/2], [0,0]], color= ' green ')
grid_pts_1 = [[i,j] for i in [1..p-1] for j in [1..q-1]]
grid_pts_2 = [[i,j] for i in [1..(p-1)/2] for j in

[1..(q-1) /2]]
plot_grid_pts =

points(grid_pts_1 ,rgbcolor =(0,0,0),pointsize =10)
lattice_pts1 = [coords for coords in grid_pts_1 if

(coords [0]*q-coords [1]*p>0 and coords [0]<p and
coords [0] in E)]

lattice_pts2 = [coords for coords in grid_pts_1 if
(coords [0]*q-coords [1]*p<0 and coords [0]>(p-1)/2 and

CHAPTER 17. QUADRATIC RECIPROCITY 312

coords [1]<q and coords [0] in E)]
lattice_pts3 = [coords for coords in grid_pts_1 if

(coords [0]*q-coords [1]*p>0 and coords [0]<=(p-1)/2
and coords [0] not in E)]

if len(lattice_pts1)!=0:
plot_lattice_pts1 = points(lattice_pts1 , rgbcolor =

(0,0,1),pointsize =20)
else:

plot_lattice_pts1 = Graphics ()
if len(lattice_pts2)!=0:

plot_lattice_pts2 = points(lattice_pts2 , rgbcolor =
(0,.5,0),pointsize =20)

else:
plot_lattice_pts2 = Graphics ()

if len(lattice_pts3)!=0:
plot_lattice_pts3 = points(lattice_pts3 , rgbcolor =

(0,.5,0),pointsize =20)
else:

plot_lattice_pts3 = Graphics ()
show(plot2+plot3+plot4 + plot_grid_pts+plot_lattice_pts1

+ plot_lattice_pts2 + plot_lattice_pts3 ,
xmax=p,ymax=q,ymin =0)

forms = r ' $\mu= ' + ' + ' .join([r ' \left\lfloor\frac{%s\cdot␣
%s}{%s}\right\rfloor ' %(q,e,p) for e in
[1..(p-1) /2]])+ ' $ '

pretty_print(html("The␣blue␣and␣green␣dots␣in␣the␣small␣
triangle␣represent"))

pretty_print(html("the␣sum␣"+forms))

The key observation is that these two sets of green dots are symmetric
images – they are simply rotated around the point(p

2
,
q

2

)
.

This makes sense, since with p and q odd, this would change odd to even and
vice versa.

So in order to say that µ has the same parity as R (which is our goal to finish
the proof), we just have to show that either set of green points has the same
parity as that of the set of blue points outside the green box. Again, refer to
the interactive graphic and try it with different primes for best understanding.
Claim 17.6.5 Either set of green points has the same parity as the set of blue
points outside the green box.
Proof. There are q − 1 points in each column of points outside the green box.
In particular, there an even number of points in each such column.

So whether the number of blue points in a given column is even or odd, it
is guaranteed that the parity of the green points in that same column is also
even or odd, respectively. So the parity of the green points outside the green
box is the same as the parity of the blue points outside the green box. ■

This means the parity of the points inside the triangle (µ) is the same as
that of the blue points (R), which is what we wanted to prove!

17.6.3 Postlude
It’s really quite amazing how we needed to understand congruence, parity,
some geometry, and of course the idea of a quadratic residue in the first place

CHAPTER 17. QUADRATIC RECIPROCITY 313

to prove this. As of right now, there is a list of well over two hundred proofs
of this theorem. The very shortest might be one by G. Rousseau, and there is
a nice list online of “favorite proofs” by various mathematicians.

So this is one proof where it is appropriate to say Q.E.D.

17.7 Exercises
1. Evaluate the Legendre symbols for p = 11 and a = 2, 3, 5 using Eisen-

stein’s Criterion for the Legendre Symbol.
2. Use the previous problem, your knowledge of

(−1
11

)
and of perfect squares

to evaluate all other Legendre symbols
(

a
11

)
for p = 11.

3. Do any Legendre symbols in Example 17.1.5 which you didn’t already do.
4. Make up several hard-looking Legendre symbols

(
a
29

)
(modulo p = 29)

that are easy to solve by adding p or by factoring a. Then solve them.
5. Use the multiplicative property of the Legendre symbol3 to give a congru-

ence condition for when
(

−2
p

)
= ±1.

6. For 0 < a, b < p, prove that at least one of a, b, and ab is a quadratic
residue of p.

7. In Exercise 16.8.9, you explored
∑

a∈Qp
a. Now suppose p ≡ 1 (mod 4);

prove that the sum of the quadratic residues of p and the sum of the
quadratic nonresidues are the same by computing both. (See [E.7.31] for
a more complex but analogous statement for the case p ≡ 3 (mod 4), along
with an elementary proof thereof.)

In Example 17.5.4 there are a number of small issues which need proof; here,
you have the opportunity to finish them off.

8. Let p be a prime of the form p = 2q+1, where q is prime (recall that q
is called a Germain prime in this case). Show that every residue from
1 to p− 2 is either a primitive root of p or a quadratic residue. (Hint:
Use Euler’s Criterion, and ask yourself how many possible orders an
element of Up can have.)

9. Prove: if p ≡ 3 (mod 4), and if a ̸≡ ±1, 0, then a is a QR modulo p if
and only if p− a is not a QR.

10. Prove that for any prime p, if 1 < i, j < p
2 and i ̸= j, then i2 ̸≡ j2

(mod p). (Hint: factor!)
11. Verify the previous exercise for p = 23.

12. Prove that if
(
2
n

)
is the Jacobi symbol instead of the Legendre symbol, it

is still true that
(
2
n

)
= 1 precisely when n ≡ ±1 (mod 8). (Remember, n

has to be odd by Definition 17.4.9.)
13. Verify Fact 17.4.10 by coming up with four Jacobi symbols which evaluate

to 1, but for which you verify a is not a quadratic residue of n. (For your
first one, why not use

(
3
35

)
?)

14. Learn about the Goldwasser–Micali public key encryption method. How
is it implemented? What mathematics from this chapter is used?

3See [E.2.15, Section 50] to see an approach using the Minkowskian methods of Subsec-
tion 13.4.1, connecting more explicitly to other algebraic structures related to the Gaussian
integers.

http://www.rzuser.uni-heidelberg.de/~hb3/rchrono.html
http://dx.doi.org/10.1017/S1446788700034583
http://mathoverflow.net/questions/1420/whats-the-best-proof-of-quadratic-reciprocity
http://mathoverflow.net/questions/1420/whats-the-best-proof-of-quadratic-reciprocity

CHAPTER 17. QUADRATIC RECIPROCITY 314

15. Make up and compute some Legendre symbols that seem pretty hard by
using the Jacobi symbol instead.

16. If you didn’t do them already, do the exercises in Example 17.4.8.
17. Evaluate five non-obvious Legendre symbols (ap) for p = 47 using quadratic

reciprocity.
18. Find congruence criteria for p for when a ∈ Qp for a = −3, 6, and 9. (Hint:

Don’t do any extra work – use what you know!)
19. Use quadratic reciprocity to find a congruence criterion for when 5 is a

quadratic residue for an odd prime p > 5.
20. Use quadratic reciprocity to prove the surprising statement that −5 is

a quadratic residue for exactly those primes for whom the sum of the
ones and tens digit is odd. (Did you conjecture this when you completed
Exercise 16.8.14? See [E.7.10] about a story behind this unusual result.)

21. Use Sage to explore why repetition in the decimal expansion of a
p is related

to whether 10 is a primitive root modulo p.
22. Explore the Solovay-Strassen primality test. Try implementing it well

enough to check whether a number other than 221 is prime.
23. Compute two nontrivial (that is, not obviously perfect square) Jacobi

symbols for the odd composite number n = 35; then do the same for
n = 943.

Summary: Quadratic Reciprocity
Here, we harness the power of the Legendre symbol to find a deep correlation
between solutions of two seemingly unrelated congruences – a correlation that
enables us to tell very quickly whether any quadratic congruence has a solution!

1. Section 17.1 reinterprets and extends some of our work with quadratic
residues in terms of the Legendre symbol.

2. Next, there is a long buildup to the challenging, but rewarding, power of
Eisenstein’s Criterion for the Legendre Symbol.

3. We use this criterion to compute when 3 is a quadratic residue in Propo-
sition 17.3.4.

4. The next section has the core of the chapter. Not only do we state
Quadratic Reciprocity, we interpret it (such as in Figure 17.4.4) and
show how to use it efficiently to compute (such as in Example 17.4.7).
Finally, we introduce the Jacobi symbol in Definition 17.4.9.

5. Section 17.5 gives several interesting applications.

6. Section 17.6 has a geometric proof of the main theorem.

The Exercises encourage not just computation of a wide variety of Legendre
symbols using quadratic reciprocity, but filling in gaps in proofs (such as about
Germain primes) and proving your own facts about when certain numbers are
quadratic residues.

Chapter 18

An Introduction to Functions

The further one goes into number theory, the more one needs to think about
the functions involved as functions, and not just as handy computational short-
hand.
Question 18.0.1 What properties do number-theoretic functions (such as
ϕ(n)) have? What can we do with them? □

Most of the remainder of the text deals with such questions. This short
chapter introduces some of the questions we will ask through the lens of one
function we have done a fair amount with, and then through the eyes of one
we have examined in less detail.

The Euler function, like many we have seen and will see, is an example of an
arithmetic function. An arithmetic function is a function with the positive
integers as its domain, usually going to integer, real, or complex values.
Remark 18.0.2 We pronounce this word with the stress on the third syllable
in number theory when used as an adjective, but (as usual) on the second
syllable when used as a noun.

A-rith-me-tic functions show up when studying the higher a-rith-
me-tic.

We’ll spend a lot of time with three types of questions regarding arithmetic
functions. For any given function, we wish to find or examine the following.

• We want to have as explicit formulas as possible for our functions, which
are often defined implicitly or in terms of counting.

• We wish to find relational formulas, either between our function and other
functions, or especially among different values of the function itself.

• We desire to see what the long-term or aggregate behavior of the func-
tions is; in practice this usually involves summation of various kinds.

In this chapter, we will start the process, but it will recur throughout the
remainder of the text.

18.1 Three Questions for Euler phi
It’s easier to say useful things about some functions than others! To begin, let’s
go back and remind ourselves of some of the nice properties of one particular
function we did study in some detail. In the next chapter, we’ll start exploring
some functions that we have not yet encountered.

315

CHAPTER 18. AN INTRODUCTION TO FUNCTIONS 316

That function is, naturally, the Euler ϕ function. Recall that ϕ(n) gives
the size of the set

{k | 0 < k ≤ n, gcd(k, n) = 1}

of residues modulo n which are coprime to n. Also don’t forget we can use
Sage to calculate it.

euler_phi (25)

20

18.1.1 Formulas
Of course, such small values can be calculated by hand. But what about larger
ones? Surely we don’t want to have to check every number up to n just to
compute ϕ(n).

And indeed, in Exercise 9.6.11 you should have gotten a formula. Do you
remember it? The following Sage cell is a hint.

print(factor (275))
print(euler_phi (275))
print (275*(1 -1/5) *(1 -1/11))

5^2 * 11
200
200

Fact 18.1.1 If n is the product of prime powers n =
∏k

i=1 p
ei
i then we have

the formula

ϕ(n) = n

k∏
i=1

(
1− 1

pi

)
Proof. Do Exercise 9.6.11! ■

If you are in a classroom setting, you may want to discuss whether it seems
likely that arbitrary arithmetic functions have formulas.

18.1.2 Relations
One piece of getting a formula for ϕ is the rather interesting property ϕ has
(Fact 9.5.2) that if m,n are coprime then ϕ(m)ϕ(n) = ϕ(mn). This is an
important general property an arithmetic function may have.

Definition 18.1.2 We say that f(n) is multiplicative if

f(m)f(n) = f(mn) when m,n are coprime.

♢
The terminology is kind of bad, because of course the function only ‘mul-

tiplies’ for coprime integer inputs, but since relative primality is such a funda-
mental concept this seems okay nonetheless. We can test this property in the
following Sage cell.

@interact
def _(a=25,b=11):

pretty_print(html(r"$\phi(%s)=%s\text{␣and␣

CHAPTER 18. AN INTRODUCTION TO FUNCTIONS 317

}\phi(%s)=%s$"%(a, euler_phi(a), b, euler_phi(b))))
if gcd(a,b)==1:

pretty_print(html(r"And␣$\phi(%s\cdot␣%s)=%s\cdot␣
%s=%s$,␣their␣product!"%(a, b, euler_phi(a),
euler_phi(b), euler_phi(a*b))))

else:
pretty_print(html(r"But␣$%s$␣and␣$%s$␣aren ' t␣

coprime ,␣so␣$\phi(%s\cdot␣%s)=%s\neq␣%s\cdot␣
%s$"%(a, b, a, b, euler_phi(a*b), euler_phi(a),
euler_phi(b))))

So ϕ is multiplicative. Do you think this is an unusual property to have?
Again, in a class setting you may wish to discuss whether it seems likely

that arithmetic functions might have some property along these lines.

18.1.3 Summation (and limits)
One thing that might be useful to look at in a function is its behavior in the long
term. In calculus, we certainly talk a lot about things like asymptotes, even
asymptotes other than horizontal and vertical ones. Unfortunately, arithmetic
functions don’t often look that great in this way.

For instance, let’s look at the plot of ϕ.

20 40 60 80 100

20

40

60

80

Figure 18.1.3 The Euler phi function from 1 to 100 (plot(euler_phi,1,100))
This doesn’t look like it’s “going” anywhere.
That said, there is some regularity; we could look at the highest or lowest

points, at least. Certainly prime numbers p will always have the formula
ϕ(p) = p−1, and that is a nice graph; the lower limit seems reasonably regular
as well. Try to think about how one might encapsulate such observations in
terms of limits.

One strategy that is sometimes used to “smooth” such behavior in places
like analyzing stock prices is trying to calculate “averages” – that is, sum it up
and divide. We are not ready for this with ϕ (see Section 20.5).

However, there was a different interesting property about summation of
ϕ(n), namely Fact 9.5.4. To recall, what was the sum of ϕ(d) over the set of
divisors d of n?

CHAPTER 18. AN INTRODUCTION TO FUNCTIONS 318

@interact
def _(n=275):

pretty_print(html("$%s$␣factors␣as␣
$%s$"%(n,latex(factor(n)))))

pretty_print(html("Its␣divisors␣are␣
$%s$"%latex(divisors(n))))

pretty_print(html(r"The␣sum␣of␣ϕ␣of␣the␣divisors␣is␣
$%s$"%sum([euler_phi(d) for d in divisors(n)])))

Ah yes, it was just that
∑

d|n ϕ(d) = n. Even if we can’t say something
about limiting behavior yet, this kind of summation must be getting us closer!

As a final classroom discussion point, what kind of behavior do you think
could happen when summation of arithmetic functions is considered? What
about limits? Could you get anything you can get in calculus, or should some
things not be possible?

18.2 Three Questions, Again
Hopefully your appetite is whetted a bit by the previous section, and especially
the discussion opportunities about what you think might be possible.

So let’s start exploring these questions with new functions.

Definition 18.2.1 Let r(n) be the number of (all!) ways to write n as a
sum of (two) squares. (This was called r2(n) when first encountered1 in Exer-
cise 13.7.7.) ♢
Example 18.2.2 For instance, r(25) = 12. Why? Because you can write it
using the pairs

(±3,±4), (±4,±3), (±5, 0) and (0,±5).

Remember, we count all solutions, positive or negative, and in any particular
order possible, in determining the value of r(n). □

18.2.1 Formulas
In Exercise 13.7.7, we saw that r(2m) = 4. But we didn’t discuss it enough to
question whether there might be a formula that was easier to compute than
the process of counting all possible sums!

As an encouragement to our search for answers to our three questions, I
will give you a (totally unmotivated!) formula. To see what it looks like, we
use an extension of the Fundamental Theorem of Arithmetic.
Fact 18.2.3 Write the prime factorization of n as

n = 2dpe11 · · · pekk qf11 · · · qfℓℓ

where we write primes of the form 4k + 1 as p, and primes of the form 4k + 3
as q. Then

r(n) =

{
0 if any fj is odd

4
∏k

i=1(ei + 1) otherwise
.

1Although we briefly considered other rk in Example 14.2.3, and we will see another
example in the remarkable Theorem 25.8.1, it is usually more convenient to simplify the
notation.

CHAPTER 18. AN INTRODUCTION TO FUNCTIONS 319

Proof. Unfortunately, it turns out that every single proof of this is not very
short. They all either go into some detail regarding factorization of Gaussian
integers (recall our allusion to this in Fact 14.1.8), or they do some lengthy
divisibility and congruence analysis. So we will skip the proof. ■

To use this, notice that the empty product (no primes of the form 4k + 1)
is 1, just like a sum over zero elements is zero. To prove Exercise 13.7.7, we
note that if r(2m) then all ei and fj are zero, then we are in the second case
and we just get 4 · 1 for the product.
Sage note 18.2.4 Review quiz. You can use various tools we’ve already
seen to compute this with Sage, such as factoring and multiplication. Try it!

18.2.2 Relations
We just saw an impressive relation among values of ϕ(n). As an example of
it, ϕ(5)ϕ(3) = ϕ(15), since the inputs are coprime. Similarly, there are some
relations with multiplying for r, though it certainly isn’t multiplicative.
Example 18.2.5 Indeed, now that we have a formula, we can compute this.

• For instance,
r(3)r(5) = r(15)

because both sides are zero!

• For the same reason, r(8)r(7) = r(56).

• On the other hand,

r(25)r(13) = 12 · 8 = 96 ̸= 24 = r(325)

• Similarly, r(25)r(4) = 12 · 4 = 48 ̸= 12 = r(100).

In these examples, the inputs are relatively prime but it doesn’t multiply. What
might still be true? See Exercise Group 18.3.1–2. □
Sage note 18.2.6 Explore here. Feel free to explore here!

18.2.3 Limits (and summation)
In Subsection 18.1.3 we saw that (for ϕ) even though we couldn’t yet address
long term behavior, we could at least see some patterns, and could say some-
thing about summing values. In this subsection, we will try to directly address
long-term, average behavior for r(n).

To be precise, we will talk about limits with functions. Yes, limits in number
theory!

Observe the following graphic. It has as its basic content the circle with
radius

√
n and blue lattice points representing all pairs (x, y) such that x2 +

y2 ≤ n. There is a little box of area one around each such lattice point.

CHAPTER 18. AN INTRODUCTION TO FUNCTIONS 320

-4 -2 0 2 4

-4

-2

0

2

4

Figure 18.2.7 Plotting sums of squares up to five
As you might expect, the boxes roughly cover the circle, but certainly not

exactly. So what does this have to do with r(n)?
Each unit box around each lattice point can be thought of as standing in

for a representation (as a sum of squares) of a given integer less than or equal
to n. Adding up all the areas would thus give a number, as a summation:

n∑
k=0

r(k).

So the area of the boxes can give us information about r.
Here, there are 21 boxes with a circle of radius

√
5 ≈ 2.24, giving a ratio of

area of boxes to the square of the radius about 4.2. Try it interactively below.

@interact
def _(n=(5 ,[1..100])):

viewsize=ceil(math.sqrt(n))+2
a=(math.sqrt(n)+1/ math.sqrt (2))^2
b=(math.sqrt(n) -1/math.sqrt (2))^2
g(x,y) = x^2+y^2
P=Graphics ()
P += implicit_plot(g-n, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 200)
P += implicit_plot(g-a, (-viewsize ,viewsize),

(-viewsize ,viewsize), linestyle= ' -- ' ,plot_points =
200)

P += implicit_plot(g-b, (-viewsize ,viewsize),
(-viewsize ,viewsize), linestyle= ' -- ' ,plot_points =
300)

grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j
in [-viewsize .. viewsize]]

P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)

CHAPTER 18. AN INTRODUCTION TO FUNCTIONS 321

lattice_pts = [coords for coords in grid_pts if
(coords [1]^2+ coords [0]^2 <=n)]

P += points(lattice_pts , rgbcolor = (0,0,1),pointsize =20)
squares =[line ([[k-1/2,l-1/2],

[k+1/2,l-1/2] ,[k+1/2,l+1/2],
[k-1/2,l+1/2] ,[k-1/2,l-1/2]] , rgbcolor =(1,0,0)) for
[k,l] in lattice_pts]

for object in squares:
P += object

show(P, figsize = [5,5], xmin = -viewsize , xmax =
viewsize , ymin = -viewsize , ymax = viewsize ,
aspect_ratio =1)

pretty_print(html("There␣are␣$%s$␣boxes␣with␣a␣circle␣of␣
radius␣$%s$"%(len(squares),math.sqrt(n))))

pretty_print(html("The␣ratio␣of␣the␣area␣of␣boxes␣to␣the␣
square␣of␣the␣radius␣is␣
$\\ approx%s$"%(len(squares)/(math.sqrt(n)^2))))

Fact 18.2.8 Observe that the boxes neither cover nor are covered by the circle
in question. However, we can say two things about them.

• These boxes will entirely cover a disk of radius
√
n minus half the diagonal

length of the boxes, namely 1√
2
, which is the inner circle above.

• Likewise, they are completely contained in a disk of radius
√
n plus half

the diagonal length of the boxes.
Proof. Geometry. ■

Let’s use this fact to create a double inequality in terms of the area covered
by two circles and the squares:

π

(√
n− 1√

2

)2

≤
n∑

k=0

r(k) ≤ π

(√
n+

1√
2

)2

.

If we divide by n and simplify a bit, then factor, we obtain two more:

π
n−

√
2n+ 1/2

n
≤ 1

n

n∑
k=0

r(k) ≤ π
n+

√
2n+ 1/2

n
,

π

(
1−

√
2

n
+

1

2n

)
≤ 1

n

n∑
k=0

r(k) ≤ π

(
1 +

√
2

n
+

1

2n

)
.

We’re almost at something interesting.

• First, the limit as n goes to ∞ of the lower and upper bounds with each
of these inequalities exists. In fact, the limit of the bounds in both cases
is π.

• Then, the beloved squeeze theorem from calculus implies that

lim
n→∞

1

n

n∑
k=0

r(k) = π.

• Finally, note that r(0) = 1, so its presence or absence will not affect the
average in the limit at all.

We can interpret this line of thought as proving and saying:

CHAPTER 18. AN INTRODUCTION TO FUNCTIONS 322

Fact 18.2.9 The average number of representations of a positive integer as a
sum of squares is π.

WHAT?!

But it’s true. And there’s more to come.

18.3 Exercises

We see in Subsection 18.2.2 that r is not multiplicative. But could some related
properties still be true?

1. Look at the cases where zero is involved. State the broadest possible
multiplicativity result you can for this case.

2. Look at the second two examples in Subsection 18.2.2. There seems
to be a specific sort of relationship in the precise way in which these
examples are not multiplicative. What is that relationship? Can you
prove it? (Hint: first compare the results, only then the individual
inputs.)

3. For a fixed p(x), let Zp(x)(n) be the number of solutions of the polyno-
mial congruence p(x) ≡ 0 (mod n). Use facts from earlier in the text to
show that this function is multiplicative. Connect this to the question of
whether −1 ∈ Qn.

4. Let the function g be given by

g(n) =


0 n is even
1 n ≡ 1 (mod 4)

−1 n ≡ 3 (mod 4)

.

Show that the function g(n) is multiplicative.
5. Compute r(n) for 0 ≤ n ≤ 10 and compare the sum to 10π.
6. Compute r(n) for n = 100, 300, and 900. Can you write down all the

actual sums of squares for these?

Summary: An Introduction to Functions
This short chapter introduces us to arithmetic functions, and raises some in-
teresting questions we can ask about them.

1. In Section 18.1 we review the formula and relations for the familiar Euler
ϕ function, while also asking it where it is going.

2. In Section 18.2 we ask the same questions of a new function, which cul-
minates in the surprising Fact 18.2.9.

The Exercises just give a little chance to think about functions, in preparation
for the next several chapters.

Chapter 19

Counting and Summing Di-
visors

Among all the possible arithmetic functions one could discuss, there is one
family which is both truly ancient and part of cutting-edge research. We’ll let
ourselves be inspired by the summations in the previous chapter, by summing
the simplest functions of all and seeing what we get.

19.1 Exploring a New Sequence of Functions
Definition 19.1.1 For n > 0, let σk(n) be defined as the sum of the kth power
of the (positive) divisors of n, thus:

σk(n) =
∑
d|n

dk.

♢
Before doing any computing, think about what special information about

a number σ1 and σ0 might encode.

Remark 19.1.2 Incidentally, very (very) often one will see σ0(n) written as
τ(n), sometimes also as d(n). Usually σ1(n) is written simply σ(n), though
Euler apparently used

∫
n in his writings (can you think why?).

Hopefully, you realized σ1 is adding all the divisors of n (including n itself),
and that σ0 is the number of (positive) divisors of n.

Now, get ready to explore! Try to figure out as much as you can about
these functions. If you’re in a group in a class, you can certainly save time
by dividing up the initial computations among yourselves, then sharing that
information so you have a bigger data set to look at.
Question 19.1.3 Can you find some or all of the following for these functions?

• A formula, at least for some input types.

• See if at least a limited form of multiplicativity (recall Definition 18.1.2)
holds.

You might also want to look at questions like these.

• Can two different n yield the same σk (for a given k)? If so, when – or
when not? Can they be consecutive?

323

CHAPTER 19. COUNTING AND SUMMING DIVISORS 324

• Is it possible to say anything about when one of these functions yields
even results – or ones divisible by three, four, … ?

• Clearly the size of these functions somehow is related to the size of n –
for instance, it is obvious that σ0(n) = τ(n) can’t possibly be bigger than
n itself! So how big can these functions get, relative to n? How small?

• Can anything be said about congruence values of these functions? (This
is a little harder.)

If you come up with a new idea, why not challenge someone else to prove
it? See Exercise Group 19.6.2–4 for past examples. □

19.2 Conjectures and Proofs
Remark 19.2.1 Don’t read this section until you have tried some of the ex-
ploration in the previous section!

In the last section we defined some new functions, and asked some questions
about them. You can try them by hand, or use computation to explore them
further.
Sage note 19.2.2 Syntax for sigma. Here is the syntax for doing this in
Sage. However, for this function it is better to try it out by hand first!

sigma (12 ,1),sigma (12 ,0)

(28, 6)

If you do not put the second argument in, Sage just computes σ1 = σ by
default.

sigma (12)

28

What were some of your conjectures? It is quite likely that you (or others,
if in a class setting) discovered some of these:

• σ1(p) = p+ 1 if p is prime.

• σ0(p
e) = e+ 1 if pe is a prime power.

• σi is in fact multiplicative for i = 0, 1.

If you dug a little deeper, or had a little more time to spend, your conjectures
may have also included some like these:

• σ1(p
e) = 1 + p+ p2 + · · ·+ pe for pe a prime power.

• σ1(2
e) = 2e+1 − 1.

• σ0(n) is odd precisely if n is a perfect square.

Let’s prove the most important of these things, as well as mention a few
other useful formulas.

CHAPTER 19. COUNTING AND SUMMING DIVISORS 325

19.2.1 Prime powers
Again, usually one will have discovered various formulas that are special cases
of the following, among others. It’s surprisingly easy to find the patterns!
Fact 19.2.3 If pe is a perfect prime power, then

σ0(p
e) = e+ 1 and σ1(p

e) = 1 + p+ p2 + · · ·+ pe =
pe+1 − 1

p− 1
.

Proof. There isn’t much to prove here, once discovered. Both formulas come
from the same fundamental observation.

• All possible divisors of a prime power must have only that prime as
divisors, by the Fundamental Theorem of Arithmetic. So, these divisors
are just other (smaller) powers of that prime.

• There are exactly e+ 1 of these divisors, and these divisors are the ones
summed up in the σ1 formula.

The fraction formula for σ1 is just the usual geometric summation formula
familiar from precalculus, or perhaps calculus. ■

19.2.2 Multiplicativity
It’s a bit harder to prove the following. See Definition 18.1.2 to remind yourself
of the definition of multiplicative.

Fact 19.2.4 For any i, σi(n) is multiplicative. That is,

σi(mn) = σi(m)σi(n) when gcd(m,n) = 1.
This automatically leads to many facts, such as this one.

Theorem 19.2.5 If we factor n > 0 as

n = pe11 pe22 · · · pekk ,

then we have formulas

σ0(n) =

k∏
i=1

(ei + 1) and σ1(n) =

k∏
i=1

(
pei+1
i − 1

pi − 1

)
.

We will not prove this fact directly! It is possible, and might make a good
challenge exercise. But it is not efficient.

Instead, we will prove below a theorem that exemplifies a general principle.
Principle 19.2.6 In the long run, it is better to prove general results for sums
of arithmetic functions than to do each one by itself.

Otherwise we do an endless line of proofs like the ones we did for ϕ (recall
Fact 9.5.2), but for every arithmetic function.

19.2.3 A very powerful lemma
Let

∑
d|n denote the sum over all positive divisors (including 1 and n) of n.

Then we have the following result, the proof of which will be easier than the
corresponding proof for Euler’s function.

CHAPTER 19. COUNTING AND SUMMING DIVISORS 326

Theorem 19.2.7 If g is multiplicative and f(n) is defined as

f(n) =
∑
d|n

g(d)

then f is also multiplicative.
Proof. We follow here [E.2.1]. Let m and n be coprime; we are interested in
f(mn).

Basically, this all boils down to asking what the divisors of mn look like.
Any divisor of mn must be the product of some divisor a of m and some divisor
b of n.

The previous observation is just about multiplication and divisibility, not
even coprimeness. But that guarantees that a and b are coprime as well, given
that m and n are. So each divisor d | mn gives us a (unique) pair of (coprime)
divisors a and b of m and n.

Instead of summing over all divisors of mn, we can instead sum over each
divisor of n for each divisor of m. In symbols,

f(mn) =
∑
a|m

∑
b|n

g(ab).

Now we can use all the facts we have at hand (coprimeness, multiplicativity,
etc.) to finish it off.

f(mn) =
∑
a|m

∑
b|n

g(ab) =
∑
a|m

∑
b|n

g(a)g(b)

=

∑
a|m

g(a)

∑
b|n

g(b)

 = f(m)f(n).

■
Corollary 19.2.8 Since g(n) = ni is clearly multiplicative, it is true that∑

d|n

g(d) =
∑
d|n

di = σi(n)

is also multiplicative.
The special cases i = 0 and i = 1 of the corollary confirm that σ0 = τ

and σ1 = σ are indeed multiplicative. Since it will be convenient later (see
Definition 23.3.1 and following), we give separate names to these two special
cases of ni.
Definition 19.2.9 Let us set the following two arithmetic functions:

• u(n) = 1 is the unit function

• N(n) = n is the identity function

♢

19.3 The Size of the Sum of Divisors Function
For the rest of this chapter, we will focus on σ1 = σ itself, since the sum of
divisors function has a deep richness of its own. We could ask questions about
evenness, other patterns, and so forth.

CHAPTER 19. COUNTING AND SUMMING DIVISORS 327

This short section asks a particularly interesting question. Try the following
interactive cell.

@interact
def _(n=range_slider (1,150,1,(1,20))):

top = n[1]
bottom = n[0]
cols = ((top -bottom)//10)+1
T = [cols*[' n ' ,r ' $\sigma(n)$ ' ,r ' $\sigma(n)/n$ ']]
list = [[i,sigma(i),(sigma(i)/i).n(digits =3)] for i in

range(bottom ,top+1)]
list.extend ((10-(len(list)%10))*[' ' , ' '])
for k in range (10):

t = [item for j in range(cols) for item in
list[k+10*j]]

T.append(t)
pretty_print(html(table(T,header_row = True , frame =

True)))

This table helps you see possibilities for the relative size of σ(n) with respect
to n itself. Alternately, we have the following.

Question 19.3.1 For any given n, what is the constant Cn such that σ(n) =
Cn · n? How big can this get? □

The spread of these ratios, for n under one hundred fifty, certainly goes
both above and below 2. If you look carefully, you will see that only one of the
numbers above has a sum of divisors without 1 or 2 as the integer part. What
is it?

Instead of simply trying larger and larger input numbers, we might use a
little theory to get a higher ratio. To wit, if a number has lots of small prime
divisors, we might think it has lots of factors. So taking big powers of these
would have even more small prime divisors and might get us big ratios.

@interact
def _(n=[1..15]):

pretty_print(html(r"Try␣
$2^{%s}\ cdot3 ^{%s}\cdot5 ^{%s}=%s$"%(n, n, n,
2^n*3^n*5^n)))

pretty_print(html(r"Then␣$\sigma(%s)=%s=%s\cdot␣
%s\approx␣%s\cdot␣%s$"%(2^n*3^n*5^n,
sigma (2^n*3^n*5^n),
sigma (2^n*3^n*5^n)/(2^n*3^n*5^n), 2^n*3^n*5^n,
(sigma (2^n*3^n*5^n)/(2^n*3^n*5^n)).n(digits =3),
2^n*3^n*5^n)))

You’ll notice that although we quickly get a ratio above 3 (so that σ(n) >),
we don’t seem to get much further. Why?

A helpful thing to think about with this is the following rewrite, using the
formula for σ(n) with the usual writing of n =

∏k
i=1 p

ei
i :

σ(n)

n
=

∏k
i=1

(
p
ei+1

i −1

pi−1

)
∏k

i=1 p
ei
i

=

k∏
i=1

pi − (1/peii)

pi − 1
≈

k∏
i=1

pi
pi − 1

Based on this, we should expect this approximation to be very close when ei
are all quite large. Then for large numbers, since p

p−1 > 1, if we multiply by

CHAPTER 19. COUNTING AND SUMMING DIVISORS 328

enough of these we will get very large numbers and so σ(n)/n will be greater
than any given C, and then σ(n) > Cn.

Of course, p = 2 is the best for this since 2
2−1 = 2, but the other primes

will hopefully be useful for this as well. For instance, n = 210310 will have

σ(n)/n =
2− 1/210

2− 1
· 3− 1/310

3− 1
≈ 2

2− 1
· 3

3− 1
= 3

so certainly σ(610) will be nearly 3 · 610.
If we multiply it by 5 as well that should do it, and that gives the results

we saw in the previous cell:

2− 1/210

2− 1
· 3− 1/310

3− 1
· 5− 1/5

5− 1
≈ 2

2− 1
· 3

3− 1
· 5

5− 1
= 2 · 3

2
· 5
4
=

15

4
= 3.75

We can check out some of these ideas, and how much bigger we can get.

print ((sigma (6^10) /(6^10)).n())
print ((sigma (5*6^10) /(5*6^10)).n())

2.99851822943128
3.59822187531753

print ((sigma (2^4*3^4*5^4*7) /(2^4*3^4*5^4*7)).n(digits =3))

4.13

N = prod([p^4 for p in primes_first_n (100)])
print ((sigma(N)/N).n(digits =3))

10.9

Continuing this for more primes suggests the following.
Fact 19.3.2 For any positive C, there is a positive integer n such that

σ(n) > Cn.
The argument outlined above is not completely rigorous, but is good enough

for now. Trying to prove it this way could bring the distribution of primes to
the table, so doing so might not be trivial. (As it happens, one can prove this
in a very elementary way; see [E.4.5, Section 3.6].)

19.4 Perfect Numbers

19.4.1 A perfect definition and theorem

Definition 19.4.1 When the ratio σ(n)
n is exactly 2, we say n is a perfect

number. ♢
This is a big definition, and it goes back at least to Euclid, who defines the

notion at the beginning of the number-theoretic books of the Elements. It is
easy to see this is the same thing as n being the sum of all of its proper divi-
sors1, which is Euclid’s characterization. Indeed, the Greek is τέλειος ἀριθμός,
which might better be translated as “complete number”, as is done in many

1Historically these were called aliquot parts in this context.

http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/defVII22.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/defVII22.html
http://www.claymath.org/euclid/index/book-7-definitions

CHAPTER 19. COUNTING AND SUMMING DIVISORS 329

languages. In modern English usage, ‘completeness’ captures the concept of
being comprised of everything (and hence also being without flaw) better than
‘perfection’, but in English these numbers are universally called perfect.

Euclid only mentions this concept again over one hundred propositions
later, where he proves that certain numbers are, in fact, perfect. (A careful
reader will notice that the primes in question are, in fact, the Mersenne primes
of Definition 12.1.6!) Such a conclusion is a fitting end, as William Dunham
says in his book, Journey through Genius [E.5.5].

Theorem 19.4.2 If n is a number such that 2n − 1 is prime, then the (even)
number 2n−1 (2n − 1) is perfect.
Proof. Euclid’s proof (in the link) of this is worth looking at. ■

Many centuries later, Euler proved the converse; we will prove them to-
gether. (See also Chapter 1 of Dunham’s Euler: The Master of Us All [E.5.6].)

Theorem 19.4.3 Characterization of Even Perfect Numbers. If N is
an even number, it is perfect if and only if it is the product of a power 2n−1

and a prime of the form 2n − 1 (for the same n).
Proof. First, assume that 2n−1 is prime. Then the factors of N = 2n−1 (2n − 1)
are coprime, so

σ
(
2n−1 (2n − 1)

)
= σ

(
2n−1

)
σ (2n − 1) = (2n − 1) (2n − 1 + 1)

The steps are because of multiplicativity and the formulas we had earlier (see
Theorem 19.2.5) for σ of powers of two and primes. But then

(2n − 1) (2n − 1 + 1) = 2n (2n − 1) = 2
[
2n−1 (2n − 1)

]
so that the sum of divisors is exactly twice the original number.

Now for the converse, which is somewhat longer. Let us start with an even
perfect number N , which is perforce divisible by some power of two.

Looking ahead, call this power the (n− 1)th power! Then our even perfect
number may be written as N = 2n−1q, where q is the (odd) quotient.

Let’s divide the rest of the proof into several pieces. First, two facts.

• We know that this number is perfect, so

σ
(
2n−1q

)
= 2 · 2n−1q = 2nq

• We also know how to compute σ, so

σ
(
2n−1q

)
= σ

(
2n−1

)
σ(q) = (2n − 1)σ(q)

We can combine these observations to see that

2nq = (2n − 1)σ(q)

Note that this means 2n − 1 | q, since q is the only odd part of the left-hand
side (implicitly using some of Theorem 6.3.2). Let’s write

(2n − 1)m = q.

Substituting, we have

2n (2n − 1)m = (2n − 1)σ(q) ⇒ 2nm = σ(q)

Since m and q both divide q, by the definition of σ we have

σ(q) ≥ q +m = (2n − 1)m+m = 2nm

Since these two divisors (q and m) alone add up to σ(q), it must be true that q
has exactly these two divisors, so it is prime. That means m = 1, and q = 2n−1,
and so the perfect number N equals 2n−1 (2n − 1). Great! ■

http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX36.html

CHAPTER 19. COUNTING AND SUMMING DIVISORS 330

We will leave the question about whether there are odd perfect numbers to
Section 19.5.

19.4.2 Speculation and more terminology
There are many things people have claimed about numbers of this type. A
Hellenistic Roman in the first century in Gerasa2 named Nichomachus claimed
that the nth perfect number had n decimal digits. Nicomachus was more
concerned with mystical claims about perfect numbers (which many repeated,
see [E.4.5, Chapter 3]), but this mathematical assertion continued to be made
for over a thousand years by most commentators. However, knowing what
we do about Mersenne primes (recall Definition 12.1.6), we see that the fifth
possible n is 13, so that the next perfect number,(

213 − 1
)
· 212,

was very large and so lay mysterious for a long time. It was apparently discov-
ered in the fifteenth century.

(2^13 -1) *2^12

33550336

Until the early modern period, such numbers were basically inaccessible.
Number theorists (often of the amateur variety, but certainly not always)

have come up with all kinds of other names for various concepts related to
σ(n)/n.

Definition 19.4.4 Recall that if σ(n) = 2n, then n is perfect.
• If σ(n) = kn for some integer k, then we say that n is k-perfect.

• Or, if σ(n) > 2n, then n is abundant.

• If σ(n) < 2n, we say n is deficient.

♢
As it will turn out, these things are not really good characterizations of what

it means to have “too many” or “too few” divisors. However, in recognition of
the Greeks’ contributions we keep this allusive and fairly standard terminology.
(Nichomachus is responsible for the two latter names, and they seem to have
stuck, since medieval commentators such as Boethius waxed rhapsodic over
them – see [E.4.5, Section 2.1].) As examples, Exercise 19.6.7 asks for a 3-
perfect number, if one exists, and Exercise 19.6.17 asks for a 4-perfect number.
Definition 19.4.5 Here are some less well-known, but nonetheless interesting,
terms.

• A number is pseudoperfect if it is the sum of some of its divisors (other
than itself).

• A number n is superabundant if the ratio σ(n)/n for n is bigger than
the value of the ratio for all smaller m < n.

• A number is weird if it is abundant but not pseudoperfect. (There is a
famous paper of Erdős on this topic.)

♢
2Interestingly, this is the same place as one setting of the Biblical story of the demons

called “Legion” who went into swine.

CHAPTER 19. COUNTING AND SUMMING DIVISORS 331

There are many questions one can ask about these and other definitions;
see Exercise Group 19.6.15–21. One cheeky such question is this.
Question 19.4.6 Is a perfect number pseudoperfect? □

19.4.3 The abundancy index
It’s time to give a name to the mysterious ratio at the core of this section.

Definition 19.4.7 The ratio σ(n)
n may be called the abundancy index of n.

♢
A beautiful thing is that once you name a concept, you can ask questions

about it. Here’s another largely open question which seems like it should be
easy…
Question 19.4.8 Rather than asking which integers can be gotten, which
rational numbers can be gotten as σ(n)

n ? □

@interact
def _(n=(20 ,[1..200])):

cols = ceil(n/10)
T = [cols*[' n ' ,r ' $\sigma(n)/n$ ']]
list = [[i,(sigma(i)/i)] for i in range(1,n+1)]
list.extend ((10-(len(list)%10))*[' ' , ' '])
for k in range (10):

t = [item for j in range(cols) for item in
list[k+10*j]]

T.append(t)
pretty_print(html(table(T,header_row = True , frame =

True)))

There are some interesting theorems about this already known. For one
thing, the abundancy index is the same thing as σ−1(n).
Fact 19.4.9

σ−1(n) =
σ(n)

n
Proof. We have that

σ(n)/n =

∑
d|n

d

 /n

Now note that for every d | n, the quotient is also an integer divisor d′ of n. So

σ(n)/n =
∑
d|n

1

d′

This is the same list as the original divisor list, so reordering gives

σ(n)/n =
∑
d|n

1

d
= σ−1(n)

■
Fact 19.4.10 Clearly all such numbers are in the interval [1,∞). Here are
some more known facts about the abundancy index.

• If m | n, then σ−1(n) ≥ σ−1(m).

CHAPTER 19. COUNTING AND SUMMING DIVISORS 332

• If σ−1(n) =
a
b in lowest terms, then b | n.

• If r is “caught” between σ(n) and n (such that n < r < σ(n)) and is
relatively prime to n, then r/n is not an abundancy index.

Proof. We skip the proof, but proving the first two facts is left as Exer-
cise 19.6.22. ■

Holdener and Stanton picturesquely call rational numbers which are not
abundancies abundancy outlaws. The end of this hyper-linked paper [E.7.11]
has a nice list of which numbers thus far have been found, and which have
not.

19.4.4 Amicable Numbers
Another interesting idea of summing divisors is still of ancient provenance,
though not quite as old as Euclid.

Definition 19.4.11 A pair of positive integers m,n such that σ(n) = σ(m) =
m+ n is called a pair of amicable numbers. ♢

Clearly any perfect number is amicable (or ‘friendly’) with itself. As with
perfect numbers, we can characterize them as pairs of numbers whose proper
divisors add to each other.

The smallest pair of unequal amicable numbers is (220, 284). This was
known by the time of late Greek antiquity, where Iamblichus’ commentary
on Nichomachus seems to be the first reference; the connection was already a
somewhat mystical one in terms of friendship, based on the mutual summation
to each other. Similarly to perfect numbers, some Islamic writers likewise
cherished these in a mystical sense (see for instance [E.5.3, Section 5-3]).

Eventually early modern European commentators mentioned them, or at
least this pair, in related contexts. See if you can find it in the following
image3 from an appendix of sorts to the Harmonie Universelle, Mersenne’s
monumental compendium of practical and theoretical music.

3Courtesy of the French National Library and its online repository, Gallica. The license
does not allow for commercial use of these images. This image is actually a pastiche of parts
of observation 13, in order not to give away the answers to some exercises!

http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Holdener/holdener7.pdf
http://gallica.bnf.fr

CHAPTER 19. COUNTING AND SUMMING DIVISORS 333

Figure 19.4.12 Excerpts from Nouvelle Observationes regarding amicable
numbers

Strictly mathematical advances on this topic came from work in the Is-
lamic world inspired by the Greek sources. Thabit ibn Qurra worked on many
questions related to σ (see Exercise 19.6.29); just as Theorem 19.4.2 is a for-
mula of sorts, dependent upon the existence of certain types of primes, his
Algorithm 19.4.14 may also be judged thusly.
Historical remark 19.4.13 Thabit ibn Qurra. The ninth-century Arab
doctor and mathematician Thabit ibn Qurra was probably responsible for a
number of Arabic translations of Greek mathematics in his time in the “House
of Wisdom” of the Caliphs of Baghdad. Interestingly, he did not include a single
example of either perfect numbers or amicable numbers, despite clearly being in
control of effective information about them. He made important contributions
to the question of the parallel postulate in geometry.
Algorithm 19.4.14 Get Amicable Numbers. Here is one way to get
amicable numbers.

• Make a list of numbers of the form pn = 3 · 2n − 1 and qn = 9 · 22n−1 − 1.

• Then check if pn−1, pn, and qn are all prime.

• If so, then 2npn−1pn and 2nqn are an amicable pair.
Proof. Since only primes and powers of two are involved, it’s easy to calculate
σ in this case, so proving it is left as an exercise (see Exercise 19.6.21). ■

Several centuries later, al-Farisi and ibn al-Banna seem to have indepen-
dently used Thabit’s formula to exhibit the second known amicable pair, 18416
and 17296. Even more impressively, at the beginning of the seventeenth cen-
tury the otherwise obscure Persian mathematician Muhammad Baqir Yazdi
used this same formula to obtain the pair 9363584 and 9437056, where n = 7.

https://mathshistory.st-andrews.ac.uk/Biographies/Thabit/
https://de.wikipedia.org/wiki/Muhammad_Baqir_Yazdi

CHAPTER 19. COUNTING AND SUMMING DIVISORS 334

See [E.5.11, Section 2.6] for many more details of this era. You can try the
formula yourself in the following Sage cell.

@interact
def _(n=[2..20]):

pretty_print(html("We␣have␣$p_{%s}=%s$␣and␣
$p_{%s}=%s$"%(n-1 ,3*2^(n-1) -1,n ,3*2^(n) -1)))

pretty_print(html("And␣$q_{%s}=%s$␣as␣
well."%(n ,9*2^(2*n-1) -1)))

if is_prime (3*2^n-1) and is_prime (3*2^(n-1) -1) and
is_prime (9*2^(2*n-1) -1):
pretty_print(html("Then␣the␣pair␣$%s$␣and␣$%s$␣is␣

amicable!"%(2^n*(3*2^(n-1) -1)*(3*2^(n) -1),
2^n*(9*2^(2*n-1) -1))))

else:
pretty_print(html("Doesn ' t␣give␣an␣amicable␣pair"))

At about the same time as Yazdi, Fermat and Descartes both worked on
this question (which is where Mersenne learned of it), and independently re-
discovered both the formula and these pairs (see [E.5.8, II.IV]). Later, Euler
expanded the Thabit/Fermat formula significantly and found several dozen new
pairs. But it turns out that the next smallest pair, one everyone had missed
by attempting to find a formula, was found by a sixteen-year old Italian boy
in 1860!

sigma (1184) ,sigma (1210) ,1184+1210

(2394 , 2394, 2394)

Apparently he came up with this by trial and error, though no one knows
for sure. The internet can provide some of the most current data on these
pairs, though sadly the best website is now out of service. The hope is that
there are infinitely many such pairs, but there is currently no proof of this
conjecture. At any rate, it can’t be too infinite; Nguyen and Pomerance have
shown that, however many there are, the sum of their reciprocals is no greater
than 215.

19.5 Odd Perfect Numbers

19.5.1 Are there odd perfect numbers?
Let’s return to a question alluded to earlier -- one whose answer is still unknown
after two and a half millennia:
Question 19.5.1 Does there exist an odd perfect number? □

Yikes!
We do know some things about the question. Here are some fairly easy

facts.
Theorem 19.5.2 Odd perfect numbers aren’t simple. Here are simple
forms of numbers that can’t be perfect.

• An odd perfect number cannot be a prime power.

• An odd perfect number cannot be a product of exactly two prime powers.

• An odd perfect number cannot be a product of exactly three prime powers
unless the first two are 3e and 5f .

https://web.archive.org/web/20131212143320/http://amicable.homepage.dk/knwnc2.htm

CHAPTER 19. COUNTING AND SUMMING DIVISORS 335

Proof. We leave many details to Exercise 19.6.24. The easiest way to approach
this is by cases and subcases, using the computation from Section 19.3 that

σ(n)

n
=

k∏
i=1

pi − 1/peii
pi − 1

<

k∏
i=1

pi
pi − 1

when n is a product of the prime powers peii .
• An odd perfect number cannot be a prime power. This is easy; using

the computation for k = 1 would require 2 = σ(n)
n < p

p−1 . Even for
p = 2, 2 < p/(p−1) isn’t possible; since we are looking for an odd perfect
number, it definitely won’t be possible!

• An odd perfect number cannot be a product of exactly two prime powers.
Use the same idea, but now with the biggest possible values for odd
primes.

• An odd perfect number cannot be a product of exactly three prime powers
unless the first two are 3e and 5f . This proof is slightly longer.

◦ Suppose that 3 is not the smallest prime involved. Then the biggest
that

p1
p1 − 1

· p2
p2 − 1

· p3
p3 − 1

can be is
5

4
· 7
6
· 11
10

=
77

48

and this fraction is still less than 2.
◦ Suppose that 5 is not the second-smallest prime involved (assuming
3 is the smallest). We again get a contradiction.

This proof is from [E.2.8, Section 3.3A], which has even more details – including
a full elementary proof that an odd perfect number must have four different
prime factors! ■

19.5.2 The abundancy index and odd perfect numbers
What is particularly interesting about this is that we can connect odd perfect
numbers to a non-integer abundancy index in a surprising way! The connection
below is due to P. Weiner in [E.7.14].

We begin with a useful lemma, which answers questions very closely related
to Exercises 19.6.11 and 19.6.12.
Lemma 19.5.3 If n and σ(n) are both odd, then n is a perfect square.
Proof. If n is odd, it is a product of odd prime powers. Let’s look at σ as
applied to each piece, thanks to multiplicativity.

If σ(n) is odd, then each factor 1 + p+ p2 + · · ·+ pe is odd. Such a factor
of σ(n) is a sum of odd numbers, which is only odd if there is an odd number
of them.

Since there are e+1 summands, e must be even for every primes p dividing
n., which finishes proving the lemma. ■

Theorem 19.5.4 If 5
3 is the abundancy index of N , then 5N is an odd perfect

number.
Proof. Assume this works for some N . Then 3σ(N) = 5N .

Let’s look at divisors. First, 3 | N . So if N is even, then 6 | N , so by

CHAPTER 19. COUNTING AND SUMMING DIVISORS 336

Fact 19.4.10,
σ−1(N) ≥ σ−1(6) = 2 >

5

3
,

which is impossible. If N is not even, then N is odd, so 3σ(N) = 5N is odd,
which implies σ(N) itself is odd.

Since 3 | N and using Lemma 19.5.3, we see that we must have that 32 | N .
Let’s return to the divisors. We know that 5 ∤ N , because otherwise

σ−1(N) ≥ σ−1

(
32 · 5

)
=

26

15
>

5

3

which is again impossible.
Now we can compute directly that

σ−1(5N) = σ−1(5)σ−1(N) =
6

5

5

3
= 2 !

■

19.5.3 Even more about odd perfect numbers, if they exist
Naturally, all of this is somewhat elementary; there are many more criteria.
They keep on getting more complicated, so I can’t list them all, but here is a
selection, including information from a big computer-assisted search4 going on
right now.

Fact 19.5.5 An odd perfect number must (as of 2021):
• Be greater than 101500. (The most recent announcement says researchers

have ‘pushed the computation to 102000’, and you can help try to factor
some desired numbers to help compute up to 102100.)

• Have at least 101 prime factors (not necessarily distinct).

• Have at least 10 distinct prime factors. (This is new and relies on
heavy computation by Pace Nielsen in Odd perfect numbers, Diophantine
equations, and upper bounds in Mathematics of Computation.)

• Have a largest prime factor at least 108.

• Have a second largest prime exceeding 10000.

• Have the sum of the reciprocals of the prime divisors of the number between
about 0.6 and 0.7.

• Have the sum of the reciprocals of odd perfect numbers be finite (since
the sum of the reciprocals of all perfect numbers is finite!). In fact, the
sum of the reciprocals of odd perfects must be less than 2 × 10−150 (see
[E.7.6]), and that of all perfects is less than about 0.0205.

• Obey the rule that if n is an odd perfect number, then n ≡ 1 mod 12 or
n ≡ 9 mod 36.

For another introduction to the problem focusing on ‘near-misses’/‘spoofs’,
see this article in Quanta magazine.

As an appropriate way to finish up this at times overwhelming overview,
since Euler finished the characterization of even perfect numbers, let us present

4There was another search at oddperfect.org but they seem to have let their domain lapse,
so it is unclear whether it is still a going concern.

http://www.lirmm.fr/~ochem/opn/
http://www.lirmm.fr/~ochem/opn/
http://www.lirmm.fr/~ochem/opn/mwrb2100.txt
https://www.ams.org/journals/mcom/2015-84-295/S0025-5718-2015-02941-X/
https://www.quantamagazine.org/mathematicians-open-a-new-front-on-an-ancient-number-problem-20200910/
http://web.archive.org/web/20190202153444/http://www.oddperfect.org/

CHAPTER 19. COUNTING AND SUMMING DIVISORS 337

his own criterion for odd perfects! (See also the linked article [E.7.19] by Euler
expert Ed Sandifer.)

Proposition 19.5.6 An odd perfect number must be of the form pem2, where
m is odd, p is prime, and p and e are both ≡ 1 (mod 4).

19.6 Exercises
1. Review the proof of Fact 9.5.2 that ϕ(n) is multiplicative. Can you think

of a way to modify it directly to prove that σ or σ0 are multiplicative?

My students discovered various facts about the functions in this chapter on
their own; why not you?

2. Conjecture and prove a formula for the difference between σk(p) and
σk(p

2). (Thanks to Becca Brule and Olivia Gray.)
3. Conjecture and prove a necessary (or even sufficient) criterion for when

5 | σ2(2k). (Thanks to Andrew Kwiatkowski and Daniel Brito.)
4. Come up with some new (to you) conjecture about one of these func-

tions you observed from the data, and which isn’t mentioned in this
book. Tell what led you to this conjecture.

5. Read Euclid’s original proof that certain even numbers are perfect and
write it down in modern notation.

6. Do you think perfect numbers as defined in Definition 19.4.1 should be
called perfect? Why or why not? Establish a connection to GIMPS.

7. Please find a number such that σ(n) = 3n. (This was apparently first
done in Robert Recorde’s Whetstone of Witte in 1557, where we also find
the equals sign for the first time.)

8. Could there be a function g(n) which is multiplicative, where g(2n) = 0,
g(n) = a1 = 1 if n ≡ 1 (mod 8), g(n) = a2 if n ≡ 3 (mod 8), g(n) = a3 if
n ≡ 5 (mod 8), and g(n) = a4 if n ≡ 7 (mod 8)?

9. Let τo(n) and σo(n) be the same as τ and σ but where only odd divisors of
n are considered; let τe and σe be similar for even divisors of n. Evaluate
these functions for n = 1 to 12, and decide whether each of them is mul-
tiplicative or not (either proving it, or showing not by counterexample).

10. Use the estimate toward the end of Section 19.3 for σ to find numbers for
which σ(n) > 5n and σ(n) > 6n. (Possibly long.)

11. Discover and prove conditions for which τ(n) and σ(n) are even and odd
numbers.

12. Show that if n is odd then τ(n) and σ(n) have the same parity.
13. For which types of n is τ(n) = 4?
14. Prove that if n ≡ 7 (mod 8), then 8 | σ(n).

Here are facts about various definitions beyond perfect numbers in Subsec-
tion 19.4.2.

15. Show that every prime power is deficient.
16. Show that a multiple of an abundant number is abundant.
17. Find a 4-perfect number.
18. Compute “by hand” σ−1 for the numbers up to 30. Come up with

and prove a criterion for when σ−1 = 2.

http://eulerarchive.maa.org/hedi/HEDI-2006-11.pdf
http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX36.html

CHAPTER 19. COUNTING AND SUMMING DIVISORS 338

19. Find three pseudoperfect numbers less than 100.
20. Find a weird number less than 100.
21. In the proof of Algorithm 19.4.14, confirm that if pn, pn−1, and qn

are prime, then the numbers in question are amicable.
22. Prove the first and second facts about the abundancy index in Fact 19.4.10.
23. Find five numbers that must be abundancy outlaws based on the facts

(don’t just copy from the list).
24. Fill in the details in the proof of Theorem 19.5.2 (that odd perfect numbers

need at least three prime divisors, and that 3 and 5 would need to be the
first two if there were exactly three).

25. Read the article linked right after Fact 19.5.5 about Euler and odd perfect
numbers, and restate and reprove his criterion in modern notation.

26. There are always more connections. Here are some activities about a
formula one would have likely never guessed:∑

d|n

τ(d)

2

=
∑
d|n

τ(d)3.

First, test it out by hand with n = 6 and n = 8. Then try it with bigger
numbers below:

@interact
def _(n = 24):

divs = divisors(n)
pretty_print(html("The␣divisors␣of␣$%s$␣are␣

$%s$"%(n,divs)))
pretty_print(html("And␣$\\tau$␣of␣each␣of␣them␣is␣

$%s$"%([sigma(div ,0) for div in divs])))
pretty_print(html("The␣sums␣of␣the␣cubes␣and␣the␣

square␣of␣the␣sum␣are␣$%s$␣and␣$%s$,␣
respectively!"%(sum([sigma(div ,0)^3 for div in
divs]),sum([sigma(div ,0) for div in divs])^2)))

Start a proof by noting that it’s clearly true for a prime power n = pe,
for which τ(pf) = f + 1, and all divisors of n look like such a power of p.

Continue the proof by examining the proof that σi is multiplicative for
what can be said about the divisors of mn, and how a sum over divisors
d | mn can be a product of two different sums over divisors of m and n.

27. Use Theorem 19.4.3 to show that the even perfect number is actually the
sum of the positive integers up through its involved Mersenne prime p.
(This is actually true for any number of this form in the theorem, but
the theorem guarantees that any even perfect number has this form! See
[E.7.37] for the interesting corollary that every even perfect number ends
in 6 or 28.)

28. Don’t read this exercise before you do Exercise 19.6.7! (A reading knowl-
edge of French is presumed.)

Mersenne eventually published a method of Fermat’s for finding 3-
perfect numbers, some time after a “heated exchange of letters” among
several mathematicians (including Descartes) about multiply perfect num-
bers (see Vittoria Boria’s 1989 dissertation, Marin Mersenne: Educator
of Scientists). Use the following image (as usual, courtesy BNF/Gallica)
to recreate his method and obtain another 3-perfect number. Warning: it

CHAPTER 19. COUNTING AND SUMMING DIVISORS 339

might be pretty large!

-2f5 ì|îôuuplles.ObseruAtionát;
leurslpnguçurs,queìe,sjnteru^lléjSdessonsjjl tçouuaquellesfaisoiçntjcfdits
Interualles,car ellesçlpiuentgarder les mefmes raisonstantdansleursgros.
_sçairs queç|ans leurs ìqn.gucurs,pourfairelefditsinterualles,comme-..j'ay fait
.vpir dans la 13 &14Pjgp. du 6 liure de l'Orgue, & ailleurs. Cewi qui oíjtej^rit qu'il auoit trouue la raisondes consonancesparispoidsdés'marteaux
.frLappans[forl'encluín^, n'ont.pas moinserré*:çar lle^xperienceffait; voir Se
,ouyr que lçsmarteaux;>dontles.péfanteurs sont enmeímeraisonne les: in-terualles,dç^tusiqqeine font pgsjlcsditsinteruallesiíoitiquel'oniprenne.íe
sondei'ençlume,ouceluy dèsmarteaux: furquoyl'on peutvoirlapropor-
tionqueles cy;lin4re^;dô^er, pu^^4'auçrematièred.oiuen^garderpQU!4;faireles
consonancesydepujs^! -•'-X;HI]';r!0bídçiïatiotï^n;?/ Y'L':;:':

Déspartièsaíiquotesylde'^
•llPP^Së L,fautajouter à ce que j'aydit des partiesaliquotesdesnombres|$3l§ ffi^l, dansla dixièmeremarque de la premierePrefaCegenerále,iame-âsPÌ3P ^?9^Cdçiwouuçrlenombrefemblabseàno;ydot ie partóu lieu^Ss^K susdit. Ilfaut donc,mettre tantdenombresdefuite qulon-vou-
-dracnraisondouble,encommençantparz, commefont lès nombresA,B,
GJDÍE,F,:dg%uelsrvnitéest^
& ausouclsl'vnjté estantajoutée l'onfaçelésautresnomf^èsN,0>1?,Q,R,S.

Lorsquel'vtìdesnombresQ,H, I,K> UM,(janexemplé,
K^diuifé.parlenpmbreN^dudeínierpotdrè-éloigné de
4 rangsàmaingauche,,prp/Quiráy.nnjpmbreDjiéniier, íe
triplede cc nombrepremier multipliéparlenombredu
rángdumilieu',qui'prëcç'dè'Kimrriediâtemcntvdórinèra
,
le nombre requis.-commel'o^n vpid cn IJdiuifé par 3, d'où.
! vient 5nombrepremier,.dontíctriple 1;multiplié par 8,

fait izo, quiestlenombrequenousauonsdonnedans laPréfacesusdite.
L'autre exemplesevoìd èn 6$, lequel diuiTé parp, pròdhitle nombre pre-

mier 7, dont le tripleit multiplié par31,fait (»jz, qui estl'autrenóbrerequis.
Quant aux z nombres,dont les partiesaliquotesserefontmutuellement,

il faut auísi mettre lesnombresqui se fuiuçntdepuis z ehprogreísiphgéo-
métrique, z, 4, 8,16, &c. Se puis.il faut escriredesnombres triplesdessous,

Gyn, z4,48, desquels1'vnit,éestantostée, restentj,íi, £3,47,qu'il
fautmettredessus.ilfautcnfinmultiplierípar n,enostat ívnité,ppurauoir
71, & izpar14, moins l'vnité, pourproduire187 j & z4.par48,imòïnsl'vni-
té, pour auoir nji,qu'il faut disposer commeph lesvoid icy, iufqu a l'infiny.

pôle, si l'on multiplie71 par 4, Sc semblablementj Sinpar lemesme4, l'on
aurà. les 1 nombresZ84 Se zxo,dont les partiesaliquotes serefpntmutuelle-

A,B,C,D,E,F.
*)4) 8,16j 31,64,N,0,P,Q,R,S.
3, S» 9> l7> 33> 6$.-1

5> », 2-3, 47-
z, 4, 8, 16.
6, 11, 14, 48.
71,187, iifi.j

Lorsque Ivndesnombres du dernier ordíPauecson oppo-
sé,&le précédentdu premierordrescrótnombrespremiers,
l'on trouuerades nombressemblables; àçéux dont il est que-
stion.Parexemple,le npmbréduderniér rangji,Scn du pre-
mierordre, Se $ qui le precede,sont nombrespremiers. Cecy

Figure 19.6.1 Excerpt from Nouvelle Observationes regarding triply per-
fect numbers

29. Find an odd abundant number by multiplying a bunch of distinct odd
numbers. Then do some historical research to find out whether de Bou-
velles, was the first person to find one, in 1510, whether [E.4.5, Section 3.6]
is correct that he did it, but in 1509, or whether ibn Tahir Al-Baghdadi
actually did it first in the eleventh century.

30. Suppose that, as in Theorem 19.4.3, you have a power of the form 2n−1.
Whether or not 2n − 1 is prime, one can still investigate what happens
when we multiply 2n−1 by prime numbers p greater than or less than
2n − 1. Is this number now deficient or abundant? What is the value of
σ(n)− 2n?

Investigate this question for n = 3 and n = 5, each time with two
primes greater than and less than 2n − 1. There is a consistent answer,
and even a formula in terms of p and n. (See [E.5.11, Section 2.5] for
Thabit ibn Qurra’s and Muhammad Yazdi’s discoveries along these lines.)

Summary: Counting and Summing Divisors
This chapter investigates the surprisingly wealth of questions arising from one
of the oldest arithmetic functions.

1. We first define σ(n) in Definition 19.1.1, and encourage a lot of explo-
ration!

2. The next section proves a number of important facts about these sums, in-
cluding multiplicativity as a corollary of the quite general Theorem 19.2.7.

3. Section 19.3 explores the size of the sum of divisors function.

4. We next turn to a Characterization of Even Perfect Numbers. There are
many interesting definitions here, and we even discuss an ancient way to
Get Amicable Numbers.

https://mathshistory.st-andrews.ac.uk/Biographies/Bouvelles/
https://mathshistory.st-andrews.ac.uk/Biographies/Bouvelles/

CHAPTER 19. COUNTING AND SUMMING DIVISORS 340

5. Finally, we learn not only that Theorem 19.5.2, but that no one really is
sure whether they exist at all!

There is a very broad variety of Exercises looking at all the definitions, and
their variations, related to summing divisors, ending with some interesting
historical ones.

Chapter 20

Long-Term Function Behav-
ior

We will now move on to think of these same functions in a different way from
the previous chapter. We will examine different limits in number theory, and
how integrals and calculus are inextricably bound up with this sort of question.

If, after this chapter, you are interested in more of this kind of material,
definitely check out1 Stopple’s excellent [E.4.5], to which I am indebted for
many of the ideas here, or the more challenging book [E.4.6] by Apostol.

Finally, note that some proficiency in calculus is helpful in understanding
the results in this chapter, though a proper course is not necessarily a prereq-
uisite.

20.1 Sums of Squares, Once More
Our motivational example will be the one we discussed in Section 18.1. Recall
that r(n) denotes the (total) number of ways to represent n as a sum of squares,
so that r(3) = 0 but r(9) = 4 and r(5) = 8. Then we saw in Fact 18.2.9, more
or less rigorously, that

lim
n→∞

1

n

n∑
k=1

r(k) = π.

20.1.1 Errors, not just limits
As it happens, we can say something far more specific than just this limit.
Recall one of the intermediate steps in our proof.

π

(
1−

√
2

n
+

1

2n

)
≤ 1

n

n∑
k=0

r(k) ≤ π

(
1 +

√
2

n
+

1

2n

)
Notice that if I subtract the limit, π, from the bounds, I can think of this in
terms of an error. Using absolute values, we get, for large enough n,∣∣∣∣∣ 1n

n∑
k=0

r(k)− π

∣∣∣∣∣ ≤ π

(√
2√
n
+

1

2n

)
≤ Cn−1/2

1Two other books with useful presentations are the terse one in [E.2.9] and the more intu-
itive, if shorter, one in [E.2.11]. [E.2.8, Section 3.8] has a deep but idiosyncratic presentation,
as evidenced by its starting with what we give as Proposition 24.6.7!

341

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 342

where the value of C is not just π
√
2, but something a little bigger because of

the 1
2n term.

In the next two cells we set up some functions and then plot the actual
number of representations compared with the upper and lower bound implied
by this analysis. We include a static image at the end, but encourage you to
explore.

def r2(n):
n = prime_to_m_part(n,2)
F = factor(n)
ret = 4
for a,b in F:

if a%4==3:
if b%2==1:

return 0
else:

n = prime_to_m_part(n,a)
else:

ret = ret * (b+1)
return ret

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += r2(i)
ls.append ((i,out/i))

return ls

@interact
def _(n=100):

P = line(L(n))
P += plot(pi+pi*sqrt (2)/sqrt(x),x,3,n,color= ' red ')
P += plot(pi -pi*sqrt (2)/sqrt(x),x,3,n,color= ' red ')
P += plot(pi ,x,3,n,color= ' red ' ,linestyle= ' -- ')
show(P)

0 20 40 60 80 100

1

2

3

4

5

Figure 20.1.1 Error bounds for average of sum of squares

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 343

Note that the actual number is well within the bounding curves given by the
red lines, even for small n. This shows a general rule of thumb that, typically,
the constant we prove will be a lot bigger than necessary. New research is
about improving such bounds.

20.1.2 Landau notation
It turns out there is a nice notation for how ‘big’ an error is.

Definition 20.1.2 Big Oh. We say that f(x) is O(g(x)) (“eff of eks is Big Oh
of gee of eks”) if there is some positive constant C and some positive number
x0 for which

|f(x)| ≤ Cg(x) for all x > x0.

This is known as Landau notation. ♢
See Exercise Group 20.6.1–5 for some practice with this. In practice in

this text, we will focus on C and elide details of x0 unless it is crucial to the
narrative.
Example 20.1.3 The average number of representations of an integer as a
sum of squares is π, and if you do the average up to N , then the error will
be no worse than some constant times 1/

√
N . So the sum’s error is Big Oh of

1/
√
N , or O(x−1/2).

It is unknown in this case just how small the error term really is. In 1906 it
was shown that it is O(x−2/3) (note that this is a more accurate statement, see
Exercise 20.6.5). See Figure 20.1.4 for a visual representation, where C = π.

0 20 40 60 80 100

2

2.5

3

3.5

4

4.5

Figure 20.1.4 Better bound for average of sum of squares
It is also known that the error term is not as close as O(x−3/4); see [E.7.25]

for much more information at an accessible level. □
Now let’s apply these ideas to the divisor summation functions τ and σ from
Definition 19.1.1 in the previous chapter. (We will use these common alternate
notations – τ for σ0 and σ for σ1 – from Remark 19.1.2 throughout this chapter.)
Namely, consider the following interesting question.
Question 20.1.5 What is the “average” number of divisors of a positive inte-
ger? What is the “average” sum of divisors of a positive integer? □

It turns out that clever combinations of many ideas from the course as well
as calculus ideas will help us solve these questions! We will start with τ in
Section 20.2, and address σ starting in Section 20.4. Finally, answering these

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 344

questions will motivate us to ask the (much harder) similar questions one can
ask about prime numbers, starting in Chapter 21.

20.2 Average of Tau

20.2.1 Beginnings
Let’s begin by observing Figure 20.2.1, which plots the average for τ up to
n = 100.

0 20 40 60 80 100

1

1.5

2

2.5

3

3.5

4

4.5

Figure 20.2.1 Average of τ , number of divisors

Sage note 20.2.2 Try to be efficient. Observe the following two cells. The
first cell records the successive sums of τ in a variable out (for ‘output’), so that
we don’t have to recalculate the entire sum each time we compute the average
value for a different input value. We record the actual averages sequentially in
a separate list ls.

Then the interactive cell is very simple indeed. Try being efficient in your
programming!

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += sigma(i,0)
ls.append ((i,out/i))

return ls

@interact
def _(n=100):

P = line(L(n))
show(P)

These graphics shows how the average value of τ up to n changes as we let
n get bigger. This isn’t enough data to tell whether there is a limiting value
for the average value of τ(n), even if you look out to the first 1000 integers,

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 345

but it’s suggestive. Part of the unpredictability is from primes; every prime
number contributes just 2 to the total (and so reduces the average value)!

Nonetheless, thinking about this might lead us to look a little deeper. For
example, the ‘trend’ is concave down. So let’s look at comparing it with various
concave down functions. (The following interact supports multiplied constants
with them as well.)

@interact
def _(n=100,C=.5,f=[x^(1/2) , x, x^(1/3) , x^(1/4) , log(x),

log(log(x)), x^(1.5) , x^2]):
f(x) = f
P = line(L(n),legend_label=r ' average␣of␣τ ')
P += plot(C*f,(x,1,n), color= ' black ' , linestyle= ' -- ' ,

legend_label= ' $%s%s$ ' %(RDF(C),latex(f(x))))
show(P)

At the very least I can estimate that the average value is Big Oh of a certain
function. But how does it go on?

0 2e5 4e5 6e5 8e5 1e6

2

4

6

8

10

12

14

Figure 20.2.3 Average of τ to one million
In Figure 20.2.3 we have our graph of averages of τ(n) versus n, out to

one million. Certainly this looks akin to some fractional exponent function.
On the other hand, it seems to grow more slowly than

√
x = x1/2, our initial

estimate in the interact, so if it is, the exponent must be pretty small. (If you
are familiar with semilog or log-log plots and are willing to look up how to do
them in Sage, see Exercise 20.6.7 and then try to plot this on those axes.)

20.2.2 Heuristics for tau
We’ll start with a heuristic, going right back to the sieve of Eratosthenes.

In that algorithm (6.2.3), we proved that in order to test whether n is prime,
you just have to check all numbers up through

√
n. This is because any divisor√

n < d < n implies the existence of a divisor n
d such that

1 =
n

n
<

n

d
<

n√
n
=

√
n.

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 346

So the absolute most number of divisors possible (for a given n) is if every
number d less than

√
n was a divisor, and then all the n

d >
√
n you get were

also divisors.
This is a silly idea beyond such small n, but let’s go with it anyway. Even

if all those divisors were there, you would have τ(n) = 2 ⌊
√
n⌋ ≤ 2

√
n so that

τ(n) is O(
√
n).

Example 20.2.4 For n = 24 this idea is actually true. We can line these up in
pairs as (1, 24), (2, 12), (3, 8), (4, 6), and that gives 2 ·

⌊√
24
⌋
= 8 total divisors.

□
That estimate is very important! It means we can get a sense of a first

bound on the average value of τ . At the very least we have that

1

n

n∑
k=1

τ(k) ≤ 1

n

n∑
k=1

2
√
k.

20.2.3 Using sums to get closer
Let’s rewrite this inequality in a more suggestive form by noting k = n(k/n):

1

n

n∑
k=1

τ(k) ≤
n∑

k=1

1

n
2
√
n(k/n).

This form looks an awful lot like a Riemann sum with x = k/n and ∆x = 1
n .

To review, recall writing a Riemann sum for
∫ 1

0
x2 dx in the form

1

n

(
1

n

)2

+
1

n

(
2

n

)2

+ · · ·+ 1

n

(n
n

)2
.

(If you need a calculus refresher, there are several great free calculus texts in
the American Institute of Mathematics list of approved textbooks.)

Doing the same type of summation for the function 2
√
nx would give

n∑
k=1

1

n
2
√
n(k/n) ≈

∫ 1

0

2
√
nxdx = 2

√
n

∫ 1

0

√
x dx =

4

3

√
n.

That certainly suggests that the average of τ might be O(
√
n) with C = 4/3.

To make this rigorous, we will need to make a slight change of point of view
in order to ensure it will be viewed as a left-hand sum of an increasing function
(and hence the Riemann sum is less than the actual value of the integral).

Namely, consider that

1

n

n∑
k=1

2
√
k =

n−1∑
k=0

(
1

n

)
2
√
k + 1 =

n−1∑
k=0

(
1

n

)
2
√
n(k/n) + 1 ≤

∫ 1

0

2
√
nx+ 1 dx

This integral evaluates to

4

3

√
n

[(
1 +

1

n

)3/2

−
(
1

n

)3/2
]

.

The big extra factor on the right can be shown to be decreasing as a function
of n (using derivatives), and hence is always less than 2 for positive integers
(plug in n = 1 to see), so the entire expression will always be less than 8

3

√
n.

https://activecalculus.org/single/sec-4-2-Riemann.html
http://aimath.org/textbooks/approved-textbooks/

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 347

Thus one can write

1

n

n∑
k=1

τ(k) ≤ 1

n

n∑
k=1

2
√
k ≤ 8

3

√
n

so that the average value is bounded by a constant times
√
n and is hence

O(
√
n). This implies, perhaps, that the average number of divisors goes steadily

up! (If so, it guarantees that the trend is, on the whole, concave down.)

20.2.4 But Big-Oh isn’t enough
However, we might also want to know what the average value of τ is. The
preceding subsections only tell us what it’s less than! In the next interact, it
seems that it’s hard to find the “right” value of C so that the average value
would be the same order as

√
n.

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += sigma(i,0)
ls.append ((i,out/i))

return ls

P = line(L(1000000))

@interact
def _(a=.02,n=2):

show(P + plot(a*x^(1/n), (x,1 ,10^6),
color= ' red ' ,linestyle= ' -- '))

pretty_print(html(r"Blue␣is␣the␣average␣value␣of␣
τ"))

pretty_print(html("Red␣is␣$%sx^{1/%s}$"%(a,n)))

Try x1/3 in the interact; it doesn’t seem to make matters any better.
In fact, one can show that τ(n) = O(3

√
n) as well. Here are the steps one

might take. We make fleshing out the details Exercise 20.6.10 (adapted from
[E.4.5, Section 3.5]):

• First, note that τ is multiplicative.

• For a given prime p, note that τ (px) = x + 1 grows much more slowly
than (px)

1/3
= px/3, which is exponential in x.

◦ What value do each of these have at x = 0?
◦ Take derivatives of both functions at x = 0 to show that the growth

statement is definitely true for p ≥ 23.
◦ Show that for each prime p less than 23 there is an xp such that the

growth statement is true after xp.

• Put these pieces of information together to show that τ is O
(
x1/3

)
.

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 348

20.3 Digging Deeper and Finding Limits
So where does the number of divisors function go? To answer this, we will look
at a very different graph!

The fundamental observation we will use is that τ(n) is precisely the same
as the number of positive pairs of integers (x, y) such that xy = n. Before
going on, spend some time convincing yourself of this.

Then, if we translate xy = n to a graph of y = n/x and (x, y) to a lattice
point, we get the visualization2 in Figure 20.3.1.

0 2 4 6 8 10
0

2

4

6

8

10 n
=

2

n= 3

n= 8

Figure 20.3.1 Lattice points and hyperbolas

20.3.1 Moving toward a proof
To be more in line with our previous notation, we will say that τ(n) is exactly
given by the number of positive integer points

(
d, n

d

)
with the property that

dn
d = n. Now we can interpret

∑n
k=1 τ(k) as the number of lattice points on

or under the hyperbola y = n/x.
This is a completely different way of thinking of the divisor function! We

can see it for various sizes in the interact below.

@interact
def _(n=(15, list(range (2,50)))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
P += plot (2*g,(x,0,n+1), linestyle="--")
if n>7:

P += plot((n-5)*g,(x,0,n+1),linestyle="--")
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]

2See texts such as [E.4.5] or [E.2.11], though probably I like [E.2.11, Figure 15-5] best as
inspiration since it includes several of the curves at once as I do here.

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 349

P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
P += points(lattice_pts , rgbcolor = (0,0,1),pointsize =20)
show(P,ymax=viewsize ,aspect_ratio =1)

So what we will do is try to look at the lattice points as approximating an
area! Just like with the sum of squares function (recall Subsection 18.2.3 and
Section 20.1), we will exploit the geometry. For each lattice point involved in∑n

k=1 τ(k), we put a unit square to the lower right3.

2 4 6 8

2

4

6

8

Figure 20.3.2 Lattice points, hyperbolas, and squares
In examining this graph, we will interpret the lattice points as two different

sums.

• We can think of it as
∑n

k=1 τ(k) – adding up the lattice points along each
hyperbola.

• We can think of it as
∑n

j=1

⌊
n
j

⌋
, or adding up the lattice points in each

vertical column.

The area of the squares can then be thought of as another Riemann-type sum,
similar to our summation of τ .

It should be clear that the area, an estimate for the sum, is “about”∫ n

1

n

x
dx = n log(x)

∣∣∣∣n
1

= n log(n)− n log(1) = n log(n)

where the logarithm is the ‘natural’ one.

Definition 20.3.3 Throughout this text we use log(n) to mean the natural
logarithm with base e. ♢

3See [E.4.5, Figure 4.3].

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 350

Why is this integral actually a good estimate, though? The answer is in the
error!

1 2 3 4 5 6 7 8 9
0

2

4

6

8

Figure 20.3.4 Lattice points, squares, and error
Look at the shaded difference between the area under the curve (which is

n log(n)) and the area of the red squares (which is the sum of all the τ values).
• All the areas where the red squares are above the hyperbola add up to

less than n, because they are all 1 in width or less, and do not intersect
vertically (they stack, as it were).

• Similarly, all the areas where the hyperbola is higher add up to less
than n, because they are all 1 in height or less, and are horizontally
non-intersecting.

(Actually, we would expect they would cancel quite a bit … and they do, as we
will see. We don’t need that yet.)

I find these points to be easier to see if you try a few different options in
the interact below.

@interact
def _(n=(8,list(range (2,25)))):

viewsize=n+1
g(x)=1/x
P1 = Graphics ()
P1 += plot(n*g,(x,0,n), ymax=viewsize , aspect_ratio =1,

xmin=0, xmax=n+1)
P1 += plot(piecewise ([[(j,j+1),floor(n/j)] for j in

[1..n -1]]), (x,1,n), fill=n/x,fillalpha =.3,
linestyle= ' ') + plot(1,(x,n,n+1),fill=True ,
fillalpha =.3, linestyle= ' ')

P2 = plot(n*g,(x,0,n+1), ymax=viewsize , aspect_ratio =1)

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 351

P2 += plot(n*g,(x,1,n),fill=True ,fillalpha =.3)
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P1 += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
P2 += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
P1 += points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
P2 += points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
squares =[line ([[k,l],[k+1,l],[k+1,l-1],[k,l-1],[k,l]],

rgbcolor =(1,0,0)) for [k,l] in lattice_pts]
for object in squares:

P1 += object
P2 += object

show(graphics_array ([P1,P2]))
pretty_print(html(r"Error␣between␣sum␣of␣$\tau(n)$␣up␣

through␣$%s$,␣and␣$%s\log(%s)$"%(n,n,n)))

We can summarize this discussion in the following three implications.
Fact 20.3.5

• The error
∑n

k=1 τ(k) − n log(n) is a positive real number less than n
minus a (different positive real) number less than n.

• So the error is certainly O(n) (less than some multiple of n as n gets
huge).

• So, the error in the average is less than some constant as n gets huge!
I.e.,

1

n

n∑
k=1

τ(k)− log(n) = O(1)

(Recall we use log(n) to mean the natural logarithm.)
We can verify this graphically by plotting the average value against log(n).

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 352

20 40 60 80 100

1

2

3

4

Average of τ(n)
log(n)

2000 4000 6000 8000 10000

2

4

6

8

Average of τ(n)
log(n)

Figure 20.3.6 Average of τ versus log
Lookin’ good! There does seem to be some predictable error. What might

it be? Drawing inspiration from [E.4.5, Figure 4.5], we plot it:

20 40 60 80 100

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500 3000

0.2

0.4

0.6

0.8

1

Figure 20.3.7 Error of τ versus log
Observe Figure 20.3.7. Keeping x = 0 in view, the error seems to be

somewhat less than 0.2, although it clearly bounces around a bit. The long-
term value seems to settle roughly between 0.15 and 0.16, as x gets large. So
will this give us something more precise?

20.3.2 Getting a handle on error
To answer this, we will try one more geometric trick.

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 353

2 4 6 8

2

4

6

8

Figure 20.3.8 Lattice points, τ , and symmetry
Notice we have now divided the lattice points up into three parts, two of

which are ‘the same’:

• The ones on the line y = x.

• The lattice points above the line and below the hyperbola.

• The lattice points to the right of the line and below the hyperbola.

Try it interactively, and perhaps see if there is a formula for how many of each
type there are.

@interact
def _(n=(8,list(range (2,25)))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
P += plot (2*g,(x,0,n+1),linestyle="--")
if n>7:

P += plot((n-5)*g,(x,0,n+1),linestyle="--")
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts , rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
P += points(lattice_pts , rgbcolor = (0,0,1),pointsize =20)
P += plot(x,(x,0,viewsize),

linestyle="--",rgbcolor =(0,0,0))
show(P,ymax=viewsize ,aspect_ratio =1)

Now let’s count. First, there are exactly ⌊
√
n⌋ ≤

√
n points on the line. At

each integer y-value d up to y =
√
n, there are are ⌊n/d⌋ − d to the right of

the line and below the hyperbola. Analogously, at each integer x-value d up

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 354

to x =
√
n, there are are ⌊n/d⌋ − d points to the left of the line and below the

hyperbola. (These numbers are all nonnegative since d ≤
√
n.)

Combine these computations as sums over the divisors d less than n and
remove the floors to get an easier approximation:
n∑

k=1

τ(k) = ⌊
√
n⌋+

∑
d≤

√
n

(⌊n/d⌋−d)+
∑

d≤
√
n

(⌊n/d⌋−d) ≤
√
n+2

∑
d≤

√
n

(n/d−d).

Because the floor of any number is less than the number itself by at most one
for each d, the total error gained using this inequality is at most the number
of terms in the sum, or 1 + 2

√
n = O(

√
n).

Next we rewrite this using the formula for the sum of the first ℓ integers
(Example 1.2.4), using ℓ = ⌊

√
n⌋ and subsuming all the

√
n pieces:

n∑
k=1

τ(k) ≤ 2n
∑

d≤
√
n

1

d
− 2

∑
d≤

√
n

d+O
(√

n
)

= 2n
∑

d≤
√
n

1

d
− 2

(
⌊
√
n⌋(⌊

√
n⌋+ 1)

2

)
+O(

√
n).

Once4 n ≥ 4, the difference between n
2 and

(
⌊
√
n⌋(⌊

√
n⌋+1)

2

)
is once again far

less in size than O (
√
n) (and negative to boot), so using some of the work in

Exercise Group 20.6.1–5 we finally get that
n∑

k=1

τ(k) = 2n
∑

d≤
√
n

1

d
− n+O

(√
n
)
=⇒

1

n

n∑
k=1

τ(k) = 2
∑

d≤
√
n

1

d
− 1 +O

(
1/

√
n
)

.

20.3.3 The end of the story
We’re almost at the end of the story! It’s been a while since we explored the
long-term average of τ in Subsection 20.2.1; at that point, you likely convinced
yourself that log(n) is close to the average value of τ .

So now we just need to relate the sum 2
∑

d≤
√
n

1
d − 1 to log(n). I wish to

emphasize just how small the error term O(1/
√
n) is!

4These computations are just one of the many places where George Jennings caught subtle
inaccuracy or incompleteness in wording, which has improved the text greatly.

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 355

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

Figure 20.3.9 Difference between harmonic series and log
Figure 20.3.9 shows the exact difference between

∑m−1
k=1

1
k and log(m). Clearly,

even as m → ∞, the total area is simply the sum of a bunch of nearly-triangles
with width exactly one and no intersection of height (again this idea), with
total height less than 1. So the difference between

∑m−1
k=1

1
k and log(m) will be

finite as m → ∞.
This number is very important! First of all, it clearly is related to the

archetypal divergent series from calculus, the harmonic series
∞∑
k=1

1

k

However, this constant has taken on a life of its own.
Definition 20.3.10 The number γ, or the Euler-Mascheroni constant, is de-
fined by

γ = lim
m→∞

(
m−1∑
k=1

1

k
− log(m)

)
♢

Remark 20.3.11 You have almost certainly never heard of this number, but
it is very important. There is even an entire book, by Julian Havil [E.4.15]
about this number. It’s a pretty good book, in fact!

Among other crazy properties, γ is the derivative of a generalization of the
factorial function, called Gamma (Γ). I am not making this up.

Most baffling of all, γ is not known to be either rational or irrational. Maybe
you will solve this mystery?

Consider the area corresponding to γ compared to its finite approximations.
Notice that the “missing” part of the area (since we can’t actually view all the
way out to infinity) must be less than 1/m, since it will be the part lower than
all the pieces we can see in the graphic for any given m. So γ is within O(1/m)

of any given finite approximation
∑m−1

k=1
1
k − log(m). Adapted to our context,

we have ∑
d≤

√
n

1

d
= log

(√
n
)
+ γ +O

(
1/
√
n
)

.

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 356

Now we put it all together! We know from above that

1

n

n∑
k=1

τ(k) = 2
∑

d≤
√
n

1

d
− 1 +O

(
1/

√
n
)

.

Further, we can substitute for
∑

d≤
√
n

1
d as in our discussion of γ, and then

take advantage of the log fact that 2 log(z) = log
(
z2
)
. Then we get

1

n

n∑
k=1

τ(k) = log(n) + (2γ − 1) +O
(
1/

√
n
)

.

That is exactly the asymptote and type of error that I have depicted in Fig-
ure 20.3.12!

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.6
2γ− 1
2γ− 1 + 1

2
√
x

0 500 1000 1500 2000

0.2

0.3

0.4

0.5

0.6
2γ− 1
2γ− 1 + 1

2
√
x

Figure 20.3.12 Reassessing the error in τ

It’s not hard to prove that the average of τ grows at least as fast as log(n),
so this is a fairly sharp result. (It’s even possible to show that the error in
the average is O(1/ 3

√
x), but is not O(1/ 4

√
x); once again see [E.7.25] for much

more information.)

20.4 Heuristics for the Sum of Divisors

20.4.1 Numbers instead of points
Could this type of argument conceivably be used for σ = σ1?

The answer is yes! Consider the following rewrite of the sum of sigmas,
which are themselves the sum of divisors:∑

n≤x

σ(n) =
∑
n≤x

∑
q|n

q =
∑

q,d such that qd≤x

q =
∑
d≤x

∑
q≤ x

d

q.

We have changed from a sum of sums of divisors (which might not be con-
secutive, and makes σ annoying to compute) to a sum of sums of consecutive
integers5.

5Most proofs of the ideas in this section are quite terse, which was inappropriate for my
students; I have drawn from [E.4.5, Chapter 4.4], [E.2.9, Section 22], and [E.4.6, Theorem
3.4].

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 357

We can think about this graphically again. Instead of comparing points on
a hyperbola with points in columns or rows, though, we will compare numbers
at points on a hyperbola with numbers at points in rows. We can think of it
as summing up a weighted set of points. Consider Figure 20.4.1.

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

1

1

1

1

1

1

2

2

2

3

3

4 5 6

Figure 20.4.1 Labeled lattice points for σ

Example 20.4.2 In Figure 20.4.1 we see (by following hyperbolas xy = n, up
through the graphed one xy = 6) that

6∑
k=1

σ(k) = 1 + (1 + 2) + (1 + 3) + (1 + 2 + 4) + (1 + 5) + (1 + 2 + 3 + 6).

Then we can rearrange this to go along rows instead as

(1 + 2 + 3 + 4 + 5 + 6) + (1 + 2 + 3) + (1 + 2) + 1 + 1 + 1,

which means we can think of it as a sum of sums from 1 to the length of each
row. □

Use the following interact to confirm that each row is,
⌊
n
k

⌋
in length, as

with τ .

@interact
def _(n=(6,list(range (2,50)))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 358

for thing in lattice_pts:
P += text(thing[0],thing ,rgbcolor =(0,0,0))

show(P,ymax=viewsize ,aspect_ratio =1)

Let’s take stock of the graphic and σ.

• Each row has
⌊
n
k

⌋
integers.

• Adding up the first j integers (from one to j) has formula

j(j + 1)

2
=

j2

2
+

j

2

(recall again Example 1.2.4).

• The most wrong ⌊j⌋(⌊j⌋+1)
2 can be from j(j+1)

2 is j + 1 = O(j) (this is
simple algebra).

If we combine all this information, we get∑
n≤x

σ(n) =
∑
d≤x

∑
q≤ x

d

q =
∑
d≤x

[
1

2

⌊x
d

⌋2
+

1

2

⌊x
d

⌋]

=
∑
d≤x

[
1

2

(x
d

)2
+

1

2

(x
d

)
+O

(x
d

)]
.

20.4.2 Order calculations and more
But this is actually possible to analyze! First, we perform some order calcula-
tions.

We already saw that
∑

d≤x
1
d = log(x) +O(1), so

∑
d≤x

1

2

(x
d

)
=

1

2
O(x log(x)) = O(x log(x)).

(See Exercise 20.6.15.) Also,
∑

d≤x O
(
x
d

)
must be

O

x
∑
d≤x

1

d

 = O(x log(x)).

Next, let’s get more information about
∑

d≤x

[
1
2

(
x
d

)2]. Recall that the
(convergent) improper integral

∫∞
x

dy
y2 approximates

∑
d>x

1
d2 .

Since both converge, and by the same pictures as above, the error is cer-
tainly O(1/x2). Then I can rewrite things as

∑
d≤x

1

d2
=

∞∑
d=1

1

d2
−
∑
d>x

1

d2

=

∞∑
d=1

1

d2
−
∫ ∞

x

1

y2
dy +O(1/x2) =

∞∑
d=1

(
1

d2

)
− 1

x
+O(1/x2).

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 359

Thus the whole crazy double sum can be approximated as follows, quite
accurately: ∑

n≤x

σ(n) =
x2

2

∑
d≤x

(
1

d2

)
+

x

2

∑
d≤x

1

d
+O(x log(x))

=
x2

2

(∞∑
d=1

(
1

d2

)
− 1

x
+O(1/x2)

)
+O(x log(x))

=
x2

2

∞∑
d=1

(
1

d2

)
− x

2
+O(x log(x)).

And the average value of σ must be this divided by x, namely

1

x

∑
n≤x

σ(n) is x

2

∞∑
d=1

1

d2
+O(log(x)).

Since we know that the series converges, this means the average value of σ
increases quite linearly, with an error (at most) increasing logarithmically! This
might be a shock – that one could actually get something fairly accurate like
this relatively easily using calculus ideas like improper integrals and (implicitly)
the integral test for infinite series. But check out the data!

2 4 6 8 10

1

2

3

4

5

6

7

8

200 400 600 800 1000

100

200

300

400

500

600

700

800

Figure 20.4.3 Plotting average of σ for n = 10, 1000

Of course, one might ask what the slope of this line is! It would have to be
m = 1

2

∑∞
d=1

1
d2 . Have you seen this constant before? (In a calculus class, you

should have proved that it does converge.)

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 360

20 40 60 80 100

10

20

30

40

50

60

70

80

Figure 20.4.4 Comparing average of σ with a line
Finding a summation of this was the so-called Basel problem, which Euler

solved and showed is π2

6 . So the slope is π2

12 . Amazing! (See also Sec-
tion 24.4.)

20.5 Looking Ahead
Let’s recap.

• The average value of τ(n) was log(n) + 2γ − 1.

• The average value of σ(n) was
(
1
2

∑∞
d=1

1
d2

)
n.

◦ Because of Euler’s amazing solution to the Basel problem, we know
that

∞∑
d=1

1

d2
=

π2

6

so the constant in question is π2

12 .

We end with the question of yet another average value. What might happen
with the ϕ function? You can try out various ideas in the following interact.
Note that a is the coefficient and n is the power of a model axn.

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += euler_phi(i)
ls.append ((i,out/i))

return ls

LS = L(1000)
P = line(LS)
@interact
def _(a=.01,n=2,view =(50 ,[25 ,50 ,..500])):

show(P+plot(a*x^n,0,view , color= ' black ' ,linestyle="--"),
xmin=1,xmax=view , ymax=LS[view][1])

http://en.wikipedia.org/wiki/Basel_problem

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 361

pretty_print(html(r"Blue␣is␣the␣average␣value␣of␣
ϕ"))

pretty_print(html("Red␣is␣$%s␣x^{%s}$"%(latex(a),n)))

Hopefully you started finding something interesting. However, we aren’t
ready to prove anything about this case quite – yet!

20.6 Exercises

We start with some exercises testing understanding of Landau notation.
1. Show that σ(n) is O(n2) (compare to the sum of all integers up to n).
2. Use the formula for the sum of the first n perfect squares (often en-

countered in a Transition to Proof course or when first doing definite
integrals in Calculus) and the previous exercise to show that the av-
erage value of σ(n) is Big Oh of n2. (This can be loosey-goosey.)

3. Show that if g and h are both O(f) for some f , then g + h is also
O(f).

4. Show that if g is O(f) for some f , then if b > 0 we have that g is
O(bf) and bg is O(f).

5. Show that if g is O(f) for some f and if f(x) ≤ h(x) for x large
enough, then g is also O(h).

6. Find a formula for the average value of the u and N functions (up through
n), where u(n) = 1 for all n and N(n) = n for all n (recall Defini-
tion 19.2.9).

7. As suggested at the end of Subsection 20.2.1, if you are familiar with
semilog and log-log plots and how to use them to find possible formulas,
look up how to use them in Sage and modify the examples to explore
whether the average value of τ could be a power function, exponential, or
something else.

8. At the start of Subsection 20.2.1 we plot the cumulative average value of
τ . Note that because

τ(5) = 2 =
τ(1) + τ(2) + τ(3) + τ(4)

4

this value is the same for n = 4, 5. Is there ever an n > 5 where this
happens again?

9. Finish off all calculus details in the argument in Subsection 20.2.3.
10. Finish the details of the proof that τ is O(3

√
x)

11. Show that τ(n) is not O(1). (Hint: that means there is no constant C
such that τ(n) ≤ C always.)

12. Suppose that for an arithmetic function f it is known that 1
n

∑n
k=1 f(k) =

O(1); why is it still possible that f(n) is not O(1)?
13. Show that τ(n) is not O(log(n)), even though it is known that 1

n

∑n
k=1 τ(k) =

O(log(n)). (Hint: look at numbers of the form 6k, and compare τ of these
to any given multiple of the natural logarithm using calculus.)

14. Finish all calculus details of the proof of σ’s average size in Section 20.4.
15. Finish the details of the first computation of Big Oh in Subsection 20.4.2.

CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR 362

16. Find absolute bounds for ϕ(n) (simple polynomial or log formulas in terms
of n).

17. Use data, graphs, whatever to conjecture what type of growth the average
value of ϕ has up to n. Is it logarithmic, linear, quadratic, exponential,
something else? Bonus if you find a coefficient for the growth!

Summary: Long-Term Function Behavior
Here, we investigate – and prove – what the long-term behavior of several
important functions is.

1. The first section reviews our computation of the sum-of-squares function
from the point of view of error, including the important concept of Big
Oh.

2. In Section 20.2 we begin examining the τ function from this perspective,
though without conclusive results.

3. In Section 20.3 we then carefully use geometry and limits to show that
the average value grows logarithmically, and can even give fairly accurate
information about the error.

4. Section 20.4 does the same thing, but now for the sum of divisors function.

5. Finally, Section 20.5 gives a short summary and then asks (but does not
answer) the same questions for ϕ.

The Exercises focus mainly on understanding Landau notation and filling in
details of the proofs.

Chapter 21

The Prime Counting Func-
tion

Up to now, our examples of arithmetic functions f(n) have been clearly based
on some property of the number n itself, such as its divisors, the numbers
coprime to it, and so forth.

However, there is one function of prime importance which, as far as we yet
know, bears no particularly obvious relation to the input – yet in the aggregate
bears amazing relations to the input! It is the most mysterious one of all.

Definition 21.0.1 The prime counting function π(x) is defined, for all
positive numbers x, as the number of primes less than or equal to x, denoted

π(x) = #{p ≤ x | p is prime }.

♢

21.1 First Steps
It might seem at first there is very little we can say about this function; after
all, thus far we’ve seen no particular pattern in the primes themselves (other
than that they are nearly all odd). You may wish to see what the function
looks like to confirm this sense. It is a not particularly smoothly increasing
function with no upper bound (recall Theorem 6.2.1).

0 20 40 60 80 100

5

10

15

20

25
π(x)

Figure 21.1.1 Plot of prime pi function (plot(prime_pi,2,100))

363

CHAPTER 21. THE PRIME COUNTING FUNCTION 364

Sage note 21.1.2 Syntax for counting primes. The syntax for this
function is prime_pi(n).

21.1.1 A funky formula
Given the skepticism of the paragraphs so far this chapter, you may be sur-
prised to learn there are exact formulas for this function, as well as for the nth
prime. The following formula (for n > 3) is one of my favorites (see the Ap-
pendix of the exhaustive Hardy and Wright, [E.2.2], and also Exercise 21.5.1):

π(n) = −1 +

n∑
j=3

(
(j − 2)!− j

⌊
(j − 2)!

j

⌋)
.

Can you see why this is not useful in practice? So there is plenty left for us to
discuss.

On the other hand, it works! We can confirm this by using the following
code (non-interactive).

def primeish(n):
if n==1:

return 0
elif n==2:

return 1
elif n==3:

return 2
else:

result = -1
fact = 1
for j in range(3,n+1):

fact = fact*(j-2)
result += (fact - j*floor(fact/j))

return result

import math
def plotprimeish(n):

n = int(math.floor(n))
return primeish(n)

pretty_print(html("The␣number␣of␣primes␣up␣to␣20000␣this␣
formula␣gives␣is␣$%s$"%primeish (20000)))

pretty_print(html("The␣real␣function␣in␣Sage␣gives␣
$%s$"%prime_pi (20000)))

pretty_print(html("And␣let ' s␣compare␣plots:"))
plot(lambda x:plotprimeish(x), (x,2 ,100)) +

plot(prime_pi ,2,100, color= ' black ')

Sage note 21.1.3 Cython. It’s possible to significantly speed up many such
computations by converting to Cython, a way to take Python/Sage and turn
it into the much-faster compiled language C. For a project, try to speed this
function up using Cython!
Sage note 21.1.4 Not all algorithms are equal. Don’t forget that just
because an algorithm works, doesn’t guarantee it will be useful in practice!
However, it’s often useful to get something correct first, and only then try to
optimize.

http://mathworld.wolfram.com/PrimeFormulas.html
http://mathworld.wolfram.com/PrimeFormulas.html
http://www.cython.org

CHAPTER 21. THE PRIME COUNTING FUNCTION 365

21.1.2 A very low bound
On a more computationally feasible note, one can find a very rudimentary
(lower) bound on this function. Recall that unadorned logarithms are the
natural log.
Fact 21.1.5 There are at least⌊

log(log(x)/ log(2))
log(2)

⌋
+ 1 = ⌊log2(log2(x))⌋+ 1

primes less than or equal to x.
Proof. In Saidak’s proof [E.7.22] of the infinitude of the primes, he constructs
the sequence

2, (2) + 1, (2(2 + 1)) + 1, (2(2 + 1)(2(2 + 1) + 1)) + 1, . . .

Then he shows, similarly to Euclid’s proof, that there is at least one new prime
divisor in each element of the sequence (even if not necessarily a larger one).
So the nth prime can be no bigger than the nth term of this sequence. (See
Exercise 21.5.3.)

By induction, we see that this term (and hence the nth prime) is less than
or equal to 22

n−1 .

• The case n = 1 is clear, since the first prime is 2.

• The nth term is the previous terms multiplied together, plus 1, which by
induction is less than

22
0

22
1

· · · 22
n−2

+ 1 = 21+2+4+···+2n−2

+ 1 = 22
n−1−1 + 1 ≤ 22

n−1

(this uses the same type of technique as in Subsection 4.5.2).

So when π(x) = n, the nth term in the sequence is 22
π(x)−1 , which can’t be

less than n itself (the nth prime is certainly at least n). If we rewrite this as
22

π(x)−1 ≥ n, we can take two logs to get

log(log(22
π(x)−1

)) = log(2π(x)−1 log(2)) = (π(x)−1) log(2)+log(log(2)) ≥ log(log(n)).

This yields the given statement1, with the floor function accounting for the
fact that π takes only integer values. ■

As you can see below, this is not a very useful bound, considering there
are actually 25 primes less than 100, not three! Each of the inequalities in
the proof was in a sense ‘wasteful’. Note also that the floor function is only
necessary for x < 5.

1See also [E.2.1, Corollaries 2.7 and 2.8] for this proof, but connected more directly to
Euclid’s proof of the infinitude of primes.

https://primes.utm.edu/notes/proofs/infinite/Saidak.html

CHAPTER 21. THE PRIME COUNTING FUNCTION 366

0 20 40 60 80 100

5

10

15

20

25
log of log plus 1
prime pi

Figure 21.1.6 Plot of prime pi versus log log

21.1.3 Knowledge from nowhere
Finally, although it may not seem evident, you should know that it is not
necessary to actually find all the first n primes (even of a particular type) to
compute how many there are, at least not always.

Definition 21.1.7 Let ϕ(n, a) to be the number of positive integers less than
n which are not divisible by any of the first a primes. (We can label these
primes p1 through pa for convenience.) ♢

Try Exercise 21.5.2 to see how this function works.
It is possible to develop the recursive formula

ϕ(n, a) = ϕ(n, a− 1)− ϕ

(⌊
n

pa

⌋
, a− 1

)
which allows use of a type of inductive argument to compute ϕ(n, a) without
having to use many computational resources. It is then not too hard to use a
counting argument to prove that

π(n) = π(
√
n) + ϕ(n, π(

√
n))− 1.

This is the typical way to calculate π in software without actually counting
primes, and with some speedups it can be quite efficient.

Interestingly, this is also how one finds the nth prime2. You use an approx-
imation to the nth prime like n log(n) and then check values of π(n) near that
point to see where the value changes, which should lead you exactly to the
prime you seek. (Recall Sage note 4.2.1 about %time when using the following
cell.)

%time nth_prime (10^7)

2The paper [E.7.36] has a result too delightful not to share, that there is a specific irrational
number close to three which can generate the nth prime. It is of course just as useful as
Subsection 21.1.1, since we have to determine the digits of this constant experimentally!

CHAPTER 21. THE PRIME COUNTING FUNCTION 367

21.2 Some History
Somewhat remarkably, given how long humans have been studying primes, the
first people we know of compiling substantial data about them are Gauss and
Legendre, around 1800.

Legendre first tried to estimate π(x). He said that π(x) ≈ x
log(x)−A , where

he fudges the constant A ≈ 1.08366. More precisely, he claimed that π(x) is
asymptotic to this function.

Definition 21.2.1 We say that two functions f(x) and g(x) are asymptotic
to each other when

lim
x→∞

f(x)

g(x)
= 1

Essentially, in the long run these functions get as close to each other as you
like, on a percentage basis. ♢

Here is another way to think about this. Think of the average chance
of a number of size x being prime; Legendre guessed this was of the form

1
log(x)−A . This general notion was based on a lot of data he had collected, and
the constant A he finally settled on seemed to give the best match to the data.
(See also Figure 21.2.4 below.)

Not long after this, Gauss came up with a solution that was more elegant
– and despite not being ‘fitted’ to the data in the same way, was correct. And
he didn’t tell anyone for over fifty years! Gauss’ conjecture was that

lim
x→∞

π(x)

x/ log(x) = 1

Or, using our new term, π(x) is asymptotic to x
log(x) .

21.2.1 The first really accurate estimate and errors
In fact, Gauss makes this estimate even more precise. Here is the general idea.

First, reinterpret the proportion as suggesting that 1/ log(x) integers near
x are prime. If we do that, then we can think of 1/ log(x) as a probability
density function. What do we do with such functions? We integrate the
function to get the cumulative amount!

That is, we should expect that π(x) ≈
∫ x

2
dt

log(t) or equivalently

lim
x→∞

π(x)∫ x

2
dt

log(t)
= 1.

Definition 21.2.2 We give the name logarithmic integral3 to the (conver-
gent) integral Li(x) =

∫ x

2
dt

log(t) . ♢
That a function as rigid as π would be close to an integral function should

sound like it has a 100% probability of being crazy! But Gauss was no fool,
and the accuracy is astounding.

3There is also a definition for this integral
∫ x
0

dt
log(t) , which has a properly defined value

(beyond the level of this course) despite the integrand going to negative infinity. The form
used for the prime counting function is traditionally the one with lower bound 2, for reasons
clear in the rest of this text. There are no divergence issues at stake.

CHAPTER 21. THE PRIME COUNTING FUNCTION 368

20 40 60 80 100

5

10

15

20

25

π(x)
x/log(x)
Li(x)

Figure 21.2.3 Plot of prime pi function versus log integral

@interact
def _(n=100):

show(plot(prime_pi ,3,n,color= ' black ' ,
legend_label=r ' $\pi(x)$ ') +
plot(x/log(x),3,n,color= ' red ' ,
legend_label=r ' $x/\log(x)$ ') + plot(Li ,3,n,
color= ' green ' , legend_label= ' $Li(x)$ '))

Notice how much closer Li(x) is to the actual value of π(x) than the
x/ log(x) estimate. It’s usually closer by several orders of magnitude, as you
can try verifying numerically in the following interact.

@interact
def _(n=[100 ,1000 ,1000000 ,1000000000]):

P = prime_pi(n)
pretty_print(html(r"$\pi(%s)=%s$"%(n,prime_pi(n))))
pretty_print(html(r"The␣error␣with␣$%s/\log(%s)$␣is␣

$\approx␣%s$"%(n,n,P-(n/log(n)).n())))
pretty_print(html(r"The␣error␣with␣$Li(%s)$␣is␣$\approx␣

%s$"%(n,(P-Li(n)).n())))

CHAPTER 21. THE PRIME COUNTING FUNCTION 369

Figure 21.2.4 Excerpt from Gauss’ letter
to Encke on prime numbers

One of the brilliant aspects of
the internet is how much eas-
ier it is to find source ma-
terial of such things. Cour-
tesy of the digitization center
at the State and University Li-
brary of Göttingen (the univer-
sity where Gauss worked), you
can see a scan of the actual let-
ter in question4.
In Figure 21.2.4, Gauss is com-
paring his calculations of the
number of primes with his for-
mula, as well as those of his
correspondent and Legendre.
Whether or not you can read
Gauss’ (quite legible) German,
you can still note how in the
last set of numbers he is essen-
tially doing data science on Le-
gendre’s formula, with A as the
modeling variable, using more
and more detailed training sets!

21.2.2 Exploring Li

Can we try for some more analysis? Since we saw that x/ log(x) didn’t seem
to be as good an approximation, we’ll leave it out for now. This graphic show
two representative 1000-wide stretches, and the following interact allows you
to explore more of them.

4Thanks to Martin Liebetruth for helpful correspondence; another helpful article on this,
by Yuri Tschinkel, is in the Bulletin of the AMS.

https://gdz.sub.uni-goettingen.de
https://gdz.sub.uni-goettingen.de
https://gauss.adw-goe.de/handle/gauss/199
https://gauss.adw-goe.de/handle/gauss/199
https://www.ams.org/journals/bull/2006-43-01/S0273-0979-05-01096-7/S0273-0979-05-01096-7.pdf

CHAPTER 21. THE PRIME COUNTING FUNCTION 370

1000 1200 1400 1600 1800 2000

180

200

220

240

260

280

300
π(x)
Li(x)

2000 2200 2400 2600 2800 3000
300

320

340

360

380

400

420

440
π(x)
Li(x)

Figure 21.2.5 Compare prime pi and Li over two ranges

@interact
def _(n=1000):

P = plot(prime_pi ,3,n,
color= ' black ' ,legend_label=r ' $\pi(x)$ ')

P += plot(Li ,3,n, color= ' green ' ,legend_label= ' $Li(x)$ ')
show(P, xmin=max(n-1000 ,0), ymin=prime_pi(max(n-1000 ,0)))

Based on this evidence, it seems clear that Li(x), even if it’s a good ap-
proximation, should not ever be less than the actual count of primes. And yet,
the English mathematician John Littlewood proved the following result.

Fact 21.2.6 For any number x, there is an x′ > x such that

Li(x′) < π(x′).
Historical remark 21.2.7 Skewes’ Number. As remarkable as this seems,
Littlewood’s student Stanley Skewes proved the following even more amazing
fact:

The first time this happens is no higher than

1010
1010

1000

.

In Skewes’ original paper, this bound had a 34 instead of 1000 in the last expo-
nent5, but that result relied upon a special assumption (the so-called Riemann
Hypothesis, see Chapter 25). Both of these bounds are known as Skewes’
number.

We have known since the 1960’s that there is an actual run of integers where
Li is smaller starting near 1.53×101165. Today we know that the first time this
“switch” happens is no higher than 1.4 × 10316 (see [E.7.23] and a follow-up
from 2015 for the state of the art). Of course, we haven’t even gotten remotely
near those bounds with computers, although computation is necessary to help
obtain these bounds.

5Actually, the exact bound was ee
e79 .

https://oeis.org/wiki/Skewes_number
https://oeis.org/wiki/Skewes_number
https://youtu.be/Lihh_lMmcDw?t=498

CHAPTER 21. THE PRIME COUNTING FUNCTION 371

This uncertainty sounds terrible, but actually is good news. After all, if π
beats Li once in a while, then Li must be a great approximation indeed! So,
just how great is it?

21.3 The Prime Number Theorem
It turns out Li(x) is a pretty good approximation indeed.

21.3.1 Stating the theorem
Theorem 21.3.1 Prime Number Theorem. If π(x) is the number of
primes p ≤ x, then

lim
x→∞

π(x)

Li(x)
= 1.

In fact, the first bound also has this property (see Exercise 21.5.6):

lim
x→∞

π(x)

x/ log(x) = 1.

Historical remark 21.3.2 The Prime Number Theorem. The Prime
Number Theorem was conjectured by Bernhard Riemann in his only paper on
number theory. It was proved about 100 years after the initial investigations
of Gauss by the French and Belgian mathematicians Jacques Hadamard and
Charles-Jean de la Vallée-Poussin. They made good use of the analytic methods
we are slowly approaching.

Any proof is this is well beyond the bounds of this text. One of several
modern versions is in the analytic number theory text [E.4.6] by Apostol; see
also [E.2.9]. Additionally, as a series of exercises (!) in that book, one can also
explore a proof6 due to Selberg and Erdős that is “elementary”, in the sense
of not using complex-valued integrals. There is a well-known exposition of a
very similar proof in [E.2.2], and another in [E.4.4].

Later, we’ll see that many better approximations to π(x) exist which come
out of this sort of thinking. Notice how the approximations in the next inter-
active cell take the logarithmic integral and subtract various correction factors
in the attempt to get closer.

@interact
def _(n=100):

P = plot(prime_pi ,3,n,
color= ' black ' ,legend_label=r ' $\pi(x)$ ')

P += plot(Li ,3,n, color= ' green ' ,legend_label= ' $Li(x)$ ')
P += plot(lambda x: Li(x) - sqrt(prime_pi(x)),3,n,

color= ' orange ' , legend_label=r ' $Li(x)-\sqrt{\pi(x)}$ ')
P += plot(lambda x: Li(x) - .5*Li(sqrt(x)),3,n,

color= ' red ' ,
legend_label=r ' $Li(x)-\frac {1}{2} Li(\sqrt{x})$ ')

P += plot(lambda x: Li(x) - sqrt(x)/log(x),3,n,
color= ' purple ' ,
legend_label=r ' $Li(x)-\sqrt{x}/\log(x)$ ')

show(P, xmin=max(n-1000 ,0), ymin=prime_pi(max(n-1000 ,0)))

6There is an interesting controversy behind this proof which is worth looking up. Selberg
was an early Fields medalist, and Erdős was one of the most prolific mathematicians of all
time.

CHAPTER 21. THE PRIME COUNTING FUNCTION 372

21.3.2 Chebyshev's contributions
Although we cannot explore the theorem itself in depth, we can try to understand
some of the intermediate steps. This is a good place to highlight the contributions
of the great Russian mathematician Chebyshev.
Historical remark 21.3.3 Pafnuty Chebyshev. Chebyshev (Чебышёв)
was a prominent Russian mathematician of the mid-19th century, but his
most important legacy may be bringing the native Russian tradition into
international prominence. (Recall that Euler worked in Russia for much of his
life, but alongside other Swiss scientists.) In addition to fundamental advances
in this type of number theory, he worked on the theory of orthogonal polynomials
which is used so much today in applications, and probability theory underlying
modern statistics.

He was the first person to prove a conjecture known (even today!) as
Bertrand's Postulate, after the French mathematician who first proposed it.
Theorem 21.3.4 Bertrand's Postulate. For any integer n ≥ 2, there is a
prime between n and 2n.
Proof. It is actually quite possible to prove this at the level we have reached,
but any proof is long enough to take us a little far afield. ■

Try testing it yourself below!

@interact
def _(n=25):

pretty_print(html("$%s$␣is␣a␣prime␣between␣$%s$␣and␣
$%s$"%(next_prime(n),n,2*n)))

On a related note, although this proves you can't have too long of stretches
without prime numbers, you can certainly have arbitrary stretches of composite
numbers. See Exercise 21.5.7 for an easy example. Paul Nahin, in [E.7.13],
describes the following more clever example, a cute result of Louis A. Graham.
Fact 21.3.5 Multiply all the primes p from 2 to n+1 to get N =

∏
2≤p≤n+1 p.

Then we have n consecutive composite integers from N − (n+ 1) to N − 2.
Proof. We know that N is a multiple of a prime factor7 of each number x from
2 to n+ 1. For each such x and prime factor px, Proposition 1.2.8 guarantees
that N − x is also a multiple of px. ■

Try testing it yourself below!

@interact
def _(n=5):

N = prod(prime_range(n+2))
pretty_print(html("The␣numbers␣between␣$%s$␣and␣$%s$␣are␣

all␣composite"%(N-(n+1),N-2)))
L = [N-(n+1)..N-2]
print ([N-(n+1)..N-2])
pretty_print(html("have␣factors"))
print ([l.divisors ()[1] for l in L])
pretty_print(html("and␣there␣are␣$%s$␣of␣them"%(len(L))))

More immediately germane to our task of looking at π(x) and its value,
Chebyshev proved the first substantial result on the way to the Prime Number
Theorem, validating Legendre's intuition.

7In fact, all such factors.

http://www-history.mcs.st-and.ac.uk/Biographies/Chebyshev.html
https://en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

CHAPTER 21. THE PRIME COUNTING FUNCTION 373

Theorem 21.3.6 Big Oh of Prime Pi. It is true both that:
• π(x) is O

(
x

log(x)

)
and

• x
log(x) is O(π(x)).

Interestingly, this is not the same as the Prime Number Theorem; see
Exercise 21.5.8.

What we will show here is the gist of a smaller piece of this theorem.
Proposition 21.3.7 For all positive x, π(x) < 2 x

log(x) .
Proof. We follow Stopple's presentation in Section 5.2 of [E.4.5] closely in
sketching out most of a proof of this below; see also [E.2.11] for a very similar
proof. It is a little longer than some of our other proofs. It uses some very
basic combinatorial ideas and calculus facts, however, so it is a great example
of several parts of mathematics coming together.

First, it's not hard to verify this for x < 1000, as the following figure
demonstrates.

200 400 600 800 1000

50

100

150

200

250

π(x)
2x/log(x)

Figure 21.3.8 Plot of prime pi function versus 2x/ log(x)
Now we'll proceed by induction, in an unusual way. We'll assume it is true

for n, and prove it is true for 2n. This needs a little massaging for odd numbers,
but is a legitimate induction method.

With this in mind, we first assume that π(n) < 2 n
log(n) . Now what?

Below, in Lemma 21.3.9 we look at the product of all the primes (if any)
between n and 2n, which we write as

P =
∏

n<p<2n

p.

In that result some combinatorial thinking leads to the following estimate:

nπ(2n)−π(n) < P ≤ (2n)!

n!n!
< 22n

These bounds show that P is between a certain power of n and a certain power
of 2.

Now we will manipulate this to get the final result. Begin by taking log of
both ends to get

(π(2n)− π(n)) log(n) < 2n log(2)

CHAPTER 21. THE PRIME COUNTING FUNCTION 374

Now divide out and isolate to get

π(2n) <
2n log(2)

log(n) + π(n) < log(2) 2n

log(n) + 2
n

log(n) =
log(2) + 1

log(n) 2n.

In Exercise 21.5.10 you will show that, as long as n > 1000, we have the
inequality

log(2) + 1

log(n) <
2

log(2) + log(n) =
2

log(2n)
Now we can put it all together to see that

π(2n) <
log(2) + 1

log(n) 2n < 2
2n

log(2n) ,

which is exactly what the proposition would predict.
To rescue this for 2n+1, we need another calculus comparison. First, from

above we have

π(2n+ 1) ≤ π(2n) + 1 <
log(2) + 1

log(n) 2n+ 1.

Since 2 2n+1
log(2n+1) >

4n
log(2n+1) , it will suffice then to show

(2 + 2 log(2)) n

log(n) + 1 <
4n

log(2n+ 1)
.

Since n > 1000 and n
log(n) is increasing, 1

n/ log(n) < 0.007, so

(2 + 2 log(2)) n

log(n) + 1 < (2 + 2 log(2) + 0.007)
n

log(n) < 3.394
n

log(n) .

To finish it suffices to show that in this range

3.394
n

log(n) <
4n

log(2n+ 1)
.

Showing the last (purely calculus) steps is Exercise 21.5.11. ■
Lemma 21.3.9 Let the product of all the primes between n and 2n be written

P =
∏

n<p<2n

p

Then we can bound it as

nπ(2n)−π(n) < P ≤ (2n)!

n!n!
< 22n

Proof. Think of all the primes in question. On the one hand, each of these
primes p is greater than n, and there are π(2n)− π(n) of them. So

nπ(2n)−π(n) < P .

On the other hand, each of these primes is greater than n but they are all
in the list of numbers from n to 2n, so their product divides

(2n) · (2n− 1) · (2n− 2) · · · (n+ 1)

n · (n− 1) · (n− 2) · · · 1

CHAPTER 21. THE PRIME COUNTING FUNCTION 375

That is to say P is a factor of a binomial coefficient

P | (2n) · (2n− 1) · (2n− 2) · · · (n+ 1)

n · (n− 1) · (n− 2) · · · 1
=

(2n)!

n!n!

and in particular,
P ≤ (2n)!

n!n!

We are now ready for the conceptual key of the proof, which uses the
combinatorial leitmotif of counting things in two different way. Namely, we
reinterpret this factorial fraction as the number of ways to choose n things
from a collection of 2n things! And the number of ways to choose n things
is certainly less than the number of ways to pick any old collection out of 2n
things, which is 22n (because you either pick it or you don't).

Since we showed both bounds, this concludes the proof. ■

21.4 A Slice of the Prime Number Theorem
We end this chapter with a substantial piece of a real proof in the direction
of the Prime Number Theorem, courtesy of a function also first introduced
by Chebyshev. The argument is dense, but requires nothing beyond calculus
and a willingness to allow a lot of algebraic and integral manipulation for the
purposes of estimation. (See a good calculus text to review integral concepts.)

21.4.1 Functions to know
First, we’ll review the main function. Think of the prime counting function π
as a so-called step function, where every time you hit a new prime you add
1. The picture reminds you of this attribute.

20 40 60 80 100

5

10

15

20

25

Figure 21.4.1 Plot of prime pi function
Let’s define a new function in that spirit. Instead of adding 1 each time x

hits a prime, we will add log(p) (recall that this is the natural logarithm) each
time we hit a prime p. Of course, this value we add will get bigger as p gets
bigger.

https://activecalculus.org/single/C-4.html

CHAPTER 21. THE PRIME COUNTING FUNCTION 376

20 40 60 80 100

10

20

30

40

50

60

70

80

Figure 21.4.2 Plot of Chebyshev theta function

Definition 21.4.3 We call the function given by this formula Chebyshev’s
theta function:

Θ(x) =
∑
p≤x

log(p).

♢
Sage note 21.4.4 Python can do math too. We include an interactive
version so you can see the code.

def theta(x): return sum(math.log(p) for p in
prime_range (1,floor(x)+1))

@interact
def _(n=100):

show(plot(theta ,1,n))

The syntax math.log is referring to Python’s builtin calculation of the nat-
ural logarithm, accessible in the math module. This is sometimes faster and
easier to use than Sage’s more powerful capabilities, because if you put an
integer in Sage’s logarithm, it will normally not approximate it. All we want
here is an easy approximation, so this should be faster.

Earlier in this chapter we noted that the Prime Number Theorem is logically
equivalent to the limit limx→∞

π(x)
x/ log(x) = 1. There are actually many such

logical equivalences. One of them involves Θ:

lim
x→∞

Θ(x)

x
= 1

This is certainly numerically plausible. Here is a plot of both limits, along with
the constant function 1.

https://docs.python.org/2.7/library/math.html

CHAPTER 21. THE PRIME COUNTING FUNCTION 377

2e4 4e4 6e4 8e4 1e5

0.2

0.4

0.6

0.8

1

Chebyshev Theta limit
Prime Number Theorem limit

Figure 21.4.5 Plot of Chebyshev theta function limits
In the interact below, there is an option for an Li versus x/log(x) version

of the theorem. Note how much better the prime number theorem limit looks
with the Li version.

def theta(x): return sum(math.log(p) for p in
prime_range (1,floor(x)+1))

def pnt(n): return prime_pi(n)*log(n)/n
def pntli(n): return prime_pi(n)/Li(n)
def thox(n): return theta(n)/n
@interact
def _(end =100000 , PNT=[' log ' , ' Li ']):

P = plot(1,(1,end),color= ' black ')
P += plot(thox ,(1,end),legend_label= ' Chebyshev␣Theta ')
if PNT == "log":

P +=
plot(pnt ,(1,end),color= ' red ' ,legend_label= ' Prime␣
Number␣Theorem ')

if PNT == "Li":
P +=

plot(pntli ,(1,end),color= ' red ' ,legend_label= ' Prime␣
Number␣Theorem ')

show(P)

As usual, proving such things completely is beyond the level of this course,
but we can prove the following partial implication.
Proposition 21.4.6 If the Prime Number Theorem is true, then it is also true
that Θ(x)/x approaches 1.
Proof. The rest of this section is the proof. ■

21.4.2 Getting a formula with sleights of hand
In order to prove this implication, we will first need a formula telling us more
about Θ(x). Our strategy8 will be to first turn Θ(x) into an even more hope-
lessly complicated sum, but then use calculus trickily to get something usable
by summing up integrals.

In order to do this, we need two subsidiary functions. First, recall the
notation ⌊x⌋ for the greatest integer less than x. Secondly:

8This is an expansion of the terse approach taken in [E.4.6, Theorems 4.3 and 4.4].

CHAPTER 21. THE PRIME COUNTING FUNCTION 378

Definition 21.4.7 We let a(n) be the prime number indicator function defined
by

a(n) =

{
1 if n is prime
0 otherwise

.

Another way to say this is

a(n) = π(n)− π(n− 1).

♢

5 10 15 20
0

1

2

3

4

5

6

7

8
π(n)
a(n)

Figure 21.4.8 Prime π versus a indicator function
One can get the indicator function just by writing prime_pi(x)-prime_pi(x-1).
For convenience we write m = ⌊x⌋. Then we can rewrite these step func-

tions as weighted sums of a(n):

π(x) =

m∑
n=1

a(n) and Θ(x) =

m∑
n=1

a(n) log(n).

Our goal is to rearrange Θ to be a sum of terms involving π. First we turn
Θ into a difference of sums by rearranging (and using log(1) = 0):

Θ(x) =
∑

1≤n≤x

a(n) log(n) =
m∑

n=1

a(n) log(n) =

m∑
n=2

[π(n)− π(n− 1)] log(n) =
m∑

n=2

π(n) log(n)−
m−1∑
n=1

π(n) log(n+ 1)

This difference of sums can be combined into a single sum, with just two left
over terms9.

Θ(x) =

m−1∑
n=2

π(n)[log(n)− log(n+ 1)] + π(m) log(m)− π(1) log(2).

To continue, we will rewrite almost all of this as single integral. We use a
few key facts:

• The difference which appears in the the sum in the immediately preceding
Θ formula can be considered as an integral, − (log(n+ 1)− log(n)) =

−
∫ n+1

n
dt
t .

9Students a little more familiar with calculus may want to compare this process to inte-
gration by parts, but in a discrete context, sometimes called Abel summation.

CHAPTER 21. THE PRIME COUNTING FUNCTION 379

• We have that π(x) is constant on the interval [⌊x⌋, x], and in particular
on any given interval [n, n+1), so it may be factored out of any integral
from n to n+ 1.

• We can rearrange and add sums and integrals as usual.

• Note that π(1) = 0, so the second extra term is zero.

This yields the following rewrite.

Θ(x) = −
m−1∑
n=2

[
π(n)

∫ n+1

n

dt

t

]
+ π(m) log(m)

= −
m−1∑
n=2

[
π(n)

∫ n+1

n

dt

t

]
+ π(m) log(m)− π(x) log(x) + π(x) log(x)

= −
∫ m

2

π(t)dt

t
+ π(x) log(x)−

∫ x

m

π(t)dt

t
= π(x) log(x)−

∫ x

2

π(t)dt

t
.

Now we have a formula for Θ which will allow us to prove something.

21.4.3 Finish the proof

We can divide the formula Θ(x) = π(x) log(x)−
∫ x

2
π(t)dt

t by x:

Θ(x)

x
=

π(x) log(x)
x

−
∫ x

2
π(t)
t dt

x
.

Given that the Prime Number Theorem says that limx→∞ of the fraction with
π(x) in it is 1, proving that limx→∞

Θ(x)
x is also 1 is equivalent to proving

lim
x→∞

1

x

∫ x

2

π(t)

t
dt = 0.

Now, the Prime Number Theorem also implies that π(t)
t and 1

log(t) are
asymptotic (recall Definition 21.2.1), so that their averaging integrals

1

x

∫ x

2

π(t)

t
dt and 1

x

∫ x

2

dt

log(t)

clearly are also asymptotic.
This reduces our proof to showing that the average value of 1/ log(t) tends

to zero. Since integrals have a graphical interpretation, we now use the follow-
ing graph of the integral limit to finish the proof!

Consider that one possible upper sum for the integral of 1/ log(t) between 2
and 9 is the area of the two rectangles shown below, one with area 1

log(2) (
√
9−2)

and the other with area 1
log(

√
9)
(9 −

√
9). (Of course

√
9 = 3 but this form is

more useful here.)

CHAPTER 21. THE PRIME COUNTING FUNCTION 380

2 4 6 8 10
0

0.5

1

1.5

2

Figure 21.4.9 Estimating integrals for proof
In general, the same argument should hold, so a possible overestimate of∫ x

2
dt/ log(t) is

1

log(2)(
√
x− 2) +

1

log(
√
x)

(x−
√
x)

and we want the limit as x → ∞ of 1
x times that quantity.

Now is the time to recklessly use logarithmic identities:

1

x

(
1

log(2)(
√
x− 2) +

1

log(
√
x)

(x−
√
x)

)
=

1

log(2)x1/2
− 2

x log(2) +
1

log(
√
x)

− 1

log(
√
x)x1/2

=
1

log(2)x1/2
− 2

x log(2) +
2

log(x) −
2

log(x)x1/2

This last expression has positive powers of x and their logs in the denominators,
so it pretty clearly goes to zero as x → ∞.

If the algebra doesn’t convince you, perhaps an interactive graph will. Be-
low, black is the overestimate to the integral and red is 1/x times the integral.

@interact
def _(top=(16,[n^2 for n in [2..10]])):

f(x)=1/log(x)
P=plot(f,1,top+1)
P += line ([(2 ,0) ,(2,f(2)),(math.sqrt(top),f(2)),

(math.sqrt(top) ,0)], rgbcolor= ' black ')
P += line ([(math.sqrt(top),f(math.sqrt(top))),

(top ,f(math.sqrt(top))),(top ,0)], rgbcolor= ' black ')
P +=

line ([(2 ,0) ,(2,f(2)) ,(2+(math.sqrt(top) -2)/top ,f(2)),
(2+(math.sqrt(top) -2)/top ,0)], rgbcolor= ' red ')

P += line ([(math.sqrt(top),f(math.sqrt(top))),
(math.sqrt(top)+(top -math.sqrt(top))/top ,
f(math.sqrt(top))), (math.sqrt(top) +
(top -math.sqrt(top))/top ,0)], rgbcolor= ' red ')

P.show(ymax =2)

The picture confirms our analytic proof that the limit of θ(x)
x is the same

as that of π(x)
x/ log(x) , which is what we desired!

CHAPTER 21. THE PRIME COUNTING FUNCTION 381

21.5 Exercises
1. Consider Wilson’s Theorem and consider what will happen to (j − 2)!

modulo primes and composites (this is Exercise 7.7.8). Use this to prove
the bizarre formula in Section 21.1.

2. Calculate ϕ(n, a) (recall Definition 21.1.7) for various composite n between
10 and 100 for a = 2, 3, 4 and compare to ϕ(n).

3. Without looking at any links, reconstruct the proof of the infinitude of
primes mentioned in the first paragraph of the proof of Fact 21.1.5.

4. Come up with two functions f(x) and g(x) that both go to infinity as
x → ∞, such that f(x) is always ahead of g(x), but f and g are asymptotic
(to each other).

5. Come up with two functions f(x) and g(x) that both go to infinity as x →
∞, but that switch the lead infinitely often and f and g are asymptotic.

6. Show that the two limits in the Prime Number Theorem are really equiv-
alent. That is, show that if limx→∞ π(x)/Li(x) = 1, then the other limit
with x/ log(x) is also 1, and vice versa.

7. Find an arbitrarily long sequence of consecutive composite numbers using
factorials.

8. Come up with two functions f(x) and g(x) such that f(x) is O(g(x)) and
g(x) is O(f(x)), but they are not asymptotic.

9. Use Proposition 21.3.7 to show that limx→∞ π(x)/x = 0.
10. Show that if n > 1000 then

log(2) + 1

log(n) <
2

log(2) + log(n) =
2

log(2n)

To do this, you should compare 2 log(n) and (log(2) + 1)(log(2) + log(n))
and their derivatives for n = 1000 and up, then divide the two expressions
appropriately. You will need to justify the calculus fact that if f(x0) >
g(x0) and f ′ > g′ for x ≥ x0, then f > g for x ≥ x0 as well. See any
calculus textbook for review of how derivatives work.

11. Verify that 3.394 n
log(n) < 4n

log(2n+1) for n > 1000. (See the previous prob-
lems; you will need to verify that the derivative of log(n)

log(2n+1) is positive in
that range.) Also confirm that n

log(n) is increasing .

Summary: The Prime Counting Function
Here, we harness the power of the Legendre symbol to find a deep correlation
between solutions of two seemingly unrelated congruences – a correlation that
enables us to tell very quickly whether any quadratic congruence has a solution!

1. Section 21.1 introduces the prime counting function π(x).

2. Section 21.2 gives some history and cool graphics to help suggest there
is some regularity in this behavior.

3. In the next section we state the Theorem 21.3.1, and show that π(x) is
O(x/ log(x)) in Proposition 21.3.7.

4. Then in Section 21.4 we see a small piece of the methods one might use
in proving the whole theorem.

https://activecalculus.org/single/C-1.html
https://activecalculus.org/single/C-1.html

CHAPTER 21. THE PRIME COUNTING FUNCTION 382

The Exercises help fill in details of the proofs and give experience thinking
about asymptotic behavior.

Chapter 22

More on Prime Numbers

This chapter serves two purposes. First, there are all kinds of interesting facts
ahout prime numbers, and this chapter collates some of the ones I personally
find amazing. What are your favorites?

Secondly, exploring the wonderful world of primes will start us heading back
toward other arithmetic functions, especially toward developing the language
we’ll need to explore π(x) more rigorously.

There are lots of resources beyond this for exploring primes! One interesting
resource is Numberphile’s YouTube channel for prime videos. Paulo Ribenboim
has several well-known books about them, such as The Little Book of Bigger
Primes [E.4.17].

But for usability, I have to mention one of the best web sites about primes.
This is the Prime Pages, hosted at the University of Tennessee, Martin. It’s just
amazingly full of useful information, but also quite user-friendly and usable for
people with a large variety of backgrounds. In particular, the ‘Top Twenty’s
Complete Index’ page has links to the top twenty of just about every prime
type you can imagine, a cornucopia of information. My personal favorite is the
prediction of when the first billion digit prime will surface.

22.1 Prime Races
One of Chebyshev’s more interesting observations was that our familiar cate-
gories of primes – the classes 4k + 1 and 4k + 3 – don’t always seem to have
the ‘same size’. Before moving on, try solving the next question by hand.
Question 22.1.1 How many primes of each type there are up to n = 10,
n = 20, and n = 50? Try making a table. □

You can try it by hand, or we can, as always, use computational power
below to try to see more. (We saw this computation in a different context way
back in Section 7.6.)

import itertools

@interact
def _(n=7):

L = itertools.zip_longest ([p for p in prime_range(n+1)
if p%4==1] ,[p for p in prime_range(n+1) if p%4==3])

L = [[' ' ,l[1]] if l[0] is None else l for l in L]
T = [[r ' $p\equiv␣1\text{␣(mod␣}4)$ ' ,r ' $p\equiv␣3\text{␣

383

http://bit.ly/primevids
http://primes.utm.edu/
http://primes.utm.edu/top20/index.php
http://primes.utm.edu/top20/index.php
http://primes.utm.edu/notes/by_year.html#3

CHAPTER 22. MORE ON PRIME NUMBERS 384

(mod␣}4)$ ']]
pretty_print(html(table(T+L,header_row=True ,

frame=True)))

@interact
def _(k=100):

p1 = 0
p3 = 0
for i in prime_range(k):

if i%4==1:
p1 += 1

if i%4==3:
p3 += 1

pretty_print(html("Up␣to␣$k=%s$,␣there␣are"%k))
pretty_print(html(r"%s␣primes␣$p\equiv␣1\text{␣(mod␣}4)$␣

and␣"%p1))
pretty_print(html(r"%s␣primes␣$p\equiv␣3\text{␣(mod␣

}4)$."%p3))

Question 22.1.2 Do you detect the bias Chebyshev did? Do you think it will
persist? □

22.1.1 Infinitude of types of primes
Of course, for this question to make sense, we need to make sure this ‘prime
race’ won’t suddenly run out of gas. We know there are infinitely many primes,
but what about each type of prime?
Fact 22.1.3 There are infinitely many primes congruent to 3 modulo 4 and
there are infinitely many primes congruent to 1 modulo 4.
Proof. See the following two Propositions 22.1.4 and 22.1.5. ■

It turns out that proving the first part of the proposition is nearly as easy
as proving the Infinitude of Primes. But the second part seems to requires
something equivalent to the idea of a square root of −1 existing modulo some
primes but not modulo others (recall Fact 16.1.2). These proofs are standard;
we follow the notation in [E.2.1].

Proposition 22.1.4 Infinitude of primes 3 (mod 4). There is no largest
prime congruent to 3 modulo 4.
Proof. We’ll prove this by contradiction. Suppose p1, p2, . . . , pk is the (finite)
set of all primes congruent to 3 modulo 4.

Form the product of all these primes, together with four; then subtract one
to let

m = 4p1p2 · · · pk − 1.

What are the prime divisors of this number?

• Clearly none of the pi can be a prime divisor, since m is congruent to −1
modulo all the pi.

• Since m is not even, it is also not divisible by a power of 2.

• If m were a product only of primes congruent to 1 modulo 4, then it
would have to be 1 modulo 4 itself (since any product of 1s is 1).

CHAPTER 22. MORE ON PRIME NUMBERS 385

• That is false, so there must be a prime congruent to 3 modulo 4 which
divides it, which cannot be on the original list of pi.

This contradicts our assumption of having the full set of such primes, so
that assumption must have been wrong. ■
Proposition 22.1.5 Infinitude of primes 1 mod 4. There is no largest
prime congruent to 1 modulo 4.
Proof. As usual, suppose there are finitely many primes pi which are congruent
to 1 modulo 4. Let’s form the modified product

m = (2p1p2 . . . pk)
2 + 1.

What are its prime divisors?
For the same reasons as in the proof of Proposition 22.1.4, it is clear that

m is odd and that it is also not divisible by any of the pi. Initially, one might
assume one could also modify that argument to show that at least one of the
primes p which divides m is not 3 modulo 4.

Unfortunately, as 32 is congruent to 1 modulo 4, this argument fails. How-
ever, we can use an indirect argument.

For any prime divisor p of m and for x = 2p1p2 . . . pk, we have m = x2+1 ≡
0 (mod p). So −1 is a quadratic residue modulo p, by definition of quadratic
residues! Because of Fact 13.3.2, this can only happen if p ≡ 1 (mod 4).
(Compare with Theorem 13.5.5, where even powers of primes of the form 4k+3
were allowed; here, they are completely prohibited.)

Since this p wouldn’t be one of the pi, its existence contradicts the assump-
tion that we already had all such primes. ■

22.1.2 Back to bias
Now that we know we will always have primes of both kinds, let’s return to
the prime race. From what we’ve seen previously, it looks like the 4k+ 3-type
primes will always stay ahead. But that’s not quite right. The next Sage cell
computes one place where they fall behind.

def prime_race_up_to_n(n):
p1 = 0
p3 = 0
for i in prime_range(n):

if i%4==1:
p1 += 1

if i%4==3:
p3 += 1

pretty_print(html(r"Up␣to␣$n=%s$,␣there␣are:%s␣
primes␣$p\equiv␣1\text{␣(mod␣}4)$%s␣primes␣
$p\equiv␣3\text{␣(mod␣}4)$."%(n,p1,p3)))

@interact
def _(n=[26860 ,26862 ,26864 ,26880]):

prime_race_up_to_n(n)

There are other n for which we have such an ‘inversion’ as well, and it can
be fun to look for them. The next such time is over six hundred thousand, for
a little while; after that, you have to look at n over twelve million. Indeed,
there is a theorem that there are infinitely many times where this will happen,
and that the ‘wrong’ team will get ahead by at least a specified amount.

CHAPTER 22. MORE ON PRIME NUMBERS 386

Fact 22.1.6 No matter how far out you go, there exists an n where the 4k+1
team is ahead at n by

1

2

√
n

log(n) log(log(log(n))).

You may not be surprised to learn that this result is also due to Littlewood,
the early contributor in studying the race between π and Li back in Fact 21.2.6.
That his result is highly nontrivial is seen in the following graphic, which plots
the difference between the ‘teams’ up to the first place the 4k+1 type is ahead.

5000 10000 15000 20000 25000

-30

-25

-20

-15

-10

-5

5

Figure 22.1.7 Difference in prime teams up through n = 26862

Try the interactive version to see what happens beyond that.

@interact
def _(n=26862):

L = []
p1 = 0
p3 = 0
for i in prime_range(n):

if i%4==1:
p1 += 1
L.append ([i,p1-p3])

if i%4==3:
p3 += 1
L.append ([i,p1-p3])

P = plot (1/2* sqrt(x)/log(x)*log(log(log(x))),
(x,10,n+10))

P += plot_step_function(L)
show(P)

Even though we can see the difference surge to become positive a few times,
it seems hopeless for the 4k + 1 team to ever get ahead by as much as the
extremely slowly growing log(log(log(x))). But it does.

22.1.3 Other prime races
There are many races we can check out, and mathematicians have. (Indeed,
this section is indebted to the excellent expository article [E.7.3], which has a
host of recent references.) What is the pattern here, for modulus eight?

CHAPTER 22. MORE ON PRIME NUMBERS 387

20 40 60 80 100

1

2

3

4

5

6

7
1 (mod 8)
3 (mod 8)
5 (mod 8)
7 (mod 8)

Figure 22.1.8 Difference in prime teams modulo eight
It might be a little tough to see, so feel free to use the interactive version

below if you are online.

@interact
def _(n=100):

p1,p3,p5 ,p7=0,0,0,0
L1 = []
L3 = []
L5 = []
L7 = []
for i in prime_range(n):

if i%8==1:
p1 += 1
L1.append ([i,p1])

elif i%8==3:
p3 += 1
L3.append ([i,p3])

elif i%8==5:
p5 += 1
L5.append ([i,p5])

elif i%8==7:
p7 += 1
L7.append ([i,p7])

L1.append ([n,p1])
L3.append ([n,p3])
L5.append ([n,p5])
L7.append ([n,p7])
P = Graphics ()
P += plot_step_function(L1,color= ' red ' ,legend_label= ' 1␣

(mod␣8) ')
P += plot_step_function(L3,color= ' green ' ,legend_label= ' 3␣

(mod␣8) ')
P += plot_step_function(L5,color= ' blue ' ,legend_label= ' 5␣

(mod␣8) ')
P +=

plot_step_function(L7,color= ' orange ' ,legend_label= ' 7␣
(mod␣8) ')

CHAPTER 22. MORE ON PRIME NUMBERS 388

show(P,xmin=max(0,n -1000) ,ymin=max(0,L1[-1][1] -100))

It turns out there are several types of theorems/conjectures one can make
about such races. The key observation (which we will not explain here) is that
the ‘slow’ teams are the residue classes [a] such that nk + a can be a perfect
square (see Exercise 22.4.2). In the two examples we showed graphically, only
4k + 1 and 8k + 1, respectively, are possible perfect (odd) squares, and they
are the ‘slow’ teams. See also Exercise 22.4.3.

Nonetheless, for any a, b coprime to each other and to n,

lim
x→∞

Number of p ≡ a (mod n) less than x

Number of p ≡ b (mod n) less than x
= 1

so the teams can’t get too far away from each other, at least not on a per-
centage basis. The more specific result that the numerator and denominator
are both asymptotic to Li(x)

ϕ(n) is often called the prime number theorem for
arithmetic progressions, and it was also proved by Vallée-Poussin. (See also
Subsection 22.2.1.)

With such a close connection to Chapter 21, at this point you won’t be
surprised to learn that, even though some teams are usually ahead, that just
like with π and Li, each team does get ahead in the race infinitely often. But if
you “count right” (and assume some other technical but important hypotheses),
the proportion of the time the ‘wrong’ teams are ahead in the race is very small.
(See the article [E.7.3] for more details.)

22.2 Sequences and Primes

22.2.1 Primes in sequences
There is an interesting question implicit in the prime races. To legitimize
doing the first prime race, we proved that there are infinitely many primes of
the forms 4k + 1 and 4k + 3. However, we then proceeded to do prime races
for several other such forms. Is it legitimate to do so?

The answer is yes, as proved in this major theorem of 1837 that introduced
limiting and calculus methods to the study of number theory.
Theorem 22.2.1 Dirichlet’s Theorem on Primes in an Arithmetic
Progression. If gcd(a, b) = 1, then there are infinitely many primes of the
form ax+ b for x an integer.
Proof. The proof of this theorem is far beyond the level of this text, but [E.4.6]
is a standard resource for this. ■

That is, ax+b defines a progression of numbers separated always by a, and
this theorem says there are infinitely many primes in any such progression that
makes sense in terms of relative primeness. It is a weak version of a prime race;
it just says that it makes sense to do them, though (as we saw) there is much
more information one can glean from them.

@interact
def _(a=8,b=7,n=100):

if gcd(a,b)!=1:
pretty_print(html("Oops!␣␣The␣progression␣won ' t␣have␣

many␣primes␣if"))
pretty_print(html("a␣and␣b␣share␣a␣common␣

factor!"))
else:

CHAPTER 22. MORE ON PRIME NUMBERS 389

pretty_print(html("Primes␣of␣the␣form␣$%sx+%s$␣up␣to␣
$%s$:"%(a,b,n)))

for x in prime_range(n):
if x%a==b:

print(x)

We have already proved this for a = 4. It is easy to prove for a = 2! (See
Exercise 22.4.4.)

It is also possible to prove the theorem for b = 1, or b = −1, without devel-
oping much bigger tools. In the article [E.7.1] a lot of factoring and expanding
is used, and a much more recent article by Xianzu Lin [E.7.7] is similarly el-
ementary; see also [E.2.16, Theorem 5.3.4]. One can even prove Dirichlet’s
theorem without Dirichlet’s methods for any b such that b2 ≡ 1(mod a), but
doing so involves some high-level details about polynomial factorization (see
Murty and Thain’s paper for details).

Historical remark 22.2.2 Lejeune Dirichlet. Johann Peter Gustav Leje-
une Dirichlet, as his name suggests, was from a world where ethnicity and state
borders were not necessarily the same. He was born into a part of Germany
occupied by Napoleon, whose defeat sent it back to Prussia; as a young man,
he studied and worked in Paris, but spent most of his professional career in
Prussia (including Berlin and Göttingen).

In addition to the theorem in this section, Dirichlet made major contribu-
tions to the solution of Fermat’s Last Theorem and introduced Dirichlet Series.
He also worked in fluid dynamics and trigonometric series; it was in the lat-
ter research that he introduced functions that are nowhere continuous, which
eventually were determined to not be integrable under the definitions then
available. Naturally, this paper was written in French, in a German journal.

22.2.2 Sequences in primes
We can also look at the opposite question. Instead of considering whether
primes exist in a given arithmetic progression, are there arithmetic progressions
made of solely of primes?

Question 22.2.3 Can you get a (finite) sequence of the form

ak + b, k = 0, 1, 2, 3, . . . n

where all entries are prime? □
It’s easy to find short arithmetic progressions in the primes. We say such

a progression has length n+ 1 in the above notation.
• 3, 5, 7 is an arithmetic progression of length 3, where a = 2.

• 41, 47, 53, and 59 is an arithmetic progression of length 4, where a = 6.
Longer ones get harder to find. Can you find a progression of length 5?

(This is Exercise 22.4.5; there is a small one where the differences and starting
number are both less than 10. See also Exercise 22.4.6.)

@interact
def _(p = prime_range (200), n=110):

L = [p,p+n,..p+4*n]
for z in L:

if is_prime(z):
print(z)

https://projecteuclid.org/download/pdf_1/euclid.facm/1229442627

CHAPTER 22. MORE ON PRIME NUMBERS 390

else:
print(factor(z))
break

Fact 22.2.4 There is such a sequence of length 10 starting at 199, with differ-
ences of 210.
Question 22.2.5 Can find arbitrarily long such sequences in the primes? □

Once again, the answer is yes! This is a theorem of Ben Green and Terry
Tao, which was a significant piece of Tao’s 2006 Fields Medal (though he prob-
ably would have won it even without this, remarkable as it may seem). How
might one prove this? That might seem mysterious, so we give the gist of an
approach.

Remember how there seem to be fewer primes the further out we go, even
in an arithmetic subsequence (e.g. prime mod 4 or mod 8)? That isn’t a
coincidence. There is a technical way to measure this:

lim
n→∞

π(n)

n
= 0.

This follows from Chebyshev’s estimate in Theorem 21.3.6, and is called having
zero density. We can try estimating this for π with specific numbers:

• π(100)/100 = 1/4 = 0.25

• π(200)/200 = 0.23

• π(1000)/1000 = 0.168, or under 17%.

• π(1000000)/1000000 ≈ 0.0785, or under 8%.

Now, if you have a collection of numbers which has positive density (i.e.
the limit is positive, not zero), it is a theorem from 1974 (by Endre Szemerédi)
that you can get arithmetic progressions of arbitrary length in such sets. Sadly,
even our data suggests the primes are indeed approaching zero density.

But Green and Tao managed to show this type of method still works for
the primes! You can’t get arithmetic progressions in just any old set with
zero density; but somehow, although there are not many primes, there are just
enough for things to work.

If you are interested in the current status of really long sequences, see the
primerecords.dk website. The first example of length 27 was found recently,
on September 23, 2019; evaluate the following cell to see the whole thing.

difference =81292139*2*3*5*7*11*13*17*19*23
start =224584605939537911
for n in [0..26]:

print(start+n*difference ,is_prime(start+n*difference))

224584605939537911 True
...
696112717486210091 True

There are also only ten known 26-length sequences, as of this writing (2020),
and there are no known 28-length sequences (though they must exist, by the
Green/Tao theorem). They must even obey the following ridiculous bound
(published in a followup to the original paper).

http://primerecords.dk/aprecords.htm
http://primerecords.dk/aprecords.htm

CHAPTER 22. MORE ON PRIME NUMBERS 391

Fact 22.2.6 A sequence of length k must occur before

22
22

22
2100k

How do people find such lists? For that, we need a new notation.
Definition 22.2.7 For a prime p, we call the primorial the number

p# =
∏

q≤p, q prime
q

where the “p sharp” or “p hash”1 denotes p primorial. ♢
Armed with primorials, one usually finds such lists by the following method.

• First, for some fixed p, compute a large set of primes of the form a·p#+1,
keeping track of the a values in question.

• Next, find arithmetic progressions among the values of a from your list
(not the values of a · p# + 1).

• If you find a bunch of a values in a progression of the form k+ ℓ ·n, then
you’ve also found a progression of primes of the form (k·p#+1)+(ℓ·p#)n.

If you want to, you can even sign up to find a length 27 sequence at the
PrimeGrid distributed search!

22.3 Types of Primes
There are many types of primes we have encountered up to this point. For
instance:

• Germain (Subsection 11.6.4)

• Mersenne (Subsection 12.1.3)

• repunit (Exercise 6.6.1)

Notice that for many of these types, we don’t know if there are finitely many
or not! Are there any conjectures for how often certain types of primes might
appear?

22.3.1 Twin primes
Consider primes in an arithmetic progression ax + b. Can one say anything
about the constants involved in these progressions? Since b is pretty arbitrary,
we would focus on a. Here are some natural questions along these lines.
Question 22.3.1 Consider the following for small values of a.

• Find some primes that look like 2x+b for some b and several consecutive
x. How many x in a row can you do?

• How about for 3x+ b?

• What about 4x+ b?

• Are the primes you get in these cases ever consecutive?

□
1Officially, this should be called an octothorp(e).

http://www.primegrid.com/forum_thread.php?id=7022
http://www.primegrid.com/forum_thread.php?id=7022

CHAPTER 22. MORE ON PRIME NUMBERS 392

Hopefully it’s pretty clear that you can’t do every possible combination of
b and a, nor can every such progression go on indefinitely! Why?

Thinking about this and the Sieve of Eratosthenes led the French mathe-
matician Alphonse de Polignac to the following.
Conjecture 22.3.2 Polignac’s Conjecture. Every even number is the
difference between consecutive primes in infinitely many ways.

We have no proof of this. In fact, even the most basic case of Polignac’s
conjecture is one of the most celebrated open questions in number theory – cel-
ebrated enough that well-known comedian Stephen Colbert interviewed Fields
medalist Tao about it.
Conjecture 22.3.3 Twin prime conjecture. There are infinitely many
consecutive odd prime numbers.
Definition 22.3.4 Pairs of primes p and q such that p+2 = q are called twin
primes. ♢

There are lots of twin primes. The following cell computes twin prime pairs,
numbered by which twin prime pair it is. The pair 17 and 19 is the fourth pair,
for example.

def twin_primes_upto(n):
v = prime_range(n+1)
L = []
counter = 0
for i in range(len(v) -1):

if v[i+1]-v[i]==2:
counter += 1
L.append ((v[i],v[i+1], counter))

return L

twin_primes_upto (100)

[(3, 5, 1),
(5, 7, 2),
(11, 13, 3),
(17, 19, 4),
(29, 31, 5),
(41, 43, 6),
(59, 61, 7),
(71, 73, 8)]

We can use similar searching to try to see whether there are enough that
there are infinitely many such pairs. Here are two sample graphics.

http://www.cc.com/video-clips/6wtwlg/the-colbert-report-terence-tao
http://www.cc.com/video-clips/6wtwlg/the-colbert-report-terence-tao

CHAPTER 22. MORE ON PRIME NUMBERS 393

2000 4000 6000 8000 10000

50

100

150

200
twin prime
C2x/log(x)
C2Li2(x)

2e5 4e5 6e5 8e5 1e6

1000

2000

3000

4000

5000

6000

7000

8000 twin prime
C2x/log(x)
C2Li2(x)

Figure 22.3.5 Estimating number of twin primes through n = 10000 and
n = 1000000

You can see in the preceding graphic that it’s certainly possible to approxi-
mate the twin prime counting function in a similar way to how we approximated
the prime counting function π. There is a mysterious constant C2 I’ve used; it
will be explained below.

22.3.2 Heuristics for twin primes
To explain how to get to twin primes, there is a nice little rule of thumb; see
e.g. [E.4.5] for what follows. Even though we definitely do not have a proof,
we can still give you a good idea of how these ideas come about.

First, one might want to estimate how many primes there are up to a certain
point to start. The problem is we should use a different idea than just looking
at tables! What can we say that is a little smarter?

• About half the numbers less than n are not divisible by 2.

• About 2/3 the numbers less than n are not divisible by 3.

• About 4/5 the numbers less than n are not divisible by 5.

• Etc. for each prime less than
√
n . . .

If we take this thinking to its logical extreme, you might even expect that∏
p<

√
x

(
1− 1

p

)
is a good approximation of the probability that a given number x is prime.
Unfortunately, it isn’t. In fact, this product turns out to be asymptotic to
2e−γ/ log(x) (recall that γ from Definition 20.3.10).

Still, this kind of thinking is still helpful, and might help us make ideas
for how many twin primes there are – especially if we keep in mind this isn’t
really a probability. After all, if p > 2 is prime, then with one hundred percent
probability the next number is not prime! And for p and p + 2 to be both
prime, they must also both be odd; so if p is odd, then p + 2 is much more
likely than a random number to be prime.

So we do the following analysis instead. (See Exercises 22.4.11 and 22.4.12.)

CHAPTER 22. MORE ON PRIME NUMBERS 394

• Although one would expect for 1/4 of all pairs separated by two to both
be odd, n+2 has the same parity as n so we should expect 1/2 the pairs
to both be odd.

• The chances that n and n+ 2 are both not divisible by three is 1/3.

• The chances that n and n+ 2 are both not divisible by five is 3/5.

• And so forth.

So, having gotten a little more sophisticated, we might expect that

1

2

∏
p<

√
x,p>2

(
1− 2

p

)

is a decent approximation of the probability that a given pair of consecutive
odd numbers are both prime.

This doesn’t look so recognizable yet, but we can do some algebra to turn
this into something that looks better and has logarithms, just like in the prime
number theorem. If we substitute(

1− 2

p

)
=

(
1− 1

(p− 1)2

)(
1− 1

p

)2

then the approximation of the number of twin primes less than x looks more
like this:

1

2

∏
p<

√
x,p>2

(
1− 1

(p− 1)2

) ∏
p prime

(
1− 1

p

)2

Finally, if we now use the earlier suggestion about the right-hand side being
more or less the square of the number of primes, we come up with a reasonable
suggestion that looks more familiar.

1

2

∏
p<

√
x,p>2

(
1− 1

(p− 1)2

)(
x

log(x)

)2

Remark 22.3.6 The constant part of this formula is finite, and known as the
twin prime constant:

C2 = 2
∏
p>2

(
1− 1

p− 1

2)
.

The graphs in Subsection 22.3.1 use this constant (which is built-in in Sage) as
well as a logarithmic integral version of the preceding analysis.

There is some inconsistency in the literature about whether the 2 in front
of the formula for C2 is part of the twin prime constant or not.

This also leads to a conjecture of Hardy and Littlewood.
Conjecture 22.3.7 The number of ways to write an even number 2k as a sum
of primes is also asymptotic to 1

2

∏
p<

√
x,p>2

(
1− 1

(p−1)2

)(
x

log(x)

)2
.

This would provide a very overwhelming proof of the following old sug-
gestion, going back to correspondence between Euler and Prussian/Russian
mathematician Christian Goldbach.
Conjecture 22.3.8 Goldbach Conjecture. Any even number can be written
in at least one way as a sum of two primes.

CHAPTER 22. MORE ON PRIME NUMBERS 395

In fact, there are two such conjectures, with the other one suggesting that
any positive integer may be written as a sum of three primes. There is a
proof claimed for the latter ‘weak’ conjecture, but it has not appeared in a
peer-reviewed journal yet.
Historical remark 22.3.9 The Pentium bug. Returning to the twin prime
constant, computing it (as in the Sage cell below) led to a very interesting real-
life application.

2* twinprime.n()

1.32032363169374

Computing this constant to arbitrary precision led to the discovery of the
infamous Pentium chip bug, where some floating-point calculations would be
incorrect in high decimal places. This is a quite surprising ‘application’ of num-
ber theory! (It turns out manufacturers do use number-theoretic computations
to stress-test their products. See also Historical remark 12.1.8.)
Historical remark 22.3.10 Twin prime status. It is still unknown
whether there are infinitely many twin prime pairs. In a 2013 result that
shocked the mathematics world, (then) unknown mathematician Yitang Zhang
proved that there exists some N less than seventy million such that there are
infinitely many pairs of primes separated by exactly N . This was a huge im-
provement over previous results, and further work of an unusually collaborative
nature have now reduced this bound to N ≤ 246, but the effort has not con-
tinued progress. A related result about polynomials was proved in 2019, but
this doesn’t seem to have led closer to a final resolution, either.

As we finish this subsection, we must mention another constant affiliated
with twin primes. Although there may really be infinitely many pairs, the sum
of their reciprocals ∑

p,p+2 both prime

1

p
+

1

p+ 2

is still a finite constant. At the very least means twin primes must be pretty
rare. This (possibly infinite) sum is called Brun’s constant.

Sage note 22.3.11 Sage can change. Originally, this constant was included
in Sage. However, as nearly every digit of the constant is conjectural, it was
removed as a built-in.

brun.n(digits =5)

Traceback (most recent call last):
...
NameError: name ' brun ' is not defined

Because Sage is open source, you can follow discussions about decisions and
additions to Sage functionality on the Sage developer Trac or sometimes on the
Github organization.

22.3.3 Other types of primes
In the quest toward Polignac’s Conjecture, researchers have dubbed primes
(not necessarily consecutive) with spacing N = 4 cousin primes and those
N = 6 apart sexy primes. In another result of similar vintage to Zhang’s

https://arxiv.org/abs/1312.7748
https://en.wikipedia.org/wiki/Goldbach's_weak_conjecture
http://www.trnicely.net/pentbug/pentbug.html
https://www.quantamagazine.org/20130519-unheralded-mathematician-bridges-the-prime-gap/
https://www.quantamagazine.org/20130519-unheralded-mathematician-bridges-the-prime-gap/
http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes
http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes
https://www.quantamagazine.org/big-question-about-primes-proved-in-small-number-systems-20190926/
https://trac.sagemath.org/ticket/18255
https://github.com/sagemath/sage/commit/330a9a88a1c202d12f30111ac1cb49ff8ff43846

CHAPTER 22. MORE ON PRIME NUMBERS 396

(and also collaborative like its refinement), we know (conditional upon the so-
called “generalized Elliott-Halberstam conjecture”, which is closely related to
our investigations in Subsection 22.2.2) that at least one of the classes of twin,
cousin, or sexy primes is infinite2. This is a very special case of exploring
something called prime constellations; see Exercise 22.4.13.

In addition, there are many other heuristics like the ones above. Here is a
sampling of those we don’t have space or expertise in this text to dig further
into.

• As one example, consider the chance that n and 2n + 1 are both not
divisible by a given prime p. Probabilistically, this is basically the same
chance as that n and n + 2 are both not divisible by p, so it turns out
that Germain primes might also be distributed in the same fashion as
twin primes.

• Using similar ideas, one can get a heuristic that Mersenne primes are
distributed as

eγ log(log(x))/ log(2).
This is known as Wagstaff’s conjecture.

• Bizarrely, one can use the same idea to get a heuristic for factorial
primes. These are primes of the form n!± 1, like 5, 7, 23, and 719. It’s
conjectured that there are eγ log(n) such primes less than n.

• These rules of thumb even seem to apply to the so-called primorial
primes – primes of the form p# ± 1, like 3, 5, 7, 29, 31, 211, etc. It’s
truly weird, yet also cool.

There is so much to explore! There is never a lack of questions for mathe-
maticians to explore when it comes to prime numbers.

22.4 Exercises
1. Explain why, to show that any number can be written as a sum of three

primes, it suffices to prove Conjecture 22.3.8.
2. In Subsection 22.1.3 a statement is made about residue classes [a] such

that nk + a can be a perfect square. What is another name for such a?
Also, the claim is made that, “In the two examples we showed graph-

ically, only 4k + 1 and 8k + 1, respectively, are possible perfect (odd)
squares.” Either prove this claim or find the reference for when that is
proved in the book.

3. What ‘teams’ would you expect to be in the lead long-term for a modulo
ten prime race? Why? Compute a value where the ‘wrong’ team is in the
lead, if you can!

4. Prove Dirichlet’s Theorem on Primes in an Arithmetic Progression for the
case a = 2.

5. Find an arithmetic progression of primes of length five with less than ten
between primes.

6. Find an arithmetic progression of primes of length six or seven, starting
at a number less than ten.

7. Prove that there can be only one set of “triple primes” – that is, three
consecutive odd primes.

2Go to the video of Tao’s interview with Colbert, linked just before Conjecture 22.3.3,
again to see Colbert’s quite amusing reaction to this fact.

https://en.wikipedia.org/wiki/Elliott–Halberstam_conjecture
http://resmathsci.springeropen.com/articles/10.1186/s40687-014-0012-7
http://resmathsci.springeropen.com/articles/10.1186/s40687-014-0012-7

CHAPTER 22. MORE ON PRIME NUMBERS 397

8. Find the value of 23#.
9. Compute some twin primes greater than one thousand.

10. Show that
(
1− 2

p

)
=
(
1− 1

(p−1)2

)(
1− 1

p

)2
.

11. What form must n have for n and n+2 to both not be divisible by three?
12. Which residues modulo five must n avoid for n and n+ 2 to both not be

divisible by five?
13. Search a few resources to learn about “prime constellations” and write a

report. The Prime Pages or Tomás Oliveira e Silva’s very nice graphs of
“admissible” constellations are a good place to start.

14. Find a definition for palindromic primes (base 10, say) and report on the
current known status. Are there infinitely many, or a way to generate
them programmatically?

15. Search in a good book (see the general E.2 or specialized E.4 references)
or the internet for an amazing fact about primes. Describe it in a way
your classmates (or peers, if you’re not in a course) will understand.

Summary: More on Prime Numbers
What else can we say about prime numbers? This chapter collates some of the
most interesting questions.

1. In Section 22.1 we see some exciting action in asking who wins various
prime races!

2. The next section states and gives examples of many facts about primes
in sequence, including Dirichlet’s Theorem on Primes in an Arithmetic
Progression and the Green-Tao theorem on sequences in primes.

3. How many Types of Primes do you know? One of the most intriguing
questions is why so many of the questions in this section are completely
unanswered.

The Exercises gives practice in searching for interesting patterns in the primes.

http://primes.utm.edu/glossary/xpage/PrimeConstellation.html
http://sweet.ua.pt/tos/apc.html
https://oeis.org/A002385

CHAPTER 22. MORE ON PRIME NUMBERS 398

Chapter 23

New Functions from Old

We are heading toward the end of the text. There are even more interesting
functions out there; just as important, there are more interesting ways to start
connecting these functions to calculus.

As a prelude, let us introduce an interesting function. Letting p be running
just over primes, we let

D(N) =
∏
p≤N

(
1− 1

p

)
and then expand the expression as a sum of unit fractions. As an example,

D(3) = (1− 1/2)(1− 1/3) =

(
1

1
− 1

2
− 1

3
+

1

6

)
.

Before starting this chapter, try expanding D (as above, without adding
the fractions) for bigger and bigger values of N . What patterns do you find?

• What denominators show up?

• Which ones don’t?

• For the ones that do, what are the values of the numerator?

• Can you predict the value of the numerator for some types of denomina-
tors? (E.g., primes, perfect squares, prime powers, etc.)

The function unveiled by this is quite important in expanding our roster of
arithmetic functions and unlocking their secrets, as well as in connecting to
calculus.

23.1 The Moebius Function

23.1.1 Möbius mu
Let’s define the function which gives the numerator associated with denomina-
tor n in the products above.
Definition 23.1.1 Moebius mu. Let N = 2 · 3 · 5 · · · q be the product of

399

CHAPTER 23. NEW FUNCTIONS FROM OLD 400

the first few primes, up to q. Then we define µ(d) as follows:∏
p|N

(
1− 1

p

)
=
∑
d|N

µ(d)

d
.

The product is over prime factors of N but the sum is over all factors of N .
♢

It is not at all obvious that µ will have the same value regardless of N , and
much of the rest of this section will confirm this.
Historical remark 23.1.2 August Möbius. Yes, this is the same August
Moebius (or Möbius) as the Moebius strip; however, it was not he, but Johann
Listing who first discovered that object. On the other hand, his work with
this function and the Möbius Inversion Formula has stood the test of time. A
student of Gauss, Möbius’ positions were mostly directorships of major obser-
vatories and professor of astronomy. See [E.7.26] for some historical details of
the function, including Euler’s discovery of the same general idea via infinite
products.
Example 23.1.3 Using the example in the chapter introduction,

D(3) = (1− 1/2)(1− 1/3) =

(
1

1
− 1

2
− 1

3
+

1

6

)
implies that µ(2) = −1 = µ(3) while µ(6) = 1 = µ(1). □

There is no product of (1− 1/p) that will yield a four in the denominator,
since (1−1/2) only occurs once in such a product. So µ(4) = 0, as the example
above already implies.

23.1.2 A formula
Before describing this function further, let’s think more about the product∏

p<N

(
1− 1

p

)
.

• First, as the comment at the end of the last subsection points out, it seems
to create denominators with each prime factor to just the first power. We
couldn’t get a square or cube of any given p in the denominator.

• Similarly, the numerators really can only be products of 1 and −1. For
a moment, think about why there are no other numerators available.

• Finally, the number of prime factors in the denominator should be the
same as the number of times −1 is part of the product in the numerator.

This essentially proves the following proposition.

Proposition 23.1.4 If n = pe11 pe22 · · · pekk then a nice formula for µ(n) is

µ(n) =

{
0 if any ei > 1

(−1)k otherwise
.

Proof. See above. ■

23.1.3 Another definition
The µ function is so important that we will want several more approaches as
well. It is a mark of an important concept that there are ways to define it from
many directions.

https://mathshistory.st-andrews.ac.uk/Biographies/Listing/
https://mathshistory.st-andrews.ac.uk/Biographies/Listing/

CHAPTER 23. NEW FUNCTIONS FROM OLD 401

One important way that µ is often defined is via a recurrence relation. That
is, one defines

µ(1) = 1, and
∑
d|n

µ(d) = 0.

Now, we haven’t proved this identity yet, and probably the reader hasn’t even
noticed it. But if we can prove the identity works for µ, then since µ(1) = 1 is
true, this would give an alternate definition.
Proposition 23.1.5 Recursive definition of µ. We can define µ by setting
µ(1) = 1 and ∑

d|n

µ(d) = 0.

Proof. Let’s rewrite the sum
∑

d|n µ(d) = 0 by trying to omit the µ(d) that
equal zero. If we do this, the sum reduces to the long, but correct,∑

d|n

µ(d) =
∑

all divisors d with just one or zero
of each prime factor pi of n

(−1)the number of primes dividing d.

Now let’s set up a little notation. First, let’s borrow from Definition 23.3.3
the notation ω(d) for the number of distinct prime divisors of a divisor d of n.
Next, for convenience we will write k = ω(n) for the number of (again, distinct)
prime divisors of n itself.

Then the crazy sum
∑

d|n µ(d) becomes easier to write:∑
all divisors d with just one or zero

of each prime factor pi of n

(−1)ω(d).

If at this point you are asking yourself why I bothered introducing k, you may
want to think about that briefly while reading the next formula:∑

all divisors d with just one or zero
of each prime factor pi of n

(−1)ω(d) =
∑

d that work
(1)k−ω(d)(−1)ω(d).

Note that (k − ω(d)) + ω(d) = k.
Let’s step back for a rationale for all this manipulation. Consider each of

the divisors d with no square factors (the ones in question that we are indexing
by). Each of these have ω(d) of the prime factors of n; that means that they
do not have the other k − ω(d) possible prime factors available to us from n.
So in the expression (1)k−ω(d)(−1)ω(d) we are, in some sense, picking a subset
(of size ω(d)) of the primes dividing n and multiplying by 1 for each of those;
likewise we multiply by −1 for each possible prime not picked.

This is a combinatorial point of view, which means we can count all this
picking another way. Instead, consider just picking a subset of {1, 2, . . . , k}
and assigning ±1 respectively; that would be the same thing. However, we can
reinterpret that as picking a particular term in the full expansion of the kth
power of the binomial 1 + (−1):

(1 + (−1))k = (1 + (−1))(1 + (−1)) · · · (1 + (−1)) (k times, for 2, 3, . . . , pk).

Summing all the possible terms must be the same as calculating this power, so
an easy computation finishes the proof:∑

d that work
(−1)ω(d) = (1 + (−1))k = 0.

■

CHAPTER 23. NEW FUNCTIONS FROM OLD 402

Sage note 23.1.6 Check your work again. Remember, we can always
check calculations like this with our computational assistant.

moebius (30) + moebius (15) + moebius (10) + moebius (6) +
moebius (5) + moebius (3) + moebius (2) + moebius (1)

0

Fact 23.1.7 The function µ is multiplicative.
Proof. We will postpone a formal proof of this to a much bigger theorem, from
which this result (Corollary 23.4.15) will fall “for free”. ■

Let’s check it:

print(gcd (111 ,41))
print(moebius (111)*moebius (41)== moebius (41*111))

1
True

23.2 Inverting Functions
The main point of the Moebius function is the following famous theorem.

Theorem 23.2.1 Möbius Inversion Formula. If f(n) =
∑

d|n g(d), then

g(n) =
∑
d|n

µ(d)f
(n
d

)
.

Proof. The proof is delayed to Subsection 23.2.2. ■
We can interpret this result briefly as follows. Suppose you sum an arith-

metic function over the set of the (positive) divisors of n to create a new
function of n. Then summing that function over divisors, along with µ, gives
you back the original function.

The reason we care about this is that we are able to use the µ function to
get new, useful, arithmetic functions via this theorem. In particular, we can
“invert” all of our usual arithmetic functions, and this will lead to some very
powerful applications.
Example 23.2.2 If we apply this theorem to

τ(n) =
∑
d|n

1 =
∑
d|n

u(n)

(recall Definition 19.2.9) then it implies∑
d|n

µ(d)τ
(n
d

)
= 1.

This is worth checking by hand or with Sage. Somehow, mysteriously, the
number of divisors weighted by the µ function nearly balances out. □

23.2.1 Some useful notation
In order to better understand what this theorem is saying, let’s introduce some
notation.

CHAPTER 23. NEW FUNCTIONS FROM OLD 403

Definition 23.2.3 Dirichlet product. Let f and g be arithmetic functions.
Then we define the new function f ⋆g, the Dirichlet product, via the formula

(f ⋆ g)(n) =
∑
de=n

f(d)g(e) =
∑
d|n

f(d)g
(n
d

)
.

♢
Example 23.2.4 For example, if we recall u(n) = 1 and N(n) = n from
Definition 19.2.91, then

(ϕ ⋆ u)(n) =
∑
d|n

ϕ(d)u
(n
d

)
=
∑
d|n

ϕ(d) = n = N(n).

We saw this originally in Fact 9.5.4, but now we can write it concisely as
ϕ ⋆ u = N and see it is part of a bigger context. (See also Fact 23.3.2.) □

This notation, like all the best notation, practically demands that we restate
the inversion theorem in a very insightful way:

If f = g ⋆ u, then g = f ⋆ µ.

23.2.2 Proof of Moebius inversion
Now we are ready to prove the Möbius Inversion Formula, following the stan-
dard proof, as for example in [E.2.1].

Let’s expand the formula for g(n) the theorem would give, in terms of g
itself. ∑

d|n

µ(d)f
(n
d

)
=
∑
d|n

µ(d)

∑
e|nd

g(e)

 .

Each time g(e) appears in this sum, it has a coefficient of µ(d). How often
does this happen, and what is d anyway?

If e | n
d , then e | n, which means n

e is an integer. However, this integer
must have at least a factor of d “left” in it (after division by e). Why? Since
e divides n

d , we have ed | n, in which case certainly d | n
e .

So g(e) shows up once for each d | n
e , with coefficient µ(d). Thus,

∑
d|n

µ(d)f
(n
d

)
=
∑
e|n

∑
d|ne

µ(d)

 g(e).

Here comes the final step. Unless n
e = 1, we have

∑
µ(d) = 0. So the only

subsum in this double sum that sticks around is the term for n
e = 1, or when

e = n.
Thus the whole sum collapses to g(n), as desired!

23.3 Making New Functions

23.3.1 First new functions
In order to see what good this does, let’s see what happens when we mess
around and make Dirichlet products with functions we know. We already
know two of these functions, and I give you a third.

1See also Definition 23.3.1.

CHAPTER 23. NEW FUNCTIONS FROM OLD 404

Definition 23.3.1 We define a new simple arithmetic function to go along
with those from Definition 19.2.9.

• u(n) = 1 for all n

• N(n) = n for all n

• I(n) =

{
1 n = 1

0 n > 1

♢
In the next computational cell, we define these using Sage (recall Sage

note 11.1.1), as well as a Dirichlet product function.

def u(n): return 1
def N(n): return n
def I(n): return floor (1/n)
def DirichletProduct(f,g,n): return sum(f(d)*g(n/d) for d in

divisors(n))

Now let’s see what we get! For instance, what happens if we look for the
inverse of N? (You can try it by hand too, of course.)

@interact
def _(n=10):

H = [[' i ' ,r ' $(N\star␣\mu)(i)$ ']]
T = [(i,DirichletProduct(N,moebius ,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True , frame=True

)))

Maybe this is a surprise! But this makes sense, if you remember Exam-
ple 23.2.4 just previously about N = ϕ⋆u. Let’s confirm that fact numerically
as well.

@interact
def _(n=10):

H = [[' i ' ,r ' $(\phi\star␣u)(i)$ ']]
T = [(i,DirichletProduct(u,euler_phi ,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True , frame=True

)))

We summarize these explanations as follows.
Fact 23.3.2 We may identify the following Dirichlet products as known func-
tions.

• ϕ ⋆ u = N

• N ⋆ µ = ϕ

Both parts of Fact 23.3.2 can be connected to work from much earlier. The
first part is another proof of Fact 9.5.4, while the second part gives an alternate
proof for our formula for ϕ from Exercise 9.6.11:

ϕ(n) = (N ⋆ µ) (n) =
∑
d|n

N (d)µ
(n
d

)
=

∑
e|n

N
(n
e

)
µ(e) = n

∑
e|n

µ(e)

e
= n

∏
p|n

(
1− 1

p

)
.

CHAPTER 23. NEW FUNCTIONS FROM OLD 405

The middle step follows if we let e = n/d, since that sum will also go through
all divisors of n. The last step follows from our initial definition of µ in Defin-
ition 23.1.1.

23.3.2 More new functions
Next, please try computing the Moebius inversions of our old friends, σ and τ ,
by hand for several values. (Hint: try primes and perfect powers first, as they
don’t have many divisors!)

You can try something out here in Sage as well.

If you are online, in the next few cells one can try this interactively. (If you
get an error, you’ll need to evaluate the earlier cell after Definition 23.3.1.)

@interact
def _(n=10):

H = [[' i ' ,r ' $(\tau\star␣\mu)(i)$ ']]
T = [(i,DirichletProduct(lambda y:

sigma(y,0),moebius ,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True , frame=True

)))

@interact
def _(n=10):

H = [[' i ' ,r ' $(\ sigma\star␣\mu)(i)$ ']]
T = [(i,DirichletProduct(sigma ,moebius ,i)) for i in

[1..n]]
pretty_print(html(table(H+T, header_row=True , frame=True

)))

There is a load of fun to be had here. We could try to see what µ ⋆ µ is, or
u ⋆ u. Could there be a formula for |µ|, or could we calculate |µ| ⋆ u?

@interact
def _(n=10):

H = [[' i ' ,r ' $(\mu\star␣\mu)(i)$ ']]
T = [(i,DirichletProduct(moebius ,moebius ,i)) for i in

[1..n]]
pretty_print(html(table(H+T, header_row=True , frame=True

)))

@interact
def _(n=10):

H = [[' i ' ,r ' $(u\star␣u)(i)$ ']]
T = [(i,DirichletProduct(u,u,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True , frame=True

)))

It turns out you can define all kinds of other functions. We already saw the
first of these informally in our discussion of the Moebius function in Proposi-
tion 23.1.5.

CHAPTER 23. NEW FUNCTIONS FROM OLD 406

Definition 23.3.3 If

n =

k∏
i=1

peii

then we can give the name ω(n) = k to the number of unique prime divisors
of an integer. (This is sometimes called ν(n) in the literature.) ♢

Definition 23.3.4 If n =
∏k

i=1 p
ei
i , we summarize the parity of the total

powers of primes dividing a number as

λ(n) = (−1)e1+e2+···+ek .

This is called Liouville’s function. ♢
In both cases, you might want to try a few values to see what these functions

look like. See Exercise 23.5.1, or pursue these ideas:

• What is the value for primes?

• What is the ⋆ product of this with something – say, u?

Finally, we provide some Sage cells to try things out; the first one defines
our functions, and the interact lets you explore. Then again, you should try
them not just with Sage, but also by hand; this is part of the allure of number
theory. The sky’s the limit. Enjoy!

def u(n): return 1
def N(n): return n
def I(n): return floor (1/n)
def omega(n): return len(n.prime_divisors ())
def liouville(n): return (-1)^sum([z[1] for z in n.factor ()])
def DirichletProduct(f,g,n): return sum(f(d)*g(Integer(n/d))

for d in divisors(n))

@interact
def _(n=10,f=[liouville ,u,N,moebius ,omega ,I],

g=[liouville ,u,N,moebius ,omega ,I]):
H = [[' i ' ,r ' $(%s\star␣%s)(i)$ ' %(f,g)]]
T = [(i,DirichletProduct(f,g,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True , frame=True

)))

23.4 Generalizing Moebius
There is a more serious side to the panoply of new functions, though. This
is our key to arithmetic functions. We will now turn to algebra again, with a
goal of generalizing the Moebius result.

23.4.1 The monoid of arithmetic functions
Definition 23.4.1 A commutative monoid is a set with multiplication (an
operation) that has an identity, is associative and commutative. ♢

You can think of a commutative monoid as an Abelian group without re-
quiring inverses. (That means it’s not necessarily a group, though it could be;
see Definition 8.3.3.)

CHAPTER 23. NEW FUNCTIONS FROM OLD 407

Theorem 23.4.2 Let A be the set of all arithmetic functions. Then ⋆ turns
the set A into a commutative monoid.
Proof. The function I(n), which is equal to zero except when n = 1, plays the
role of identity. Then one would need to prove the following three statements.

• f ⋆ g = g ⋆ f

• (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)

• f ⋆ I = f = I ⋆ f

We include one of the proofs. The others are similar – see Exercise 23.5.2.
Note that for the second one, one can use the fact that dc = n, ab = d implies
abc = n.

Proof of commutativity:

(f ⋆ g)(n) =
∑
d|n

f(d)g
(n
d

)
=
∑
de=n

f(d)g(e)

=
∑
de=n

g(e)f(d) =
∑
e|n

g(e)f
(n
e

)
= (g ⋆ f)(n)

■
Can you think of other commutative monoids? What sets have an operation

and an identity, but no inverse?

23.4.2 Bringing in group structure
Let’s get deeper in the algebraic structure behind the ⋆ operation. Remember,
f ⋆ g is defined by

(f ⋆ g)(n) =
∑
de=n

f(d)g(e).

This structure is so neat is because it actually allows us to generalize the
idea behind the Moebius function!
Theorem 23.4.3 If f is an arithmetic function and f(1) ̸= 0, then f has an
inverse in the set A under the operation ⋆. We call this inverse f−1. It is given
by the following recursive definition:{

f−1(1) = 1
f(1) n = 1∑

d|n f
−1(d)f

(
n
d

)
=
∑

de=n f
−1(d)f(e) = 0 n > 1

.

Proof. As in all the best theorems, there is really nothing to prove. The
definitions for n > 1 are equivalent ways of representing the same thing. We
can always get the next value of f−1(n) by knowledge of f−1(d) for d | n, and
that is enough for an induction proof, since we do have a formula given for
f−1(1). (See Exercise 23.5.9) ■
Corollary 23.4.4 This can be immediately used to show that the Moebius
function µ is µ = u−1 (and hence u = µ−1).

Corollary 23.4.5 Since ω(1) = 0, the function ω has no inverse.
This is a good time to try to figure out what the inverse of N or ϕ is with

paper and pencil. See Exercises Exercise 23.5.4 and Exercise 23.5.5.
In general, we can also say that

f ⋆ f−1 = I = f−1 ⋆ f

CHAPTER 23. NEW FUNCTIONS FROM OLD 408

There is another, more theoretical, implication too, hearkening back to Sec-
tion 8.3.
Corollary 23.4.6 The subset of A which consists of all arithmetic functions
with f(1) ̸= 0 is actually a group.
Remark 23.4.7 Much of this chapter is done in slightly variant ways in intro-
ductory books, at a similar level. For a higher-level but useful and readable
account of the ring theory of arithmetic functions (including valuations and
derivations), see [E.2.8, Chapters 3 and 4]. For good exercises see [E.4.6, Chap-
ter 2] or [E.2.9, Chapter 2]; for instance, the latter asks for identifying the
idempotents of A.

23.4.3 More dividends from structure
This new way of looking at things yields an immediate slew of information
about arithmetic functions. The following results will yield dividends about
number theory and analysis/calculus (no, we haven’t forgotten that!) in the
next chapter on Infinite Sums and Products.
Fact 23.4.8 The Moebius inversion formula that if f = g ⋆ u then g = f ⋆ µ
can be proved concisely by

g = g ⋆ I = g ⋆ u ⋆ µ = f ⋆ µ

(We need no parentheses, since ⋆ is associative).
Fact 23.4.9 Conversely, if g = f ⋆ µ, then

f = f ⋆ I = f ⋆ µ ⋆ u = g ⋆ u

so the inversion formula is true in both directions.
Proposition 23.4.10 If g and h are multiplicative, then f = g ⋆ h is also
multiplicative.
Proof. See Exercise 23.5.8. ■

The next result has a long proof, but most of it is following the definitions
and keeping careful track of indices. See [E.2.1, Exercise 8.20] or [E.2.13, Chap-
ter 5.3] for similar approaches.

Proposition 23.4.11 If f is multiplicative and f(1) ̸= 0, then f−1 is also
multiplicative.
Proof. This basically can be done by induction, but each step is somewhat
involved so we will break this into several lemmata. Throughout, recall that
the inverse is defined by

f−1(1) =
1

f(1)

and, for n > 1, the condition∑
d|n

f−1(d)f
(n
d

)
=
∑
de=n

f−1(d)f(e) = 0.

First, in Lemma 23.4.12 we will show that f−1(1) behaves well.
Then, assuming as an inductive hypothesis that f−1 is multiplicative for

inputs less than mn, with gcd(m,n) = 1, we will show in Lemma 23.4.13 that

f−1(mn) = −
∑

(ac)(bd)=(m)(n)
ab<mn, a|m, b|n

f−1(a)f−1(b)f(c)f(d)

CHAPTER 23. NEW FUNCTIONS FROM OLD 409

Finally, in Lemma 23.4.14 we will show how to rewrite this as

f−1(mn) = f−1(m)f−1(n)

which finishes the induction argument. ■

Lemma 23.4.12 We know that both f−1(1) = 1
f(1) and f(1) = 1 = f−1(1).

Proof. Left to the reader in Exercise 23.5.10; use everything you know about
f . ■
Lemma 23.4.13 Assume as above that f−1 is multiplicative for inputs less
than mn, with gcd(m,n) = 1. Then

f−1(mn) = −
∑

(ac)(bd)=(m)(n)
ab<mn, a|m, b|n

f−1(a)f−1(b)f(c)f(d).

Proof. Assume that m,n > 1 and coprime. By the definition of inverse, we
have

0 = (f−1 ⋆ f)(mn) =

[∑
x<mn, xy=mn

(
f−1(x)f(y)

)]
+ f−1(mn)f(1).

By assumption, every function in this expression (both f and f−1) is multi-
plicative on the values in question, with the possible exception of f−1(mn).

We can use this effectively because each summand is for a divisor x | mn,
which we can write as xy = mn. Since m and n are coprime, both x and y are
themselves products of coprime divisors dividing m and n respectively.

So let x = ab and y = cd, where a, c | m and b, d | n. Then, as everything
is multiplicative, f−1(x)f(y) = f−1(a)f−1(b)f(c)f(d).

Since by the previous lemma f(1) = 1, we can subtract the summation
from both sides of the equation whose left-hand side is zero at the beginning
of this lemma’s proof, yielding

f−1(mn) = −
∑

(ac)(bd)=(m)(n)
ab<mn, a|m, b|n

f−1(a)f−1(b)f(c)f(d).

■
Lemma 23.4.14 Under the same hypotheses as before, f−1(mn) = f−1(m)f−1(n).
Proof. We now write all this in terms of things we already can evaluate.

If the sum in question were summed over every ab ≤ mn instead of ab < mn,
it would easily simplify as a product:∑

(ac)(bd)=(m)(n)
a|m, b|n

f−1(a)f−1(b)f(c)f(d) =
∑
ac=m

f−1(a)f(c)
∑
bd=n

f−1(b)f(d)

The sum in Lemma 23.4.13 only lacks the term with a = m, b = n, in fact. So∑
(ac)(bd)=(m)(n)
ab<mn, a|m, b|n

f−1(a)f−1(b)f(c)f(d) =

[∑
ac=m

f−1(a)f(c)
∑
bd=n

f−1(b)f(d)

]
−
(
f−1(m)f−1(n)f(1)f(1)

)

CHAPTER 23. NEW FUNCTIONS FROM OLD 410

Now we can plug this back into the previous characterization of f−1(mn):

f−1(mn) = −

[∑
ac=m

f−1(a)f(c)
∑
bd=n

f−1(b)f(d)− f−1(m)f−1(n)f(1)f(1)

]

Since m,n > 1, the individual sums may be rewritten as

(f−1 ⋆ f)(m) = I(m) = 0 = I(n) = (f−1 ⋆ f)(n)

That means we achieve the desired result

f−1(mn) = f−1(m)f−1(n)f(1)f(1) = f−1(m)f−1(n)

■
Finally, we get the following promised corollary from the beginning of the

chapter, Fact 23.1.7.
Corollary 23.4.15 The function µ is multiplicative.
Proof. This follows since u is multiplicative (trivially) and µ = u−1. ■

23.5 Exercises
1. Factoring by hand, compute the first 24 values of λ and ω (recall Defini-

tion 23.3.4 and Definition 23.3.3).
2. Finish the proof that the set of arithmetic functions is a commutative

monoid in Theorem 23.4.2.
3. Show that if f = g ⋆ u (equivalently, if g = f ⋆ µ), then f and g are either

both multiplicative or both not. Strategy hint: Use Proposition 23.4.11.
4. Do enough calculations without using electronic devices to discover a for-

mula (in terms of functions we already know) for the inverse of N .
5. Do enough calculations without using electronic devices to discover a for-

mula (in terms of functions we already know) for the inverse of ϕ.
6. Show that the inverse of λ(n) from Definition 23.3.4 is a variant of another

of our new functions.
7. Can you identify ω ⋆µ as anything familiar? (Recall Definition 23.3.3.) If

yes, then try to prove it; if not, explain why you think it is new to us.
8. Prove Proposition 23.4.10 that using the Dirichlet product on two multi-

plicative functions stays multiplicative.
9. Complete all details of the proof of Theorem 23.4.3 defining inverses under

the ⋆ product.
10. Prove Lemma 23.4.12.
11. Come up with another good exercise for this chapter and have a friend

try it!

Summary: New Functions from Old
In this chapter, we see a lot more arithmetic functions, and how to tackle them
systematically.

1. Which definition of the µ function do you prefer – Definition 23.1.1,
Proposition 23.1.4, or the Recursive definition of µ?

2. The next section puts the Möbius function into context, including the
definition of the Dirichlet product.

CHAPTER 23. NEW FUNCTIONS FROM OLD 411

3. Finally, we prove quite general results about combining arithmetic func-
tions, including Proposition 23.4.10.

The Exercises are particularly interesting because you have the chance to see
that many combinations of functions give ones you already know.

CHAPTER 23. NEW FUNCTIONS FROM OLD 412

Chapter 24

Infinite Sums and Products

We are almost at the very frontiers of serious number theory research now. In
order to start to understand this, we will need to introduce two final concepts:

• Euler Products

• Dirichlet Series

These concepts both deeply involve infinitely applied operations, and are what
this chapter is about. If you wish, think of this chapter as the ‘infinite’ version
of the previous chapter on new functions.

24.1 Products and Sums
In order to motivate bringing infinite processes to this part of number theory,
let’s step back a bit. Many functions we have already seen may be thought of
in two ways – either as a product or as a sum.

24.1.1 Products
Let p | n as an indexing tool denote the set of primes which divide n =∏

p prime pe (recall Example 6.3.4). Then we have the following product rep-
resentation of two familiar arithmetic functions. (Recall Theorem 19.2.5 and
Fact 18.1.1.)

σ(n) =
∏
p|n

(
pe+1 − 1

p− 1

)
=
∏
p|n

(
1 + p+ p2 + · · ·+ pe

)

ϕ(n) = n
∏
p|n

(
1− 1

p

)
Both of these functions therefore may be thought of as (finite) products.

As a related example, we explicitly wrote out the product for the abundancy
index in Section 19.3.

σ(n)

n
=

∏
p|n

(
pe+1−1
p−1

)
∏

p|n p
e

=
∏
p|n

p− (1/pe)

p− 1

413

CHAPTER 24. INFINITE SUMS AND PRODUCTS 414

Alternately, to avoid fractions:

σ(n)

n
=

∏
p|n
(
1 + p+ p2 + · · ·+ pe

)∏
p|n p

e
=
∏
p|n

(
1 + p−1 + p−2 + · · ·+ p−e

)
Note that ϕ(n)

n =
∏

p|n

(
1− 1

p

)
.

24.1.2 Products that are sums
On the other hand, these products over primes are also sums over divisors; this
is true either by definition or by theorem, depending on how you look at it.

It’s clear with σ that this is the case, since we defined (in Definition 19.1.1)

σ(n) =
∑
d|n

d

We can even cleverly add up the divisors in the opposite order to get the slightly
more felicitous

σ(n) =
∑
d|n

n

d
= n

∑
d|n

1

d
.

This led us directly to writing σ(n)
n =

∑
d|n

1
d in Fact 19.4.9; now we can also

write it as
∑

d|n
u(d)
d .

With ϕ we have something to prove to make this connection, but not much.
In Fact 23.3.2 we saw that ϕ ⋆ u = N ⇒ ϕ = N ⋆ µ. Equivalently, we have
Möbius-inverted Fact 9.5.4 to obtain, from

∑
d|n ϕ(d) = n, the formula∑

d|n

dµ
(n
d

)
= ϕ(n)

By adding the divisors in the opposite order (alternately, by noting ⋆ is com-
mutative) we can write

ϕ(n) = µ ⋆ N =
∑
d|n

µ(d)
(n
d

)
= n

∑
d|n

µ(d)

d
,

which allows us to also write the fraction as
ϕ(n)

n
=
∑
d|n

µ(d)

d
.

Now, in some sense we already knew all this. Great, some arithmetic func-
tions can be represented either as a sum over divisors or as a product over
primes, depending on what you need from them. So what?

The genius of Euler was to directly connect these ideas.
Fact 24.1.1 We can equate sums over divisors and products over primes to
obtain special formulas. Given n =

∏
p prime pe, we have

ϕ(n)

n
=
∑
d|n

µ(d)

d
=
∏
p|n

(
1− 1

p

)

σ(n)

n
=
∏
p|n

(
1 +

1

p
+

1

p2
+ · · ·+ 1

pe

)
=
∑
d|n

1

d
.

CHAPTER 24. INFINITE SUMS AND PRODUCTS 415

Well, this was almost the genius; his real genius was to take these ideas to
the limit!

One can’t really take these expressions to infinity as they stand – one would
get massive divergence. So what can we do? To analyze this, we will define new,
related functions which preserve the summation, but allow for convergence.

24.2 The Riemann Zeta Function

24.2.1 A fundamental function
The most important such infinite process is the following fundamental func-
tion. It is one of the most studied, yet most mysterious functions in all of
mathematics.
Definition 24.2.1 Riemann zeta function. We define the zeta function
(denoted ζ) as the sum of the infinite series

ζ(s) =

∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · ·

as a function of s.
For now we’ll keep the domain of ζ to be only the s where this series

converges. Later, in Subsection 25.3.1, we’ll see that it will be useful to think
about what ζ might mean for other values of s. ♢

Here we plot the function for a few positive values of s.

0.5 1 1.5 2 2.5 3 3.5 4

2

4

6

8

10

Figure 24.2.2 The Riemann zeta function (plot(zeta,0,4,ymin=-1,ymax=10))

Historical remark 24.2.3 Bernhard Riemann. Riemann, the quietly
devout son of a Lutheran pastor, made ground-breaking contributions in nearly
every area of mathematics. He did it in analysis (Riemann sums), in geometry
(Riemannian metrics, later used by Einstein), in function theory (Riemann
surfaces) – and in one paper that changed the course of number theory. He died
quite young (around 40), but unlike some of his contemporaries had achieved
wide recognition in his own lifetime for his advances.

CHAPTER 24. INFINITE SUMS AND PRODUCTS 416

24.2.2 Motivating the Zeta function
The motivation for this definition comes from this function with the case s = 1.

We begin with the second formula in Fact 24.1.1:∏
p|n

(
1 +

1

p
+

1

p2
+ · · ·+ 1

pe

)
=
∑
d|n

1

d
.

Try computing both sides of this and seeing how they come together for a few
fairly composite n, like 12, 16, 18, 20, or 30.

@interact
def _(n=[30 ,20 ,18 ,24 ,12 ,16]):

str = ' $$ ' + ' ␣+␣ ' .join([r ' \frac {1}{%s} ' %d for d in
divisors(n)])+ ' =%s$$ ' %sum ([1/d for d in divisors(n)])

str2 = ' $$ ' +
' ' .join([r ' \left(' + ' + ' .join([r ' \frac {1}{%s^{%s}} ' %(p,
k) for k in [0..e]])+r ' \right) ' for (p,e) in
factor(n)]) + ' =%s$$ ' %prod([sum([p^(-k) for k in
[0..e]]) for (p,e) in factor(n)])

pretty_print(html(str))
pretty_print(html("compare␣to␣"+str2))

Notice how every integer d formable by a product of the prime powers
dividing n shows up precisely once (as a reciprocal) in the sum. This gives us
a way into introducing limits.

What would happen if we introduced infinity in each term of the product,
for instance?(

1 +
1

2
+

1

22
+

1

23
+ · · ·

)(
1 +

1

3
+

1

32
+

1

33
+ · · ·

)
By analogy, we should get a sum with exactly one copy of the reciprocal of
each number divisible by only 2 and 3, e.g.∑

2|n or 3|n

1

n
.

@interact
def _(e=(1 ,[0..6]) ,f=(2 ,[0..6])):

n = 2^e*3^f
pretty_print(html("You␣picked␣

$%s=2^{%s}3^{%s}$"%(n,e,f)))
str = ' $$ ' + ' ␣+␣ ' .join([r ' \frac {1}{%s} ' %d for d in

divisors(n)])+ ' =%s$$ ' %sum ([1/d for d in divisors(n)])
str2 = ' $$ ' + ' ' .join([r ' \left(' + ' ␣+␣

' .join([r ' \frac {1}{%s^{%s}} ' %(p,k) for k in
[0..e]])+r ' \right) ' for (p,e) in factor(n)]) +
' =%s$$ ' %prod([sum([p^(-k) for k in [0..e]]) for
(p,e) in factor(n)])

pretty_print(html(str))
pretty_print(html("compare␣to␣"+str2))

There is no reason this wouldn’t continue to work for many prime factors.
Because every integer is uniquely represented as a product of prime powers

(Fundamental Theorem of Arithmetic), this implies that we might multiply out

CHAPTER 24. INFINITE SUMS AND PRODUCTS 417

the left-hand side of an infinite product of infinite sums to get∏
p

(
1 +

1

p
+

1

p2
+

1

p3
+ · · ·

)
=

∞∑
n=1

1

n
.

Since each of the multiplied terms on the left is an infinite geometric series, we
can simplify the product slightly to write∏

p

(
1

1− 1/p

)
=

∞∑
n=1

1

n
.

24.2.3 Being careful
So much for Euler’s contribution, a very impressive one. The only problem
with all this is that both of these things clearly diverge!

Thus we cannot use a simple equality (=) for this discussion. Nonetheless,
Euler’s intuition is spot on, and we will be able to fix this issue quite satisfac-
torily. For now, we can say is that, in some sense, the harmonic series is also
an infinite product:

ζ(1) =

∞∑
n=1

1

n
“=”

∏
p

(
1

1− 1/p

)
=
∏
p

(
1

1− p−1

)
.

To make this rigorous, we should start talking about convergence. Recall
this informal version of the integral test for series (see for example Active
Calculus).

Proposition 24.2.4 Integral test for series convergence. Assume f is a
positive decreasing function going to zero as x → ∞. Then the series

∑n
i=1 f(i)

converges if and only if the integral
∫∞
1

f(x)dx converges.
How does this apply to our situation? The improper integral in the case of

ζ(s) is ∫ ∞

1

x−s dx.

As an example, in calculus one might have shown that
∑∞

n=1
1
n2 converges by

evaluating
∫∞
1

dx
x2 .

The general integral evaluates as∫ ∞

1

x−s dx =
−x−s+1

1− s

∣∣∣∣∞
1

=
1

1− s

(
1− lim

x→∞

1

xs−1

)
.

For s a real number, this converges precisely when s > 1 (since that keeps x
in the denominator), which begins to inform us about ζ.

Fact 24.2.5 The infinite sum ζ(s) converges for all s > 1.
But why is the (infinite) product equal to this infinite sum too? Is this

product even meaningful? After all, it is not true in general that if a partial
product equals a partial sum, then the ‘full’ sum is the ‘full’ product.

One has to carefully set up the convergence. If we can show that the product
converges to the sum, then both will converge. Then it will make sense to say
that

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1

1− p−s

)

https://activecalculus.org/single/sec-8-3-series.html
https://activecalculus.org/single/sec-8-3-series.html

CHAPTER 24. INFINITE SUMS AND PRODUCTS 418

24.3 From Riemann to Dirichlet and Euler
In order to see this (the convergence of the infinite product), let’s instead
observe our other main example of a sum over divisors equalling a product
over primes working. When we compared them for ϕ above, we got∑

d|n

µ(d)

d
=
∏
p|n

(
1− 1

p

)

@interact
def _(e=(1 ,[0..3]) ,f=(2 ,[0..3]) ,g=(0 ,[0..3])):

n = 2^e*3^f*5^g
pretty_print(html("You␣picked␣

$%s=2^{%s}3^{%s}5^{%s}$"%(n,e,f,g)))
str = ' $$ ' + ' + ' .join([r ' \frac{%s}{%s} ' %(moebius(d),d) for

d in divisors(n)])+ ' =%s$$ ' %sum([moebius(d)/d for d
in divisors(n)])

str2 = ' $$ ' + ' ' .join([r ' \left(1-\frac {1}{%s}\right) ' %p
for (p,e) in factor(n)])+ ' =%s$$ ' %prod ([1-1/p for
(p,e) in factor(n)])

pretty_print(html(str))
pretty_print(html("compare␣to␣"+str2))

We could make the powers far higher, or include more primes, and it would
still work. Going to both limits, this would lead to the series

∞∑
n=1

µ(n)

ns
.

24.3.1 Dirichlet series
We give such series a name. The following definition is purely formal, consid-
ered without considering issues such as convergence. (See [E.2.8, Chapter 4.6]
for an interesting formal viewpoint on the set of these series.)

Definition 24.3.1 Dirichlet Series. In general, for an arithmetic function
f(n), its Dirichlet series is

F (s) =

∞∑
n=1

f(n)

ns
.

♢
Answer the following three questions to see if you understand this definition.

(See Exercise 24.7.1.)

• For what arithmetic function is the Riemann zeta function the Dirichlet
series?

• What would the Dirichlet series of N be?

• What about the Dirichlet series of I?

Note that this already indicates some level of connection between arithmetic
functions. These are connections which may not have been evident other-
wise.

CHAPTER 24. INFINITE SUMS AND PRODUCTS 419

24.3.2 Euler products
For our purposes, the very important thing to note about such series is that
they often can be expanded as infinite products.
Definition 24.3.2 Euler Products. In general, for an arithmetic function
f(n), its Dirichlet series is said to have an Euler product if the series can be
written as an infinite product in the following manner:

∞∑
n=1

f(n)

ns
=
∏
p

(a formula involving f(p) and ps).

♢
Example 24.3.3 Euler product for Riemann zeta function. We have
already suggested one for the zeta function:

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1

1− p−s

)
.

□
Based on the logic of this section, we have a potential new Euler product

for the Dirichlet series of the Moebius function:
∞∑

n=1

µ(n)

ns
=
∏
p

(
1− 1

ps

)
=
∏
p

(1− p−s)

At least, we can consider this wherever it makes sense. See [E.4.6, Chapter 11.5]
or [E.2.1, Chapter 9.8] for some criteria, or simply below at Theorem 24.5.4.

In the next section, we justify more of this discussion, and connect our
wonderful results about Dirichlet products of finite arithmetic functions to
deep properties of their Dirichlet series.

24.4 Multiplication
At the end of the previous section, you may have noticed something surprising.
The Euler products we obtained for the Riemann ζ function and the Dirichlet
series of the Möbius function are multiplicative inverses of each other:

∏
p

1

1− p−s
= 1/

(∏
p

1− p−s

)
.

We can check this numerically as well; in the following examples, we use s = 2.

sum([moebius(n)/n^2 for n in [1..10000]]).n()

0.607926897331474

1/zeta (2).n()

0.607927101854027

They agree up to quite a few digits when we approximate both representa-
tions of the number, so that is a start at reasonability!

CHAPTER 24. INFINITE SUMS AND PRODUCTS 420

Finally, recall from our exploration of the average value of σ in Section 20.4
that ζ(2) = π2

6 (though there we just used this as a sum, and didn’t call it
ζ(2)). Compare this computation with the ones above.

1/(pi^2/6).n()

0.607927101854027

Remark 24.4.1 Zeta has interesting values at integers, not just for s = 2.
Euler calculated many even values of ζ, which all look like π2n times a rational
number (see any description of the so-called Bernoulli numbers). However, it
was only in 1978 that ζ(3) was shown to be irrational. It was then named
Apéry’s constant after the man who proved this, Roger Apéry.

To compare with the situation for even n, as of this writing it is still only
known that at least one of the next four odd values (ζ(5), ζ(7), ζ(9), ζ(11)) is
irrational1. See Wadim Zudilin’s website for many links, though this page
hasn’t been updated for some time.

Let’s reinterpret this coincidence about the just a little bit. Assuming
we can prove that all this makes sense (which we haven’t, yet), we have the
following two analogous facts.
Fact 24.4.2 The arithmetic functions u and µ are inverses as arithmetic
functions; that is, u ⋆ µ = I.

The Dirichlet series of these functions are also inverses, as ordinary func-
tions: ∏

p

1

1− p−s
= 1/

(∏
p

1− p−s

)

Alternately,
∑∞

n=1
µ(n)
ns = 1/ζ(s)

This analogy is not a coincidence.
Theorem 24.4.3 Use the following notation:

• Take f(n) and g(n) to be two arithmetic functions.

• Let h = f ⋆ g be their Dirichlet product.

• Let F,G,H be the corresponding Dirichlet series (in the variable s).

Then if the series F and G converge absolutely for any particular s, then
H converges and H = FG for that s as well.
Proof. First, we need there is a key fact you may or may not have seen in
calculus, related to absolute convergence (see for example Active Calculus).
Roughly speaking, when series converge absolutely, you can mess around with
them with a lot with impunity. See, for instance, Mertens’ Theorem on conver-
gence of Cauchy products. Interestingly, neither [E.4.6] nor [E.2.1, Theorem
9.6] say much more about this in their presentation of this standard proof. See
Exercise 24.7.3 if you have not encountered this!

In any case, since F and G do converge absolutely, we can and will mess
around a lot with the product

F (s)G(s) =

∞∑
n=1

f(n)

ns

∞∑
m=1

g(m)

ms
.

In particular, we can group the products by the terms f(n)g(m)
nsms (the same way

1And various other similar facts.

https://en.wikipedia.org/wiki/Bernoulli_number
https://www.math.ru.nl/~wzudilin/zw/
https://activecalculus.org/single/sec-8-4-alternating.html

CHAPTER 24. INFINITE SUMS AND PRODUCTS 421

we did in proving things about ⋆ in Subsection 23.4.3), without loss of equality.
We can further group by when n and m are complementary divisors of the

same number (I suggest using specific numbers to try this out). This gives

F (s)G(s) =

∞∑
d=1

∑
nm=d

f(m)g(n)

ds
.

Notice that the inner sum is precisely the Dirichlet ⋆ product (except di-
vided by ds). So we may rewrite this as

F (s)G(s) =

∞∑
d=1

(f ⋆ g)(d)

ds
.

The numerators are the definition of h, so this is just H(s), as desired. (In
[E.4.6, Theorem 11.5] the additional detail that any Dirichlet series with these
values must be the one for f ⋆ g is proved, which requires a uniqueness result
for the series we will omit.) ■

This is a quite remarkable and deep connection between the discrete/
algebraic point of view and the analytic/calculus point of view. It is a shame
that this is not exploited more in the standard calculus curriculum, though see
[E.6.8] for a very good resource for those who wish to do so.

24.5 More series and convergence

24.5.1 A series for Euler phi and a general theorem
We can now feel confident applying these amazing facts to calculate the Dirich-
let series of ϕ in terms of the Riemann ζ function. We’ll see a few facts along
the way which could serve as templates for many such investigations.
Fact 24.5.1 Call P the Dirichlet series for ϕ; it converges for s > 2.
Proof. From Fact 23.3.2, we recall that ϕ ⋆ u = N . Also, we know from earlier
in this chapter that ζ is absolutely convergent for s > 1.

Then the Dirichlet series of ϕ is absolutely convergent as well, as

0 <

∞∑
n=1

ϕ(n)

ns
≤

∞∑
n=1

n

ns
=

∞∑
n=1

1

ns−1

which converges by the integral test if s > 2. ■
Fact 24.5.2 The series for N may also be written as ζ(s− 1).
Proof. This follows just from writing it down, as each term in the infinite sum
is like that of ζ but with a different exponent after cancelling. ■

We can do even better than this to get a single formula for the series P .

Fact 24.5.3 The series for ϕ, P (s), evaluates as

P (s) =

∞∑
n=1

ϕ(n)

ns
=

ζ(s− 1)

ζ(s)

Proof. Recall that the Riemann zeta function is just the Dirichlet series for u;
the previous fact is that the series for N is ζ(s− 1).

Apply Theorem 24.4.3 to the series for ϕ and u. When you multiply these
two series it should give the series for N , and we already showed it all converges.
Substitute in the formulas to get P (s)ζ(s) = ζ(s− 1) for s > 2, which suffices

CHAPTER 24. INFINITE SUMS AND PRODUCTS 422

to prove the fact. ■
We can check this with Sage at any particular point if we wish.

sum([euler_phi(n)/n^3 for n in [1..10000]]).n()

1.36837198604112

(zeta (2)/zeta (3)).n()

1.36843277762021

It turns out that such Euler products (and hence nice computations) show
up quite frequently.

Theorem 24.5.4 If
∑∞

n=1
f(n)
ns converges absolutely and f is multiplicative,

then
∞∑

n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+

f(p2)

p2s
+ · · ·

)
.

Proof. Doing this is Exercise 24.7.2. We have a proof that Moebius µ’s Dirichlet
series converges to its Euler product in the next subsection; the proof of this
is very similar, just more general. ■

24.5.2 A missing step: Convergence of Dirichlet series
Before we start using all these facts in the next section, we have to acknowledge
there is a missing step thus far. Namely, we haven’t demonstrated much about
convergence of these series or products, much less that they converge to each
other. Although it is fun to play around, and numerical experimentation will
convince you they are very likely, we need more to really use these tools with
abandon.

Our goal in this subsection is to prove for the Moebius µ function that
its Dirichlet series converges to the Euler product. Proofs for most other such
functions (such as the Riemann zeta function) are similar enough to leave more
general proofs to a graduate course.
Fact 24.5.5 For s > 1 we have

∞∑
n=1

µ(n)

ns
=
∏
p

(
1− 1

ps

)
=
∏
p

(1− p−s)

Proof. This proof follows the outline of [E.2.1, Theorem 9.3a] closely; see also
[E.2.1, Theorem 9.2]. First we will come up with a way to write a partial
product as a specific sum. Then we will use this to get a precise error between
partial products and the infinite sum, and finally bound said error by something
going to zero, the final step of which we separate out as an independent claim.

We will begin with the identity we already know as defining µ in Defini-
tion 23.1.1: ∑

d|n

µ(d)

d
=
∏
p|n

(1− p−1).

Assuming we multiply these products out through the kth prime, we get

k∏
i=1

(
1− 1

pi

)
=

CHAPTER 24. INFINITE SUMS AND PRODUCTS 423

1− 1

p1
− 1

p2
− · · ·+ 1

p1p2
+

1

p1p3
+ · · · − 1

p1p2p3
− 1

p1p2p4
− · · · =

∑
n squarefree

only pi|n, 1≤i≤k

µ(n)

n
.

This certainly suggests the entire fact is true.
Next, let’s introduce the set

Ak = {n | n = pe11 pe22 · · · pekk , ei ≥ 0}

This is the set of all integers built out of the first k primes. Since µ(n) = 0
unless it has no higher prime powers, then in this notation the big right hand
side sum is equal to

k∏
i=1

(
1− 1

pi

)
=

∑
n squarefree

only pi|n, 1≤i≤k

µ(n)

n
=
∑
n∈Ak

µ(n)

n
.

Since the Fundamental Theorem of Arithmetic gives all these relations, I can
replace pi with psi with no harm and write

k∏
i=1

(1− p−s
i) =

∑
n∈Ak

µ(n)

ns
.

Our next step is to get a bound on the difference between the infinite
product and infinite series,

k∏
i=1

(1− p−s
i)−

∞∑
n=1

µ(n)

ns

By the work we just did, this is
∑

n/∈Ak

µ(n)
ns . This is the difference between the

infinite sum and the partial product through the kth prime. Further, we know
this error is finite for any given allowable s, because it’s bounded by ±ζ, and
ζ converges absolutely for s > 1 (recall the comparison test for infinite series).

Let’s put absolute values on this error bound:∣∣∣∣∣
k∏

i=1

(1− p−s
i)−

∞∑
n=1

µ(n)

ns

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n/∈Ak

µ(n)

ns

∣∣∣∣∣∣
To get a more explicit bound, we now deduce that any n /∈ Ak must be n > pk,
since n cannot have any of the first k primes as factors. Armed with this, the
following Claim 24.5.6 will finish the proof:∣∣∣∣∣∣

∑
n/∈Ak

µ(n)

ns

∣∣∣∣∣∣ ≤
∑
n>pk

1

ns

The latter error
∑

n>pk

1
ns must go to zero as k → ∞, since this is the tail

of a convergent infinite series. That means that the partial products converge
to the series; we know that is finite, so everything converges and we have our
Euler product for this Dirichlet series! ■

CHAPTER 24. INFINITE SUMS AND PRODUCTS 424

Claim 24.5.6 With all notation as in Fact 24.5.5, we have∣∣∣∣∣∣
∑
n/∈Ak

µ(n)

ns

∣∣∣∣∣∣ ≤
∑
n/∈Ak

∣∣∣∣µ(n)ns

∣∣∣∣ ≤ ∑
n>pk

∣∣∣∣µ(n)ns

∣∣∣∣ ≤ ∑
n>pk

1

ns

Proof. The first inequality follows if we can put the absolute value inside the
summation. This is an extended triangle inequality, which is only legitimate
if the final thing converges; however, we already showed this at the end of the
proof of the main fact.

The second inequality is due to the fact that any n /∈ Ak must be bigger
than pk, so the set of all integers above pk would just yield a bigger sum (since
all terms are now positive after the first step).

The final inequality uses that µ = 0, 1,−1 always. ■

24.6 Four Facts
We are now ready to work with four applied facts which we can prove, using
these tools. Some have other types of proofs, but number theory combined with
calculus really provides a unified framework for a huge number of problems.

• In Subsection 24.6.1, we will show that the probability that a random
integer lattice point is ‘visible’ from the origin is 6

π2 ; this is Proposi-
tion 24.6.2.

• In Subsection 24.6.2, we see that the Dirichlet series for f(n) = |µ(n)| is
ζ(s)/ζ(2s); this is Proposition 24.6.3.

• In Subsection 24.6.4, we compute the average value of ϕ(n) to be 3n
π2 ; this

is Proposition 24.6.7.

• In Subsection 24.6.3, we see that the prime harmonic series sum∑∞
n=1

1
pn

diverges, with pn the nth prime; this is Proposition 24.6.4.

24.6.1 Random integer lattice points
The following graphic will indicate what it means to have a point visible from
the origin; is there a point directly between it and the origin or not? To
rephrase, what is the probability that a point in the integer lattice has a line
connecting the point to the origin that does not hit any other point? (We will
explicitly avoid any discussion of why such infinitary probabilities are defined
in this introductory text.)

CHAPTER 24. INFINITE SUMS AND PRODUCTS 425

-4 -2 2 4

-4

-2

2

4

Figure 24.6.1 Integer lattice points visible from the origin through n = 5

For this example, the probability is about 0.66, but the theoretical prob-
ability will not be two-third! We will as usual want an interactive version
too.

@interact
def _(viewsize =(5 ,[3..25])):

var('x,y ')
P=Graphics ()
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(gcd(coords [0], coords [1]) ==1)]
P += points(lattice_pts , rgbcolor = (0,0,1),

pointsize =10)
linesegs =[line ([[0,0],[spot[0],spot [1]]],

rgbcolor =(1,0,0), linestyle="--",thickness =.5) for
spot in lattice_pts]

for object in linesegs:
P += object

show(P, figsize = [5,5], xmin = -viewsize , xmax =
viewsize , ymin = -viewsize , ymax = viewsize ,
aspect_ratio =1)

pretty_print(html(r"Probability␣in␣view␣is␣$\approx␣
%s$"%(Integer(len(lattice_pts)) /
Integer(len(grid_pts))).n()))

pretty_print(html(r"Theoretical␣probability␣is␣
$1/\zeta (2)\approx␣%s$"%(1/ zeta (2)).n()))

Note that the probabilities estimated by this interact vary wildly. Especially
at a prime distance one should expect the computed probability to be higher

CHAPTER 24. INFINITE SUMS AND PRODUCTS 426

than the theoretical one; why?
It should be pretty clear from the pictures that if x and y have a nontrivial

common divisor d then,
(
x
d ,

y
d

)
is right on the line of sight from the origin to

(x, y) so that it is blocked off. This is most clearly so for d = gcd(x, y), so the
following fact is the same thing as asking for the probability that two randomly
chosen integers are relatively prime.
Proposition 24.6.2 The chances that a random integer lattice point is visible
from the origin is 6

π2 .
Proof. We will prove the statement about coprime random integers, or at least
we will prove as much of it as we can without discussing infinite combinations
of independent chances. We will also make an assumption about distribution
of primes to simplify the proof; one can consider this a sketch, if necessary.

First, we know that gcd(x, y) = 1 is true precisely if x and y are never
simultaneously congruent to zero modulo p, for any prime p. (If there were
such a p, of course it would be a divisor; by the Fundamental Theorem of
Arithmetic we need only consider primes.)

For any given prime p, the chances that two integers will both be congruent
to zero is

1

p
· 1
p

.

This works because the probabilities are independent, since p is fixed, so we
can just multiply probabilities.

Hence the probability that at least one of x or y will not be divisible by p
is

1− 1

p
· 1
p
= 1− 1

p2
= 1− p−2.

(This may remind you of the so-called birthday problem in probability.)
Now comes our assumption. We will suppose that if p ̸= q are both prime,

then the probability that any given integer is divisible by p has nothing to do
with whether it is divisible by q. (Such properties are not true in general; if n
is divisible by 4 it has a 100% likelihood of being divisible by 2, while if n is
prime, it has almost no chance of being even.)

In such a case the probabilities are independent, so that (even in this infini-
tary case) ∏

p

(1− p−2) = 1/
∏
p

1

1− p−2
= 1/ζ(2) =

6

π2
.

We may note (as in the more extended discussion in [E.2.1, Chapter 9.4]) by
using Fact 24.4.2 that this is also the value of the Dirichlet series of µ evaluated
at s = 2. ■

This implies that a random pair of integers, selected from a large enough
bound, will be relatively prime about 61% of the time. See this Numberphile
video for a real-time experiment on Twitter2 doing something analogous with
triples in order to estimate Apéry’s constant ζ(3).

(6/pi^2).n()

0.607927101854027

2Sounds like an extra-credit project to me.

https://www.youtube.com/watch?v=ur-iLy4z3QE
https://www.youtube.com/watch?v=ur-iLy4z3QE

CHAPTER 24. INFINITE SUMS AND PRODUCTS 427

24.6.2 Dirichlet for the absolute Moebius

Proposition 24.6.3 The Dirichlet series for |µ(n)| is ζ(s)/ζ(2s).
Proof. With all the tools we’ve gained, the proof3 is nearly completely symbolic
at this point!

First, we have the following from the definition of Moebius in Definition 23.1.1,
or from Fact 24.5.5:

∞∑
n=1

|µ(n)|
ns

=
∏
p

(
1 +

1

ps

)
.

Next, let us write x = 1
ps ; then we can use the basic identity (1+x) = 1−x2

1−x
to rewrite the right-hand side as

∏
p

(
1 +

1

ps

)
=

∏
p

(
1− 1

p2s

)
∏

p

(
1− 1

ps

) .

Now we just invert both numerator and denominator to get familiar friends:∏
p

(
1− 1

p2s

)
∏

p

(
1− 1

ps

) =

∏
p 1/

(
1− 1

ps

)
∏

p 1/
(
1− 1

p2s

)
which means the sum will be ζ(s)/ζ(2s). ■

Let’s try this out computationally.

@interact
def _(s=[2,3,4,5]):

S = sum([abs(moebius(n))/n^s for n in [1..10000]]).n()
S2 = zeta(RR(s))/zeta (2*RR(s))
pretty_print(html("The␣approximation␣is␣$%s$␣while␣the␣

zeta␣computation␣is␣$%s$."%(S,S2)))

Computing these series doesn’t stop here, of course! For example, some-
thing analogous can be said about the Dirichlet series for multiples f(n) |µ(n)|
for certain types of f ; see [E.4.6, Exercise 11.13] for a precise statement.

24.6.3 The prime harmonic series
The divergence of the series created from the reciprocals of prime numbers is
not necessarily a particularly obvious fact. Certainly it diverges much, much
slower than the harmonic series (recalled before Definition 20.3.10), which al-
ready diverges very slowly. Euler showed this in 1737.

@interact
def _(n=[10 ,100 ,1000 ,10000 ,100000 ,1000000]):

out = sum([RealField (100) (1/p) for p in
primes_first_n(n)])

pretty_print(html("The␣sum␣of␣the␣reciprocals␣of␣the␣
first␣$%s$␣primes␣is␣$\\ approx␣%s$"%(n,out)))

3This result is the first half of [E.2.1, Exercise 9.14], where it is then applied to the
Liouville λ function of Definition 23.3.4 in an interesting way.

https://scholarlycommons.pacific.edu/euler-works/72/

CHAPTER 24. INFINITE SUMS AND PRODUCTS 428

This proof doesn’t actually use Dirichlet series, but has in common with
them themes of convergence and estimation, so it is appropriate to include
here.
Proposition 24.6.4 Prime harmonic series diverges. Let pn be the nth
prime. Then the following series, which we call the prime harmonic series,
diverges:

∞∑
n=1

1

pn

Proof. This is a fairly expanded form of the proofs in [E.2.1, Theorem 9.2] and
[E.4.6, Theorem 1.13], which the latter attributes to Clarkson in the Proceed-
ings of the AMS.

As with many other occasions to prove series divergence, we will focus on
the ‘tail’s beyond a point that keeps getting further out. In this case, we’ll
choose the ‘tail’ beyond the first k primes,

T =
∑
n>k

1

pn
.

By examining certain terms in this, and assuming (falsely) that it can be made
finite, we will obtain a contradiction.

First, let’s consider numbers of the form

p1p2p3 · · · pkr + 1 = pk# · r + 1

(Recall the primorial notation from Definition 22.2.7.) Such a number cannot
be divisible by any of those first k primes, so by the Fundamental Theorem of
Arithmetic any number like pk# · r + 1 may be factored as

pn1
pn2

· · · pnℓ
,

where all ni > k (some may be repeated).
Return to the ‘tail’. Since this pk# · r + 1 factors with ℓ factors, then

somewhere in the ℓth power of the ‘tail’ we have the following term:

T ℓ =

(∑
n>k

1

pn

)ℓ

=
1

p1p2p3 · · · pkr + 1
+ · · · .

Now assume that in fact the prime harmonic series converges; we will derive
a contradiction.

First, for some k, the ‘tail’ T is less than 1
2 , i.e. T =

∑
n>k

1
pn

< 1
2 . Since

each term is positive, T > 0 and a geometric series involving the ℓth powers of
T is very precisely bounded:

0 ≤
∞∑
ℓ=1

T ℓ =

∞∑
ℓ=1

(∑
n>k

1

pn

)ℓ

≤
∞∑
ℓ=1

1

2ℓ
= 2.

Now we bring in the first discussion in this proof; every single term of the
form 1

p1p2p3···pkr+1 will appear somewhere within this sum of the ℓth powers,
though naturally ℓ in each case will depend heavily upon r.

So the series of reciprocals of just these special terms is bounded.

0 <

∞∑
r=1

1

p1p2p3 · · · pkr + 1
≤

∞∑
ℓ=1

(∑
n>k

1

pn

)ℓ

≤ 2.

CHAPTER 24. INFINITE SUMS AND PRODUCTS 429

A bounded series of all positive number should converge (e.g. by comparison).
Here comes the contradiction. The same series is bounded below as follows,

for each integer k.
∞∑
r=1

1

p1p2p3 · · · pkr + 1
>

∞∑
r=1

1

p1p2p3 · · · pkr + p1p2p3 · · · pk

=
1

p1p2p3 · · · pk

∞∑
r=1

1

r + 1

This series certainly diverges, as a multiple of the tail of the harmonic series!
Since no matter how big k is (and hence how far out in the ‘tail’ we go) we

report that a certain series both converges and diverges, we have a contradic-
tion. Hence our original assumption that we could choose k to make T finite
was false, and the prime harmonic series must diverge! ■

24.6.4 The average value of Euler phi
Finally, here is a really nice result to end with. Thinking about the average
value of ϕ will put together many themes from this text.

You may recall Section 20.5, and in particular Exercise 20.6.17, where you
were asked to conjecture regarding this question. As there, it’s useful here to
try to graph the average values first; here I have incuded the correct long-term
average as well.

20 40 60 80 100

5

10

15

20

25

30

Figure 24.6.5 Average value of ϕ versus 3
π2x

Before formally proving this, let’s look at a significant picture for concep-
tualizing the proof. This is similar to what we used for the average of τ and σ
in Chapter 24.

CHAPTER 24. INFINITE SUMS AND PRODUCTS 430

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

1

-1

-1

0

-1

1

2

-2

-2

3

-3

4 5 6

Figure 24.6.6 Integer lattice with labeled points
The text at each lattice point is the value of horizontal coordinate, multi-

plied by a factor of Moebius of the vertical coordinate. You can try it interac-
tively if you are online.

@interact
def _(n=(6,list(range (2,50)))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
for thing in lattice_pts:

P += text(moebius(thing [1])*thing[0],
thing ,rgbcolor =(0,0,0))

show(P,ymax=viewsize ,aspect_ratio =1)

We will crucially use two earlier facts in the proof:

• From above (e.g. Fact 24.4.2),
∞∑

n=1

µ(n)

n2
=

1

ζ(2)
=

6

π2

• From the previous chapter (e.g. Fact 23.3.2),

ϕ = µ ⋆ N ⇒ ϕ(n) =
∑
d|n

µ(d)
n

d

CHAPTER 24. INFINITE SUMS AND PRODUCTS 431

This proof is based loosely on [E.4.6, Theorem 3.7]. See [E.2.8, Theorem 3.8.1]
for a more detailed approach which is rewarded with a very nice error estimate
– unusual in that it starts its discussion of averages with this example! Both
books have much more related material, including useful (if difficult) exercises
such as finding a bound for the sum of reciprocals of ϕ.
Proposition 24.6.7 The long-term average value of ϕ is given by

lim
n→∞

1
n

∑n
k=1 ϕ(k)
3
π2n

= 1

Proof. Consider the summation function for ϕ,
∑n

k=1 ϕ(n). As in Chapter 20,
we will think of it as summing things up in two different ways.

In particular, look at the summation once we have replaced with the Moe-
bius sum inside:

n∑
k=1

ϕ(k) =

n∑
k=1

∑
d|k

µ(d)
k

d

Now instead of considering it as a sum over divisors for each k, we can think of
it as summing for each divisor over the various hyperbolas xy = k. This yields

n∑
k=1

∑
d|k

µ(d)
k

d
=

n∑
d=1

µ(d)

⌊n
d ⌋∑

k=1

k


Now let’s examine the terms of this sum. We will several times use Landau

notation as in Definition 20.1.2.
Knowing about the sum of the first few consecutive integers (also used at

the end of Subsection 20.3.2), we see that⌊n
d ⌋∑

k=1

k

 =
1

2

(n
d

)2
+O

(n
d

)
.

If we plug that in the double sum, we get
n∑

k=1

ϕ(n) =
1

2
n2

n∑
d=1

µ(d)

d2
+ nO

(
n∑

d=1

µ(d)

d

)
.

Let’s examine this.
• The first term goes to 6

π2 as n → ∞. Further, its error is O(1/n), because
µ(n)/n2 < 1/n2 and

∫
x−2 dx = −x−1.

• The second term is certainly O(n log(n)), since it is n times a sum which
is less than something O(log(n)) (namely, ζ).

Plugging everything in, we get that
n∑

k=1

ϕ(n) =
1

2
n2 6

π2
+O(stuff less than n2)

Dividing by n and taking the limit, we get the asymptotic result.

lim
n→∞

1
n

∑n
k=1 ϕ(n)
3
π2n

= lim
n→∞

1
2
n2

n
6
π2 + 1

nO(stuff less than n2)
3
π2n

CHAPTER 24. INFINITE SUMS AND PRODUCTS 432

= lim
n→∞

3
π2n+O(stuff less than n)

3
π2n

= 1.

■

24.7 Exercises
1. Write down your answers to the three questions about the definition of

Dirichlet series after Definition 24.3.1.
2. Prove Theorem 24.5.4 in full generality, following that of Fact 24.5.5.

(This is a good technical exercise in convergence.)
3. Look up, or prove from scratch, that the ‘alternating harmonic series’∑∞

k=1
(−1)k+1

k is convergent, but not absolutely convergent. Look up, or
prove from scratch, the value of this series; then find a rearrangement of
it that sums to precisely half the usual value. (Extra credit if you do so
without referencing anything connected to the university IUPUI.)

The sum of the reciprocals of all primes is a very nuanced thing; here are some
additional exercises about it.

4. Learn more about the notion of zero density (recall Subsection 22.2.2).
Then find other (ordered) subsets of the positive integers like P =
{ primes } such that the sum of the reciprocals of the set diverges,
but the set has zero density in the integers.

5. Use Sage or other computational tools to conjecture the rate of growth
of the function

f(x) =
∑
p≤x

1

p

where p is of course prime. Hint: Typically one needs lumber to print
a book, such as [E.4.5] (but don’t peek there until you’re really stuck!).

6. Recall ω from Definition 23.3.3 and f(x) from the previous question.
Confirm numerically that the average value to x (in the sense of Chap-
ter 20) of ω is about the same as the size of f(x). Give a reason why∑

p≤x
1
p should be related to

∑
n≤x ω(n).

7. Find an exercise about averages of arithmetic functions, Dirichlet series,
or Euler products in [E.4.6, Chapters 3 and 11] and create a Sage cell to
verify the result computationally. Then do the actual exercise, and report
back comparing the two experiences.

8. Following [E.7.35], let a point r, s be b-visible from the origin (b a positive
integer) if it lies on the graph of some y = axb for a ∈ Q and there
is no other lattice point between that point and the origin on the curve.
Theorem 1 of their paper is that the proportion of b-visible points is 1

ζ(b+1) .
Verify this experimentally using graph paper or a computer for b = 2.

Summary: Infinite Sums and Products
Our penultimate chapter asks what happens if we take our formulas for arith-
metic functions and add infinity to the mix.

1. The first section, Section 24.1, examines the connection between products
and sums for arithmetic functions.

2. Then we define the Riemann zeta function and examine some of its basic
properties.

CHAPTER 24. INFINITE SUMS AND PRODUCTS 433

3. What happens more generally when we go to infinity? We get Dirichlet
Series and Euler Products.

4. The next section examines multiplication of these infinite series and prod-
ucts in Theorem 24.4.3.

5. We then investigate how these infinite processes work with the ϕ function,
as well as show technical details of convergence in Fact 24.5.5.

6. In the final section we can now prove Four Facts of high interest, including
my favorite, Proposition 24.6.2.

The Exercises begin winding down, as we give more conceptual activities.

CHAPTER 24. INFINITE SUMS AND PRODUCTS 434

Chapter 25

Further Up and Further In

If you survived this book, hooray! You made it. You did a great job making it
through a whole arc of number theory accessible at the undergraduate level.

Although we really did see a lot of the problems out there, there are many
we did not see all the way through. We were able to prove some things about
them. Here are just a few problems we started touching on.

• Solving higher-degree polynomial congruences, like x3 ≡ a (mod n). (Chap-
ter 7)

• Knowing how to find the first nontrivial integer point on hard things like
the Pell (hyperbola) equation x2 − ny2 = 1. (Chapter 15)

• Writing a number not just in terms of a sum of squares, but a sum of
cubes, or a sum like x2 + 7y2. (Chapter 14)

• The Prime Number Theorem, and finding ever better approximations to
π(x). (Chapter 21)

It’s this last one we will focus on in this extended postscript, for it takes
us to the very frontiers of the deepest questions about numbers.

25.1 Taking the PNT Further
Recall Gauss’ approximating function for π(x), the logarithmic integral func-
tion (Definition 21.2.2). Let’s remind ourselves just how well it performs.

435

CHAPTER 25. FURTHER UP AND FURTHER IN 436

200 400 600 800 1000

50

100

150

π(x)
Li(x)
Li(x)− 1

2
Li(

√
x)

Figure 25.1.1 Prime counting function along with Gauss and another
As we can see, it wasn’t too bad of an estimate. But, as mathematicians,

we hope we could get a little closer. At the end of Subsection 21.3.1 we tried
(among several other things) the fairly weird amended function

Li(x)− 1

2
Li(

√
x).

This was indeed a better approximation (in red in the graphic above). You
can try it interactively below.

@interact
def _(n=(1000 ,(1000 ,10^6))):

P = plot(prime_pi ,n-1000,n, color= ' black ' ,
legend_label=r ' $\pi(x)$ ')

P += plot(Li ,n-1000,n, color= ' green ' ,
legend_label= ' $Li(x)$ ')

P += plot(lambda x: Li(x) - .5*Li(sqrt(x)), n-1000,n,
color= ' red ' ,
legend_label=r ' $Li(x)-\frac {1}{2} Li(\sqrt{x})$ ')

show(P)

This second estimate seems better. One might think one could keep adding
and subtracting

1

n
Li(x1/n)

to get even closer, with this start to the pattern.
As it turns out, that is not quite the right pattern. In fact, the minus

sign comes from µ(2), not from alternating powers of −1. You may try it
interactively below:

@interact
def _(n=(1000 ,(1000 ,10^6)),k=(3 ,[1..10])):

P = plot(prime_pi ,n-1000,n, color= ' black ' ,
legend_label=r ' $\pi(x)$ ')

P += plot(Li ,n-1000,n, color= ' green ' ,
legend_label= ' $Li(x)$ ')

F = lambda x: sum([Li(x^(1/j))*moebius(j)/j for j in

CHAPTER 25. FURTHER UP AND FURTHER IN 437

[1..k]])
P += plot(lambda x: Li(x) - .5*Li(sqrt(x)),n-1000,n,

color= ' red ' ,
legend_label=r ' $Li(x)-\frac {1}{2} Li(\sqrt{x})$ ')

P += plot(F,n-1000,n, color= ' blue ' ,
legend_label=r ' $\sum_{j=1}^{%s}␣\frac{\mu(j)}{j}␣
Li(x^{1/j})$ ' %k)

show(P)

From anything one can see in the preceding interact, this set of approx-
imations doesn’t seem to add any of accuracy beyond k = 3. In fact, at
x = 1000000, taking the approximation with the sum

∑3
j=1

µ(j)
j Li(x1/j) is es-

sentially the same as going all the way to infinity in
∑∞

j=1
µ(j)
j Li(x1/j). More

importantly, both of these are clearly not integers, so this type of analysis
alone will not yield a computable, exact formula for π(x). So here are some
questions we might raise.

• Where does the Moebius µ in that approximation come from anyway?

• Since this wasn’t enough, what else is involved in the error

|π(x)− Li(x)| ?

• Are there connections with things other than just π(x)?

• What does this have to do with winning a million dollars?

25.2 Improving the PNT
The table shows the errors in Gauss’ and our new estimate for every hundred
thousand up to a million. Clearly Gauss is not exact (recall Figure 21.2.4), but
the other error is not always perfect either.

i π(i) π(i)− Li(i) π(i)−
∑3

j=1
µ(j)
j Li(x1/j)

100000 9592 −36.71 3.882

500000 41538 −67.50 7.087

1000000 78498 −129.0 −31.00

Figure 25.2.1 Errors between π(x), the log integral, and a Möbius estimate
We can build an interactive table of some results if we are online.

@interact
def _(k=(3 ,[2..11])):

F = lambda x: sum([Li(x^(1/j))*moebius(j)/j for j in
[1..k]])

T = [[' i ' , r ' $\pi(i)$ ' , ' $Li(i)$ ' , r ' $\pi(i)-Li(i)$ ' ,
r ' $\pi(i)-\sum_{j=1}^{%s}␣\frac{\mu(j)}{j}␣
Li(x^{1/j})$ ' %k]]

for i in [100000 ,200000..1000000]:
T.append ([i, prime_pi(i), Li(i).n(digits =7),

(prime_pi(i)-Li(i)).n(digits =4),
(prime_pi(i)-F(i)).n(digits =4)])

pretty_print(html(table(T,header_row = True , frame =
True)))

CHAPTER 25. FURTHER UP AND FURTHER IN 438

After the Prime Number Theorem was proved, mathematicians wanted
to get a better handle on the remaining error between the log integral and
π(x). In particular, the Swedish mathematician Helge Von Koch made a very
interesting contribution in 1901.

Conjecture 25.2.2 The (absolute value of the) error in the PNT is less than

1

8π

√
x log(x).

This seems to work, broadly speaking. You can try it interactively after
the static graphic.

1000 1200 1400 1600 1800 2000

180

200

220

240

260

280

300

320 π(x)
Li(x)
Von Koch error estimate

Figure 25.2.3 Von Koch estimate of error in prime number theorem

@interact
def _(n=(5000 ,(1000 ,10^6))):

P = plot(prime_pi ,n-1000,n, color= ' black ' ,
legend_label=r ' $\pi(x)$ ')

P += plot(Li ,n-1000,n, color= ' green ' ,
legend_label= ' $Li(x)$ ')

P += plot(lambda x: Li(x) -
1/(8*pi)*sqrt(x)*log(x),n-1000,n,
color= ' blue ' ,linestyle= ' -- ' , legend_label="Von␣Koch␣
error␣estimate")

P += plot(lambda x: Li(x) +
1/(8*pi)*sqrt(x)*log(x),n-1000,n,
color= ' blue ' ,linestyle= ' -- ')

show(P)

Given the observed data, the conjecture seems plausible, if not even open
to improvement. Though we should remember that Li and π switch places
infinitely often, see Fact 21.2.6! Of course, a conjecture is not a theorem, but
luckily Von Koch had one of those as well.
Theorem 25.2.4 The truth of the error estimate

|π(x)− Li(x)| ≤ 1

8π

√
x log(x)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Koch.html

CHAPTER 25. FURTHER UP AND FURTHER IN 439

for the prime number theorem is equivalent to saying that ζ(s) equals zero pre-
cisely where Riemann thought it would be zero in 1859 (see Conjecture 25.3.7).

This may seem like an odd statement. After all, ζ is just about reciprocals
of all numbers, and can’t directly measure primes. (And what do I mean by
“thought it would be”?) But in fact, the original proofs of the PNT also used
the ζ function in essential ways. So Von Koch was just formalizing the exact
estimate it could give us for the error.

25.3 Toward the Riemann Hypothesis
Riemann, though, was after bigger fish. He didn’t just want an error term. He
wanted an exact formula for π(x), one that could be computed. Computed by
hand, or by machine, if such a machine came along, as close as one pleased. And
this is where ζ(s) becomes important, because of the Euler product formula:

∞∑
n=1

1

ns
=
∏
p

1

1− p−s

Somehow ζ does encode everything we want to know about prime numbers.
And Riemann’s paper, “On the Number of Primes Less Than a Given Magni-
tude”, is the place where this magic really does happen. (The paper is also
available in translation in the appendix of [E.4.4].) Seeing just how it happens
is our goal to close the book.

We’ll begin by plotting ζ, to see what’s going on. As you can see, ζ(s)
doesn’t seem to hit zero very often. Maybe for negative s …

-10 -5 5 10

2

4

6

8

10

Figure 25.3.1 The zeta function on [-10,10] (plot(zeta,-10,10,ymax=10,ymin=-1))

25.3.1 Zeta beyond the series
Wait a minute! What was that plot? Shouldn’t ζ diverge if you put negative
numbers in for s? (Recall our definition in Definition 24.2.1.) After all, then
for s = −1 we’d get things like

∞∑
i=1

n

http://www.claymath.org/publications/riemanns-1859-manuscript
http://www.claymath.org/publications/riemanns-1859-manuscript

CHAPTER 25. FURTHER UP AND FURTHER IN 440

and somehow I don’t think that converges.
But it turns out that we can evaluate ζ(s) for nearly any complex number

s we desire.

-20 -15 -10 -5 5 10 15 20

-20

-15

-10

-5

5

10

15

20

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 25.3.2 Zeta on the complex plane (graphics_array([complex_plot(zeta,
(-20,20), (-20,20)),complex_plot(lambda z: z, (-3,3),(-3,3))]))

The right-hand graphic gives a color to every point in the complex plane.
The left-hand graphic then color-codes the outputs of ζ at each point in the
plane by matching them to the appropriate color (as a complex number) for
the output.

The important point here isn’t the picture itself, but that there is a picture.
To wit, ζ can be defined for (nearly) any complex number as input. Why
would that be the case? One way to see that we could define this function
for complex values comes by trying to define each term 1

ns in ζ(s) =
∑∞

n=1
1
ns

more precisely.
Suppose we let s be a complex number, using the long-standing notational

convention
s = σ + it

Then we can rewrite this term as
1

ns
= n−s = e−s log(n) = e−(σ+it) log(n) = e−σ log(n)e−it log(n)

Now we use a fact you may remember from calculus, which is very easy to
prove with Taylor series. (See Exercise 25.9.1):

eix = cos(x) + i sin(x)

Applying this, we get
1

ns
= e−σ log(n)e−it log(n) = n−σ (cos(t log(n))− i sin(t log(n)))

Using this analysis, if σ > 1, since cos and sin always have absolute value
less than or equal to one, we still have the same convergence properties as with
regular series. So if we take the imaginary and real parts separately, we can
rewrite

ζ(s) =

∞∑
n=1

1

ns
=

∞∑
n=1

cos(t log(n))
ns

+ i

∞∑
n=1

sin(t log(n))
ns

CHAPTER 25. FURTHER UP AND FURTHER IN 441

That doesn’t explain the part of the complex plane to the left of σ = 1 of
the picture above. All I will say is that it is possible to extend ζ there, and
Riemann did it. (In fact, Riemann is largely responsible for advanced complex
analysis.) As an example, ζ(−1) = − 1

12 , which is very close to saying that

ζ(−1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + · · · = − 1

12
.

zeta(-1)

-1/12

Investigate further whether this has any meaning in Exercise 25.9.21.

25.3.2 Zeta on some lines
Let’s get a sense for what the ζ function looks like. First, observe a three-
dimensional plot of its absolute value for σ between 0 and 1 (which will turn out
to be all that is important for our purposes). The code for this is plot3d(lambda
x,y: abs(zeta(x+i*y)),(0,1),(-20,20), plot_points=100) + plot3d(0,(0,1),(-20,20),
color='green',alpha=.5).

Figure 25.3.3 3d plot of Riemann zeta
To get a better idea of what is happening, we next compare two different

plots (first static, then interactive). One is a one-dimensional plot of |ζ| for
different inputs with the same σ. On the other side is the two-dimensional
colored complex plot of ζ(σ+ it), where σ is the real part, chosen by you, and
then we plot t out as far as requested. The line which we are viewing on the
complex plane in the first graphic is dashed in the second one.

1You may wish to view some dueling videos on this topic at Numberphile, a rebuttal, or
another excellent attempt.

https://www.youtube.com/watch?v=w-I6XTVZXww
https://www.youtube.com/watch?v=YuIIjLr6vUA
https://www.youtube.com/watch?v=sD0NjbwqlYw

CHAPTER 25. FURTHER UP AND FURTHER IN 442

-40 -30 -20 -10 10 20 30 40

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

-40

-30

-20

-10

10

20

30

40

Figure 25.3.4 Two different 2d plots of Riemann zeta

var(' t ')
@interact
def _(sig=slider (.01, .99, .01, 0.5, label=r ' \(\ sigma\) '),

end=slider (2,100,1,40, label=r ' end␣of␣\(t\) ')):
p = plot(lambda t: abs(zeta(sig+t*i)), -end ,end ,

rgbcolor=hue (0.7),ymin =0)
q = complex_plot(zeta ,(0 ,.99) ,(-end ,end),

aspect_ratio =1/end) + line ([(sig ,-end),(sig ,end)],
linestyle= ' -- ')

show(graphics_array ([p,q]),figsize =[5 ,3])

You’ll notice that the only places the function has absolute value zero
(which means the only places it hits zero) are when σ = 1/2.

Remark 25.3.5 It is not really possible to fully visualize a complex function
of complex input. So we often pick some line in the complex plane, such as
where the real part equals 1 (sort of like x = 1) or where the imaginary part
equals 1 (sort of like y = 1); then we either treat this as input to a parametric
curve, or similarly look at the output and in one way or another reduce it to
one real number, and plot it in the plane.

Another way to visualize ζ in a useful way is with the parametric graph
of each vertical line in the complex plane as mapped to the complex plane.
You can think of this as where an infinitely thin slice of the complex plane is
“wrapped” to.

CHAPTER 25. FURTHER UP AND FURTHER IN 443

-1.5 -1 -0.5 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0.5

1

1.5

0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

Figure 25.3.6 Plotting a line of Riemann zeta
This image is reasonably famous, because the only time the curve seems to

hit the origin at all is precisely at σ = 1/2, and at σ = 1/2 the curve seems to
hit the origin lots of times. For any other σ the curve just misses the origin,
somehow, which I highly encourage you to try interactively below.

@interact
def _(sig=slider (.01, .99, .01, 0.5, label=r ' \(\ sigma\) ')):

end=30
p = parametric_plot ((lambda t: zeta(sig+t*i).real(),

lambda t: zeta(sig+t*i).imag()), (0,end),
rgbcolor=hue (0.7),plot_points =300)

q = complex_plot(zeta ,(0 ,.99) ,(0,end),
aspect_ratio =1/end) + line ([(sig ,0) ,(sig ,end)],
linestyle= ' -- ')

show(graphics_array ([p,q]), figsize =[5 ,3])

Now it’s true that ζ is also zero at negative even integer input, but these
are well understood. The pictures demonstrate the mysterious part. And so
we have the following crucial question – where is ζ(s) = 0?

Conjecture 25.3.7 Riemann Hypothesis. All the zeros of ζ(s) = ζ(σ+ it)
where t ̸= 0 are on σ = 1/2.

The importance of this problem is evidenced by it having been selected as
one of the seven Millennium Prize problems by the Clay Math Institute (each
holding a million-dollar award), as well as having many recent popular books
devoted to it2. My feeling is that any number theory course should at least
briefly give a taste of its significance, even though the full scope is beyond any
first course.

25.4 Connecting to the Primes
The last few sections of this final chapter are devoted to seeing why the Rie-
mann Hypothesis might be related to the distribution of prime numbers. In
this, we will loosely follow the very interesting exposition of Prime Obsession
by John Derbyshire, [E.4.1].

For motivation, think of Von Koch’s result Theorem 25.2.4 connecting the
RH to a bound on the error between π(x) and the log integral. Our goal is
more detailed, however.

2Two aimed at starting from scratch for students, not just a general reader, are [E.4.2]
and [E.4.3].

http://claymath.org/millennium/

CHAPTER 25. FURTHER UP AND FURTHER IN 444

We’ll pursue this connection in three steps.

1. Our first step is to see the connection between π(x) and µ(n) (25.4.1).

2. Then we’ll see the connection between these and ζ (25.5).

3. Finally, we’ll see how the zeros of ζ come into play (25.6).

25.4.1 Connecting to Moebius
Let’s begin by defining a new function. Here is its graph.

5 10 15 20
0

2

4

6

8

50 100 150 200

10

20

30

40

50

Figure 25.4.1 The J function on two ranges
If you are reading this online, evaluate the following cell to define it, as well

as to plot a bit of it in any range you prefer.

def J(x):
end = floor(log(x)/log(2))
out = 0
for j in [1.. end]:

out += 1/j*prime_pi(x^(1/j))
return out

@interact
def _(end =[20 ,40..2000]):

L1 = [(n,J(n)) for n in [1.. end]]
plot_step_function(L1).show()

Riemann called this function f . Following [E.4.4] and [E.4.1], we will call
it J(x). It is very similar to π(x) in its definition, so it’s not surprising that it
looks similar.
Definition 25.4.2 We define

J(x) = π(x) +
1

2
π(
√
x) +

1

3
π(3

√
x) +

1

4
π(4

√
x) + · · · =

∞∑
n=1

1

n
π
(
x1/n

)
♢

CHAPTER 25. FURTHER UP AND FURTHER IN 445

This looks like it’s an infinite sum, but for any given x, it is finite. For
instance, let’s calculate J(20):

J(20) = π(20) +
1

2
π(
√
20) +

1

3
π(

3
√
20) +

1

4
π(

4
√
20) = 8 +

2

2
+

1

3
+

1

4
= 9

7

12

because 5
√
20 ≈ 1.8 and π(5

√
20) ≈ π(1.8) = 0, so the sum ends there, and we

can see that on the graph.
Okay, so we have this new function. Yet another arithmetic function. So

what?
Ah, but what have we been doing to all our arithmetic functions to see

what they can do, to get formulas for them? We’ve been Moebius inverting
them, naturally! (Recall Section 23.2.) In this case, Moebius inversion could
be really great, since it would give us information about the thing being added,
which is the all-important π(x).

The only thing standing in our way is that

J(x) =

∞∑
n=1

1

n
π
(
x1/n

)
is not a sum over divisors. But it turns out that, just like when we took the
limits of the sum over divisors

∑
d|n

1
d , we got

∑∞
n=1

1
n , we can do the same

thing with Moebius inversion.

Fact 25.4.3 If
∑∞

n=1 f(x/n) and
∑∞

n=1 g(x/n) both converge absolutely, then

g(x) =

∞∑
n=1

f(x/n) ⇐⇒ f(x) =

∞∑
n=1

µ(n)g(x/n).

We can use this by setting g = J with f(x/n) = 1
nπ
(
x1/n

)
. Applying this,

we achieve a very important result writing π(x) in terms of J :

π(x) =

∞∑
n=1

µ(n)
J(x1/n)

n
= J(x)−1

2
J(

√
x)−1

3
J(3

√
x)−1

5
J(5

√
x)+

1

6
J(6

√
x)+· · · .

Remark 25.4.4 If that last use of Moebius inversion looked a little sketchy, it
does to me too, but I cannot find a single source where it’s complained about
that f(x/n) = 1

nπ
(
x1/n

)
is really a function of x and n, not just x/n. In any

case, the result is correct, via a somewhat different explanation of this version
of inversion in a footnote in Edwards’ discussion of this matter in [E.4.4].

25.5 Connecting to Zeta

25.5.1 Turning the golden key
Now, this looks just as hopeless as before. How is J going to help us calculate
π, if we can only calculate J in terms of π anyway?

Here is where Riemann “turns the Golden Key”, as Derbyshire puts it.
Because ζ has an Euler product over the set of primes, we can just possibly
connect it to each prime. It turns out this will in fact connect ζ to J . This is
the goal of the rest of the current section.

In the next section, we will see how the zeros of ζ give us an exact formula
for J ; then we will finally plug J back into the Moebius-inverted formula for
π to get an exact formula for π in Section 25.7. Here is a plot of that formula,
as a foretaste.

CHAPTER 25. FURTHER UP AND FURTHER IN 446

50 60 70 80 90 100

16

18

20

22

24

26

28
π(x)
Li(x)

3∑
j= 1

µ(j)

j
Li(x1/j)

Really good estimate

Figure 25.5.1 π(x), Li(x), and something better than Li

We can see above that this has the potential to be a very good approxi-
mation, even given that I did limited calculations here. The most interesting
thing is the gentle waves you should see; this is quite different from the other
types of approximations we had, and seems to have the potential to mimic
the more abrupt nature of the actual π(x) function much better in the long
run. (See [E.4.3] for more details along these lines, connecting to Fourier series,
which we will not pursue.)

25.5.2 Detailing the connections
Now let’s connect J and ζ. Recall the Euler product for ζ again:

ζ(s) =
∏
p

1

1− p−s

The trick to getting information about primes out of this, as well as con-
necting to J , is to take the logarithm of the whole thing. This will turn the
product into a sum, something we can work with much more easily3:

log(ζ(s)) =
∑
p

log
(

1

1− p−s

)
=
∑
p

− log
(
1− p−s

)
Adding just fractions would have perhaps allowed using a geometric series

to make this a sum, but what could we do with a sum of logarithms?

Question 25.5.2 What can we do with − log() of some sum, not a product?
Solution. We can use its Taylor series!

− log(1− x) =

∞∑
k=1

xk

k

□
3This reminds me of the old joke about Noah’s ark and logarithms. So, after the ark

lands, all the animals are … having baby animals, let’s say. Except the snakes. No baby
snakes. Noah asks what the problem is – they seem to be missing the point. Snakes say, no
worries, just give us a wooden bench or sawhorse or something. Noah wonders what’s up,
but gives it to them. Next morning, tons of baby snakes! Naturally Noah has to ask where
the magic was. “Simple; adders need a log table to multiply.”

CHAPTER 25. FURTHER UP AND FURTHER IN 447

So we plug it in:

log(ζ(s)) =
∑
p

∞∑
k=1

(p−s)k

k

Now we will manipulate this in two big steps. First we’ll rewrite the fraction
as an integral, and then we will try to somehow add up the integrals.

Standard improper integral work (Exercise 25.9.3) from second-semester
calculus shows that we can rewrite the summands:

(p−s)k

k
=

s

k

∫ ∞

pk

x−s−1dx.

That means we can rewrite the logarithm of ζ as

log(ζ(s)) =
∑
p

∞∑
k=1

(p−s)k

k

=
∑
p

∞∑
k=1

s

k

∫ ∞

pk

x−s−1dx = s
∑
p

∞∑
k=1

∫ ∞

pk

1

k
x−s−1dx.

This is a very large sum of integrals. We can rewrite this as a single integral,
but we will need to pay close attention.

First, we can unify all these integrals from pk to ∞ by making them all
have the same endpoints. This is done somewhat artificially, by writing∫ ∞

pk

1

k
x−s−1dx =

∫ pk

1

1

k
· 0 · x−s−1 dx+

∫ ∞

pk

1

k
x−s−1dx

This yields the integral of a piecewise-defined function, but it for every k and
p it is defined from 1 to ∞.

Now comes the most surprising part. What function would I get if I added
up all those integrals in the double sum for log(ζ(s)),

∑
p

∑∞
k=1

(p−s)k

k ? To see
this, let us add up all of the piecewise integrands, organizing by the powers k
for any given prime p.

1. Whenever x reaches p1 = p, the sum of all those functions would add
1
1x

−s−1. Adding up all of these for all p means the total function would
include

π(x)x−s−1 . . .

2. Whenever x reaches p2, the sum of all those functions would add 1
2x

−s−1.
This, however, is the same thing as when

√
x hits a prime, so we can add

it to the previous point. The total function would include would include
1

2
π(
√
x)x−s−1 . . .

3. When x reaches a cube of a prime, the sum adds 1
3x

−s−1. This is the
same thing as adding a new part when 3

√
x hits a prime, that is adding

1

3
π(3

√
x)x−s−1

And so forth for each k. In short, adding up all these piecewise integrands
seems to give a big integrand(

π(x) +
1

2
π(
√
x) +

1

3
π(3

√
x) + · · ·

)
x−s−1.

CHAPTER 25. FURTHER UP AND FURTHER IN 448

But this sum of all the piecewise integrands is J(x), multiplied by x−s−1.
Hence

log(ζ(s)) = s
∑
p

∞∑
k=1

∫ ∞

pk

1

k
x−s−1dx = s

∫ ∞

1

J(x)x−s−1dx.

This completes our connection of ζ and J .

25.6 Connecting to Zeros

25.6.1 Where are the zeros?
Our next goal is to see how this connection

log(ζ(s)) = s

∫ ∞

1

J(x)x−s−1dx

relates to the zeros of the ζ function (and hence the Riemann Hypothesis).

L = lcalc.zeros_in_interval (10 ,100 ,0.1)
[l[0] for l in L]

[14.1347251 , 21.0220396 , ..., 98.8311942]

We see all the zeros for σ = 1/2 between 0 and 100; there are 29 of them.
We will connect to ζ by means of a very powerful analogy, the one which

Euler used to prove ζ(2) = π2

6 (see the end of Subsection 20.4.2) and which,
correctly done, does yield the right answer.

Begin the analogy by recalling basic algebra. The Fundamental Theorem
of Algebra states that every polynomial factors over the complex numbers. For
instance,

f(x) = 5x3 − 5x = 5(x− 0)(x− 1)(x+ 1).
If we take the logarithm of such a factorization, we can say things like

log(f(x)) = log(5) + log(x− 0) + log(x− 1) + log(x+ 1)

Then if it turned out that log(f(x)) was useful to us for some other reason R,
it would be reasonable to say that we can get information about the otherwise-
mysterious R from adding up information about the zeros of f (and the con-
stant 5), because of the addition of log(x− r) for all the roots r.

You can’t really do this with arbitrary functions, of course. Disappointingly,
ζ is definitely a function where this doesn’t work, mostly because ζ(1) diverges
so badly, no matter how you define the complex version of ζ.

But it so happens that ζ is very close to a function you can analyze this
way, (s − 1)ζ(s). Applying the logarithm factoring idea to (s − 1)ζ(s) (and
doing lots of relatively hard complex integrals, or some other formal business
with difficult convergence considerations) allows us to essentially invert the
equation

log(ζ(s)) = s

∫ ∞

1

J(x)x−s−1dx

to the even more surprising formula

J(x) = Li(x)−
∑
ρ

Li(xρ)− log(2) +
∫ ∞

x

dt

t(t2 − 1) log(t) (25.6.1)

CHAPTER 25. FURTHER UP AND FURTHER IN 449

25.6.2 Analyzing the connection
It is hard to overestimate the importance of the formula (25.6.1). Each piece
comes from something inside ζ itself, inverted in this special way.

• First, Li(x) comes from the fact that we needed (s− 1)ζ(s) to apply this
inversion, not just ζ(s). In fact, this particular inversion can be seen by
integrating, as it’s true that

s

∫ ∞

1

Li(x)x−s−1dx = − log(s− 1)

so one can see that s− 1 and Li seem to correspond.

• Second, each Li(xρ) comes from each of the zeros of ζ on the line σ = 1/2
in the complex plane. This is the part which most closely corresponds to
the factoring.

• The constant term log(2) comes from the constant when you do the
factoring, similarly to the 5 in the example above using f(x) = 5x3 − 5x.

• Finally, the integral in (25.6.1) comes from the zeros of ζ at −2n we
mentioned just before the statement of 25.3.7.

To give you a sense of how complicated (25.6.1) really is, here is a plot of
just one small piece of it.

-1 -0.5 0.5 1 1.5 2 2.5 3

1

2

3

4

Figure 25.6.1 Plot of Li(201/2+it)

This is the plot of Li(201/2+it) up through the first zero of ζ above the real
axis. It’s beautiful, but also forbidding. After all, if takes that much twisting
and turning to get to Li of the first zero, what is in store if we have to add up
over all infinitely many of them to calculate J(20)?

CHAPTER 25. FURTHER UP AND FURTHER IN 450

So at the very least, it would be helpful to know where all of those myste-
rious zeros live! This is why the Riemann Hypothesis is so important; it pins
them down quite dramatically.

25.7 The Riemann Explicit Formula
Now we are finally ready to see Riemann’s result, by plugging in the formula
(25.6.1) for J into the Moebius inverted formula for π we saw just before
Remark 25.4.4:

π(x) = J(x)− 1

2
J(

√
x)− 1

3
J(3

√
x)− 1

5
J(5

√
x) +

1

6
J(6

√
x) + · · ·

It is true that Riemann did not prove the following formula fully rigorously,
and indeed one of the provers of the Prime Number Theorem mentioned taking
decades as part of that effort just to prove all the statements Riemann made
in this one paper. Nonetheless, it is certainly Riemann’s formula for π(x), and
an amazing one:
Fact 25.7.1 Riemann explicit formula.

π(x) =

∞∑
n=1

µ(n)

n

[
Li(x1/n)−

∑
ρ

(
Li(xρ/n) + Li(xρ̄/n)

)
+

∫ ∞

x1/n

dt

t(t2 − 1) log(t)

]
It is worth making two points about the transition to this formula. First,

if you’re wondering where the log(2) from (25.6.1) went, it went to 0 because∑∞
n=1

µ(n)
n = 0, though this is very hard to prove. (In fact, it is a consequence

of the Prime Number Theorem; see Exercise 25.9.5.)
Secondly, each ρ is a zero above the real axis, and then ρ̄ is the correspond-

ing one below the real axis. The summation is over every single zero not on the
real axis. In particular, these ρ are conjectured by the Riemann Hypothesis to
all have real part equal to 1/2, which would make things particularly tidy.

Now let’s see this formula in action.

50 60 70 80 90 100

16

18

20

22

24

26

28
π(x)
Li(x)

3∑
j= 1

µ(j)

j
Li(x1/j)

Really good estimate

Figure 25.7.2 π(x), Li(x), and something better than Li

This graphic shows just how good it can get. Again, notice the waviness,
which allows it to approximate π(x) not just once per “step” of the function,

CHAPTER 25. FURTHER UP AND FURTHER IN 451

but along the steps. Try it out interactively below (where we make it somewhat
less accurate for the sake of computational speed).

import mpmath
var(' y ')
L = lcalc.zeros_in_interval (10 ,50 ,0.1)
@interact
def _(n=(100 ,(60 ,10^3))):

P = plot(prime_pi ,n-50,n, color= ' black ' ,
legend_label=r ' $\pi(x)$ ')

P += plot(Li ,n-50,n, color= ' green ' ,
legend_label= ' $Li(x)$ ')

G = lambda x: sum([mpmath.li(x^(1/j)) * moebius(j)/j for
j in [1..3]])

P += plot(G,n-50,n, color= ' red ' , legend_label =
r ' $\sum_{j=1}^{%s}␣\frac{\mu(j)}{j}␣Li(x^{1/j})$ ' %3)

F = lambda x: sum ([(mpmath.li(x^(1/j))-log(2) +
numerical_integral(1/(y*(y^2-1)*log(y)),
x^(1/j),oo)[0])*moebius(j)/j for j in [1..3]]) -
sum ([(mpmath.ei(log(x)*((0.5+l[0]*i)/j)) +
mpmath.ei(log(x)*((0.5 -l[0]*i)/j))).real for l in L
for j in [1..3]])

P += plot(F,n-50,n,color= ' blue ' , legend_label= ' Really␣
good␣estimate ' ,plot_points =50)

show(P)

We can also just check out some numerical values.

import mpmath
var(' y ')
L = lcalc.zeros_in_interval (10 ,300 ,0.1)
F = lambda x: sum ([(mpmath.li(x^(1/j))-log(2) +

numerical_integral (1/(y*(y^2-1)*log(y)),x^(1/j),oo)[0]
)*moebius(j)/j for j in [1..3]]) -
sum ([(mpmath.ei(log(x)*((0.5+l[0]*i)/j)) +
mpmath.ei(log(x)*((0.5 -l[0]*i)/j))).real for l in L for
j in [1..3]])

var(' y ')
L = lcalc.zeros_in_interval (10 ,300 ,0.1)
F = lambda x: sum ([(mpmath.li(x^(1/j))-log(2) +

numerical_integral (1/(y*(y^2-1)*log(y)),x^(1/j),oo)[0]
)*moebius(j)/j for j in [1..3]]) -
sum ([(mpmath.ei(log(x)*((0.5+l[0]*i)/j)) +
mpmath.ei(log(x)*((0.5 -l[0]*i)/j))).real for l in L for
j in [1..3]])

@interact
def _(n=300):

print(F(n))
print(prime_pi(n))
print(Li(n.n()))
print(Li(n.n()) - 1/2*Li(sqrt(n.n())) -

1/3*Li((n.n())^(1/3)))

Many wonderful facts would follow from the truth of the Riemann Hypoth-
esis, or from a natural generalization.

Fact 25.7.3 Consequences of the (generalized) Riemann Hypothesis.
The following follow from the Riemann Hypothesis or a generalization for things

CHƯƠNG 25. FURTHER UP AND FURTHER IN 452

like general Dirichlet series.
• The Dirichlet series of the Möbius function would be the multiplicative

inverse of the zeta function for lots more complex values than just the
real ones we proved it for in .

• The value (not just average) of σ(n) would have the following bound once
n is big enough:

σ(n) < eγ log(log(n))

• The biggest gap between consecutive prime numbers could not be too big
(to be precise, O(

√
p log(p)).

• We would know exactly what it means for a congruence class of prime to
win the ‘prime races’ (see Section 22.1).

• Artin’s conjecture (Conjecture 17.5.3) on primitive roots follows from a
generalization as well.

So can you prove that there are no other zeros other than those on the
critical line to contribute to these approximations to π(x)? If so, welcome to
the future of number theory!

25.8 Epilogue
The Riemann zeta function and counting primes is truly only the beginning of
research in modern number theory. Let’s see just a little more of its future.

For instance, research in finding and counting points on curves (as in
Chapter 15) leads to more complicated series like ζ, called L-functions. There
is a version of the Riemann Hypothesis for them, too (see Fact 25.7.3 for
some connections). Even without that, they gives truly interesting, strange,
and beautiful results, particularly when counting points on the elliptic curves
we mentioned at various points in text; a notable success of this was in the
proof of Fermat’s Last Theorem. You may wish to continue with books like
[E.4.19] or [E.4.5, Section 12.4] or [E.4.24, Chapters 13-15], or perhaps start
doing Exercise 25.9.9 with an internet search.

Here is a recent result of interest. Recall from Example 14.2.3 that the
notation r12(n) should denote the number of ways to write n as a sum of twelve
squares. Here, order and sign both matter, so (1, 2) and (2, 1) and (−2, 1) are
all different.
Theorem 25.8.1 As we let p run through the set of all prime numbers, the
distribution of the fraction

r12(p)− 8(p5 + 1)

32p5/2

is precisely as this circular function in the long run:

2

π

√
1− t2

Proof. Needless to say, this result is far beyond the level of this text – but
maybe you will make the next contribution? Initially this result is a corollary
of the proof of the Sato-Tate conjecture by Barnet-Lamb, Geraghty, Harris,
and Taylor; that proof crucially used the so-called “Fundamental Lemma” of
Gérard Laumon and Ngô Bảo Châu, the latter of whom won the Fields Medal
based on proving it in very full generality. ■

https://en.wikipedia.org/wiki/Sato–Tate_conjecture
https://en.wikipedia.org/wiki/Fundamental_lemma_(Langlands_program)

CHAPTER 25. FURTHER UP AND FURTHER IN 453

Sage note 25.8.2 Into the future. The following graphic is based on one
due to William Stein, the original founder and developer of Sage, in personal
communication.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 25.8.3 Distribution of modified twelve squares fraction (Sato-Tate)
Try it interactively below. The higher the number, the closer the values

should group to the distribution; change the number of bins in the histogram
to see it more clearly.

def sqrt2 ():
PI = float(pi)
return plot(lambda x: (2/PI)*math.sqrt(1-x^2), -1,1,

plot_points =200,
rgbcolor =(0.3 ,0.1 ,0.1), thickness =2)

delta = delta_qexp (10^5)

@interact
def delta_dist(bins =(20 ,[10..150]) , number =

[500 ,1000 ,.. , delta.prec()]):
D = delta [: number]
w = [float(D[p])/(2* float(p)^(5.5)) for p in

prime_range(number + 1)]
show(histogram(w, bins=bins , density=True) + sqrt2 (),

frame=True , gridlines=True)

What an amazing result. These ideas are at the forefront of all types of
number theory research today, and my hope is that you will enjoy exploring
more of it, both with paper and pencil and using tools like Sage!

25.9 Exercises
1. Prove that eix = cos(x)+i sin(x) using Taylor series. Try to include proofs

of the convergence of everything involved.
2. Many books have a chain of reasoning interpreting the value ζ(−1) =

1
12 . Find a physical one and summarize the argument. (The Specialized

CHAPTER 25. FURTHER UP AND FURTHER IN 454

References and Other References may have some suggestions.) Do you
buy that adding all positive integers could possibly have a meaning?

3. Show all details for the improper integrals in Section 25.5. You may wish
to have a refresher from any calculus textbook.

4. Differentiate the function h(x) = xx. Why is this question appropriate
for this chapter?

5. Verify numerically that
∑∞

n=1
µ(n)
n → 0; first try a calculator, then a

computer. How close can you get to zero before your computer gives up?
6. Read one of the several excellent introductions to the Riemann Hypothesis

intended for the “general reader”. (Some are listed in the Specialized
References.)

A natural next direction to explore is the notion of elliptic curves. These
exercises will help you think about what you find interesting about them!

7. How are elliptic curves used in cryptography? (Peruse Chapters 11–12
for references.)

8. Find out more about Mordell’s Theorem and its connection to this
chapter and/or to Fermat’s Last Theorem.

9. What is the Birch-Swinnerton-Dyer Conjecture? Find out as much
about it as you can. (See the Specialized References, for instance.)

10. Answer one of these questions, or all of them.
• What is a partition of a number?

• What are continued fractions?

• What is a number field?
11. What else do you want to know about numbers? What are you inspired

to discover?

Summary: Further Up and Further In
The final chapter in the book gives just a sense of possibly the most important
open question in mathematics.

1. In Section 25.1 and Section 25.2, we begin the process of asking how to
improve our estimates of primes.

2. The next section gives us enough background (and pictures!) to under-
stand at least the gist of the Riemann Hypothesis, one of the Millennium
Prize Problems.

3. Sections 25.4, 25.5, and 25.6 all lead up to seeing the Riemann explicit
formula in Section 25.7.

4. The Epilogue reminds us that this book is just the beginning.

The Exercises lead you even further into the future of your number theory
exploration!

https://activecalculus.org/single/sec-6-5-improper.html

Appendix A

List of Sage notes

There are many great Sage references. But for the convenience of users of this
text, we collect all the many Sage notes from the text here in one place.

Sage note 1.5.1 About Sage notes
Sage note 1.5.2 Using commands in Sage cells
Sage note 2.1.2 Counting begins at zero
Sage note 2.1.3 Repeating commands for different input
Sage note 2.4.5 Remind how to get list elements
Sage note 4.2.1 Timing your work
Sage note 4.2.2 Numbers too big for a computer
Sage note 4.2.4 Give things names
Sage note 4.2.5 Making tuples
Sage note 4.2.6 Types matter
Sage note 4.5.2 Checking equality
Sage note 4.6.2 List comprehensions
Sage note 5.3.8 Getting interactive Sage help
Sage note 5.4.3 Printing it out
Sage note 6.1.3 Making comments
Sage note 8.2.2 Colorful options
Sage note 9.1.6 Reminder to try things out
Sage note 9.3.2 Euler phi in Sage
Sage note 9.3.3 More complex list comprehension
Sage note 10.0.2 Reminder for colormaps
Sage note 10.1.3 Filtering list comprehensions
Sage note 10.2.2 How Sage does primitive roots
Sage note 10.5.5 Reminder on equality
Sage note 11.1.1 Definitions
Sage note 11.1.2 Always evaluate your definitions
Sage note 11.2.1 Reminder to evaluate definitions
Sage note 11.3.1 Another reminder to evaluate definitions
Sage note 11.3.4 Compute what you need
Sage note 11.3.6 Change values right in the code
Sage note 11.5.1 We keep reminding you
Sage note 11.6.1 A final reminder to evaluate definitions
Sage note 12.4.8 Reminder about timing

(Continued on next page)

455

APPENDIX A. LIST OF SAGE NOTES 456

Sage note 12.5.2 Trying your primes yourself
Sage note 12.5.5 Code for trial division
Sage note 12.6.8 Building interacts
Sage note 13.1.3 Handling errors
Sage note 13.4.15 Examining code is good for you
Sage note 16.2.2 Commands of more sophistication
Sage note 16.3.3 Quadratic residues
Sage note 17.1.6 Check your work
Sage note 17.4.11 Names of functions may vary
Sage note 18.2.4 Review quiz
Sage note 18.2.6 Explore here
Sage note 19.2.2 Syntax for sigma
Sage note 20.2.2 Try to be efficient
Sage note 21.1.2 Syntax for counting primes
Sage note 21.1.3 Cython
Sage note 21.1.4 Not all algorithms are equal
Sage note 21.4.4 Python can do math too
Sage note 22.3.11 Sage can change
Sage note 23.1.6 Check your work again
Sage note 25.8.2 Into the future

Appendix B

List of Historical Remarks

For convenience, below we collect some of the short historical remarks in the
text. We hope these, and the many places where the history was part and
parcel of the main text, whetted the reader’s appetite for more investigations!

There is a huge number of places to learn about the history of number
theory – including many of the books and articles in the References and Further
Resources, especially the Historical References. Another excellent compendium
of resources about mathematics history more generally is the MacTutor site.

Historical remark 2.3.2 Euclid’s Elements
Historical remark 2.4.7 Bezout and friends
Historical remark 3.1.1 Diophantine and his equations
Historical remark 3.5.2 Bachet de Méziriac
Historical remark 3.5.3 Bachet equation
Historical remark 3.5.6 Catalan’s conjecture – solved
Historical remark 5.3.3 Ancient Chinese work on remainders
Historical remark 6.2.5 Eratosthenes
Historical remark 7.2.4 Hensel’s Lemma
Historical remark 11.3.5 Diffie and Hellman
Historical remark 11.4.1 Diffie-Hellman controversy
Historical remark 11.5.2 Who is RSA?
Historical remark 11.6.2 Sophie Germain
Historical remark 12.1.5 Marin Mersenne
Historical remark 12.1.7 GIMPS
Historical remark 12.1.8 The Skylake bug
Historical remark 12.6.7 Factoring Fermat
Historical remark 13.0.2 Albert Girard
Historical remark 13.0.3 Leonhard Euler
Historical remark 13.0.4 Pierre de Fermat
Historical remark 13.1.8 Fibonacci
Historical remark 13.4.16 Hermann Minkowski
Historical remark 14.1.3 Carl Friedrich Gauss
Historical remark 15.3.2 Louis Mordell
Historical remark 15.5.6 Brahmagupta
Historical remark 15.5.7 Stigler’s Law
Historical remark 16.3.7 Joseph-Louis Lagrange

(Continued on next page)

457

https://mathshistory.st-andrews.ac.uk

APPENDIX B. LIST OF HISTORICAL REMARKS 458

Historical remark 16.4.1 Adrien-Marie Legendre
Historical remark 17.2.1 Gotthold Eisenstein
Historical remark 19.4.13 Thabit ibn Qurra
Historical remark 21.2.7 Skewes’ Number
Historical remark 21.3.2 The Prime Number Theorem
Historical remark 21.3.3 Pafnuty Chebyshev
Historical remark 22.2.2 Lejeune Dirichlet
Historical remark 22.3.9 The Pentium bug
Historical remark 22.3.10 Twin prime status
Historical remark 23.1.2 August Möbius
Historical remark 24.2.3 Bernhard Riemann

Appendix C

Notation

This is a quick guide to possibly unfamiliar notation. Page numbers or ref-
erences usually refer to the first appearance of a notation with that meaning,
occasionally to a definition.

Symbol Description Page
Z (ring of) integers 1
N counting numbers (starting at zero) 1
a | b a is a divisor of b 4
gcd(a, b) greatest common divisor of a and b 12
⌊x⌋ greatest integer (floor) function 29
a ≡ b (mod n) a is congruent to b modulo n 44
[a] the equivalence class of a modulo some fixed n 47
a−1 multiplicative inverse of a number modulo some

fixed n
64∏n

i=1 pi product of unspecified, possible identical,
primes

78∏
p short form for product of primes 79∏
q alternate short form for product of primes 79∏n
i=1 p

ei
i product of unspecified distinct prime power 79∏

pe short form for product of prime powers 79
pk ∥ n for p prime, pk | n but pk+1 does not divide n 82
n! n factorial 82
Zn (ring of) integers modulo n 107
A \ {a} the set of all elements in A except a ∈ A 114
|G| order of a group G 116
|x| order of a group element x ∈ G 116
Un group of units modulo n 122
ϕ(n) order of the group of units of n (Euler function) 124
φ(n) alternate notation for Euler ϕ function 124
Fn Fermat number 22

n

+ 1 185
Mn Mersenne number 2n − 1 187
r2(n) number of different ways to write n as a sum of

two squares
234

Z[i] Gaussian integers {a+ bi | a, b ∈ Z} 237
C complex numbers 237

(Continued on next page)

459

APPENDIX C. NOTATION 460

Symbol Description Page
rk(n) number of different ways to write n as a sum of

k perfect squares
242

QR abbreviation for ‘quadratic residue’ 276
Qp group of quadratic residues of p 280(

a
p

)
Legendre symbol, for p an odd prime 285

aE multiples of positive even numbers less than p
by a

293

aE set of nonnegative remainders of elements of aE
modulo p

293

ra,e remainder modulo p of the element ae of aE 293(
a
n

)
Jacobi symbol, n odd 301

R sum
∑

even e, 0<e<p

⌊
qe
p

⌋
in proof of quadratic

reciprocity
307

µ sum
∑(p−1)/2

f=1

⌊
qf
p

⌋
in proof of quadratic reci-

procity
309

r(n) alternate notation for r2(n) 318
σk(n) sum of kth powers of divisors of n 323
τ(n) number of (positive) divisors of n 323
σ(n) sum of (positive) divisors of n 323
u(n) unit function 326
N(n) identity function 326
σ−1(n) abundancy index of n 331
O(g(x)) ‘Big Oh’ notation that a function is less in ab-

solute value than Cg(x), for some constant C
343

log(n) natural (base e) logarithm 349
γ Euler-Mascheroni gamma constant, limit of dif-

ference between the harmonic series and nat-
ural logarithm

355

Γ Gamma function factorial extension 355
π(x) prime counting function 363
ϕ(n, a) number of integers coprime to first a primes 366
pa the ath prime 366
Li(x) logarithmic integral

∫ x

2
dt

log(t) 367
Θ(x) Chebyshev theta function 376
a(n) prime number indicator function 378
p# primorial (product of primes up to p) 391
C2 twin prime constant 394
µ(n) Moebius function of n 399
f ⋆ g Dirichlet product of f and g as arithmetic func-

tions
403

I(n) Dirichlet product identity function 404
ω(n) number of unique prime divisors of n 406
ν(n) alternate notation for ω(n) 406
λ(n) Liouville’s function 406
ζ(s) Riemann zeta function 415
J(x) auxiliary function in Riemann explicit formula 444

Appendix D

List of Figures

Chapter 1 Prologue
Figure 1.4.1 FoxTrot comic

Chapter 3 From Linear Equations to Geometry
Figure 3.2.1 Solutions to a linear Diophantine equation
Figure 3.3.2 Positive solutions to a linear Diophantine equation
Figure 3.5.1 Visualizing when a cube is one less than a square

Chapter 6 Prime Time
Figure 6.2.2 Part of Euclid IX.20 proof

Chapter 7 First Steps With General Congruences
Figure 7.6.2 Solutions of a typical Mordell curve
Figure 7.8.1 Cutting a cake with 7 candles using two cuts
Figure 7.8.2 Cutting a cake with 6 candles using two cuts
Figure 7.8.4 Stellated 7-gons

Chapter 8 The Group of Integers Modulo n
Figure 8.1.2 Addition table for Z3

Figure 8.1.3 Multiplication table for Z3

Figure 8.1.4 Visualizing multiplication modulo n = 7

Figure 8.2.1 Visualizing powers modulo n = 11

Chapter 9 The Group of Units and Euler’s Function
Figure 9.7.2 Example of conductor analysis

Chapter 10 Primitive Roots
Figure 10.0.1 Visualizing powers modulo n = 11 (again)
Figure 10.1.2 Visualizing powers modulo n = 10

Chapter 12 Some Theory Behind Cryptography
Figure 12.2.1 Visualizing powers modulo n = 11 (yet again)
Figure 12.3.1 Visualizing powers modulo n = 11 (last time)

(Continued on next page)

461

APPENDIX D. LIST OF FIGURES 462

Chapter 13 Sums of Squares
Figure 13.1.5 Five as a sum of squares
Figure 13.2.5 Thirteen as a sum of squares
Figure 13.4.2 A different lattice for finding sums of squares
Figure 13.4.7 Adding circles to the sum of squares helper lattice
Figure 13.4.8 Sum of squares helper lattice with triangles and circles
Figure 13.4.14 Sum of squares helper lattice with all the bells and whistles

Chapter 14 Beyond Sums of Squares
Figure 14.1.4 Factoring in the Gaussian integers
Figure 14.1.6 Plot of Gaussian primes

Chapter 15 Points on Curves
Figure 15.0.1 Integer points on ellipses
Figure 15.1.1 Rational points on a circle
Figure 15.1.7 Rational points on an ellipse
Figure 15.2.2 Rational points on Dudeney’s curve
Figure 15.4.1 Integer points on an ellipse
Figure 15.4.5 Integer points on a parabola
Figure 15.4.6 Finding more integer points on a parabola
Figure 15.5.3 Finding more integer points on an ellipse
Figure 15.5.4 Integer points on a hyperbola
Figure 15.5.5 Finding more integer points on a hyperbola

Chapter 16 Solving Quadratic Congruences
Figure 16.3.5 Lagrange’s Table III of divisors of certain integers
Figure 16.3.6 Lagrange’s Table IV of divisors of certain integers
Figure 16.4.10 Visualizing powers modulo n = 13

Figure 16.5.1 Visualizing powers modulo n = 13 (again)

Chapter 17 Quadratic Reciprocity
Figure 17.4.4 Quadratic reciprocity visualized as a matrix
Figure 17.6.1 Geometric interpretation of power in Eisenstein criterion
Figure 17.6.4 Visualizing the proof of quadratic reciprocity

Chapter 18 An Introduction to Functions
Figure 18.1.3 Plotting ϕ

Figure 18.2.7 Visualizing sums of squares as area

Chapter 19 Counting and Summing Divisors
Figure 19.4.12 Mersenne and amicable numbers
Figure 19.6.1 Mersenne and 3-perfect numbers

Chapter 20 Long-Term Function Behavior
Figure 20.1.1 Error bounds for the sum of squares
Figure 20.1.4 A better error bound for the sum of squares
Figure 20.2.1 The average value of τ
Figure 20.2.3 The average value of τ out a long ways

(Continued on next page)

APPENDIX D. LIST OF FIGURES 463

Figure 20.3.1 Visualizing τ as lattice points
Figure 20.3.2 Visualizing lattice points as area for τ

Figure 20.3.4 Visualizing the error in areas for τ

Figure 20.3.6 Comparing the average of τ and log
Figure 20.3.7 Plotting the specific error of τ versus log
Figure 20.3.8 More symmetry and the average of τ
Figure 20.3.9 Visualizing γ

Figure 20.3.12 An even more precise error estimate for the average of τ
Figure 20.4.1 Lattice points and σ

Figure 20.4.3 The average value of σ
Figure 20.4.4 The average value of σ compared with a straight line

Chapter 21 The Prime Counting Function
Figure 21.1.1 A first plot of prime π

Figure 21.1.6 Comparing primes to the log of log
Figure 21.2.3 Comparing primes to the log integral
Figure 21.2.4 Excerpt from a letter of Gauss about primes
Figure 21.2.5 Comparing prime counting and log integral again
Figure 21.3.8 Comparing prime counting to 2x/ log(x)
Figure 21.4.1 The prime counting function π(x), again
Figure 21.4.2 The Chebyshev theta function
Figure 21.4.5 Limiting values of Chebyshev and others
Figure 21.4.8 A new way to envision the prime π function
Figure 21.4.9 Integrals of 1/ log(x)

Chapter 22 More on Prime Numbers
Figure 22.1.7 The modulo 4 prime race
Figure 22.1.8 The modulo 8 prime race
Figure 22.3.5 Estimating twin primes

Chapter 24 Infinite Sums and Products
Figure 24.2.2 The Riemann zeta function
Figure 24.6.1 Integer lattice points visible from the origin
Figure 24.6.5 The average value of ϕ
Figure 24.6.6 Labeled lattice points for ϕ

Chapter 25 Further Up and Further In
Figure 25.1.1 Comparing prime π with another estimate
Figure 25.2.1 Errors to pi(x)

Figure 25.2.3 Von Koch error estimate for prime π

Figure 25.3.1 The Riemann zeta function again
Figure 25.3.2 Visualizing the Riemann zeta as a complex function
Figure 25.3.3 Visualizing the Riemann zeta in three dimensions
Figure 25.3.4 Comparing complex and real plots of Riemann zeta
Figure 25.3.6 Riemann zeta along a specific line
Figure 25.4.1 The J function
Figure 25.5.1 A better approximation to prime π!
Figure 25.6.1 Plotting the log integral along a line in C
Figure 25.7.2 The better approximation to prime π, again

(Continued on next page)

APPENDIX D. LIST OF FIGURES 464

Figure 25.8.3 A case of the Sato-Tate conjecture

Appendix E

References and Further Re-
sources

E.1 Introduction to the References
There are so many resources I used in preparation of this book it would be very
hard to list all of them. Still, I have a lot of recommendations for further read-
ing, places for instructors to look for alternate examples, proofs, exercises, etc.,
and most of these are books I have actively used at some point. I attempted
to include a canonical website for each book, though be aware that especially
publisher pages may change at short notice. I’ve also included some valuable
articles I have benefited from.

E.2 General References
There are many good introductory number theory texts.

[1] Gareth A. and J. Mary Jones, Elementary Number Theory, Springer,
London, (2005). (Website)
A good introduction with an emphasis on groups, containing interleaved
exercises with full answers.

[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
fifth edition, Oxford, (1979) (Website for expanded sixth edition)
A highly regarded text with copious notes, but sometimes more than a
little hard to parse with its consecutively numbered theorems and very
dense prose.

[3] William Stein, Elementary Number Theory: Primes, Congruences, and
Secrets, Springer, (2008) (Website)
Freely available and the first Sage-enabled number theory text, by the
founder of Sage (a number theorist).

[4] Ken Rosen, Elementary Number Theory and its Applications, Pearson,
(2011). (Website)
A venerable text with programming exercises that still wear well.

[5] David C. Marshall, Edward Odell, Michael Starbird, Number Theory
through Inquiry, Mathematical Association of America, Washington, (2007).
(Website)

465

http://www.springer.com/us/book/9783540761976
https://global.oup.com/academic/product/an-introduction-to-the-theory-of-numbers-9780199219865
http://wstein.org/ent/
http://www.pearsonhighered.com/educator/product/Elementary-Number-Theory/9780321500311.page
http://www.maa.org/publications/ebooks/number-theory-through-inquiry

APPENDIX E. REFERENCES AND FURTHER RESOURCES 466

The topics are very standard, but the approach is quite different; no
proofs, only statements. This turns out to be a highly effective pedagogy;
see the Academy of Inquiry Based Learning for more information.

[6] R. P. Burn, A pathway into number theory, Cambridge, (1996) (Website)
A very fun inquiry-driven text before there were such things, with a lot
of extremely good examples, especially in things like quadratic forms.

[7] John Stillwell, Elements of Number Theory, Springer, (2003) (Website)
More algebraically oriented, with good material on the Pell equation and
Gaussian integers – noteworthy for a good treatment of Conway’s river
concepts.

[8] Harold Shapiro, Introduction to the Theory of Numbers, Dover, (2008)
(No website)
Incredibly comprehensive, at a fairly high level. Good material on av-
erages and odd perfection, immense bibliography and notes in style of
[E.2.2], and also inquiry-driven “do-it-yourself” sections. Appears to be
out of print.

[9] Anthony Gioia, The Theory of Numbers, Dover, (2001) (No website)
Surprisingly detailed and high-level but has good coverage of several
unusual topics such as geometry of numbers.

[10] Marty Erickson, Anthony Vazzana, David Garth, Introduction to Number
Theory, second edition, CRC, (2016). (Website)
Enough material for two courses, some fairly advanced, and newly en-
dowed with downloadable Sage worksheets for use with local or online
CoCalc.

[11] George Andrews, Number Theory, Dover, (1994) (Website)
Yet another nice reprint from Dover, this one with (as one would expect
of the author) great combinatorial content.

[12] H. M. Edwards, Higher Arithmetic: An Algorithmic Introduction to Num-
ber Theory, American Mathematical Society, (2006) (Website)
Not so algorithmic, but very, very concrete and constructive. Squares
are □s, which grows on the reader.

[13] Neville Robbins, Beginning Number Theory, Jones and Bartlett, (2006)
(No website)
An out-of-print standard text with many similar topics and interesting
historical comments.

[14] Oystein Ore, Invitation to Number Theory, Mathematical Association of
America, (1967) (Website)
An older text that is still worth the conversational tone.

[15] Duff Campbell, An Open Door to Number Theory, American Mathemat-
ical Society/MAA Press, (2018), (Website)
Careful emphasis throughout on getting a novice student ready for ab-
stract algebra/algebraic number theory, with Q[

√
d] coherent in an ele-

mentary text. Don’t miss continued fractions in the service of the Bezout
identity and the many interesting projects, including one on the p-adic
numbers.

[16] Róbert Freud and Edit Gyarmati, Number Theory, American Mathemat-
ical Society, (2020), (Website)
See my review for MAA reviews of this relatively ambitious text. Could
be very interesting to use for a two-semester algebra sequence that starts
with number theory.

http://www.inquirybasedlearning.org
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/pathway-number-theory-2nd-edition
http://www.springer.com/us/book/9780387955872
http://tvazzana.sites.truman.edu/introduction-to-number-theory/
https://cocalc.com
http://store.doverpublications.com/0486682528.html
http://bookstore.ams.org/stml-45/
http://www.maa.org/press/ebooks/invitation-to-number-theory
https://bookstore.ams.org/text-39
https://bookstore.ams.org/amstext-48/
https://www.maa.org/press/maa-reviews/number-theory-2

APPENDIX E. REFERENCES AND FURTHER RESOURCES 467

E.3 Proof and Programming References
The first few books here are good resources for an introduction to proof, which
should cover anything needed as a prerequisite for this text.

In addition to the many good programming exercises in several books in
the General References, the latter books will give you an introduction to the
programming side of things.

[1] Richard Hammack, Book of Proof, (2018). (Website)
A quality middle-of-the-road introduction to proof, used reasonably widely
and covering all standard topics for a proof transition course.

[2] Joseph Fields, A Gentle Introduction to the Art of Mathematics, (2013).
(Website)
The title is pretty accurate; this is a quite gentle open text usable for
self-study.

[3] Edward Burger, Extending the Frontiers of Mathematics, Key College,
(2007) (Website)
This book is not necessarily just an introduction to proof, but has a
wonderful attitude to conjecture. Essentially, one should view every proof
as an opportunity to extend, and every disproof as a chance to rescue.

[4] Gregory Bard, Sage for Undergraduates, American Mathematical Society,
(2015) (Website)
This is a very good guide to Sage for anyone starting out with basic
college math knowledge; the author has taught using Sage for some time.
Did I mention it is freely downloadable as well as available in print?

[5] Craig Finch, Sage: Beginner’s Guide, Packt, (2011) (Website)
This guide is not free, but is comprehensive (for the time it was writ-
ten) and has the unique perspective of someone not involved in the Sage
community.

[6] Paul Zimmermann et al., Computational Mathematics with SageMath,
SIAM/the authors, (2018) (Website)
This is an updated English edition of a very comprehensive book orig-
inally written in French. Includes everything from numerics to graph
theory. Available for free at the INRIA website.

[7] Allen Downey, Think Python, O’Reilly, (2012) (Website)
A very good introduction to programming from scratch in Python, usable
from the website or as a hard-copy text.

[8] Zed Shaw, Learn Python the Hard Way, Addison-Wesley, (2013) (Web-
site)
A preternaturally idiosyncratic take on how to program, but well worth
the effort to learn things the hard way if you have the time to push
through it.

E.4 Specialized References
Number Theory is a huge field, and even at an introductory level there are
many wonderful resources to be aware of. I have used many of the following
in one way or another in preparation of this text, and if you are intrigued by a
specific facet of number theory, I encourage you to get these from your library!
Most of these are more specialized, but a few are not really texts but intended
for the “casual” reader.

http://www.people.vcu.edu/~rhammack/BookOfProof/
http://giam.southernct.edu/GIAM/
http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP000280.html
http://www.gregorybard.com/Sage.html
https://www.packtpub.com/hardware-and-creative/sage-beginners-guide
http://bookstore.siam.org/ot160
http://sagebook.gforge.inria.fr/english.html
http://greenteapress.com/wp/think-python/
https://learncodethehardway.org/python/
https://learncodethehardway.org/python/

APPENDIX E. REFERENCES AND FURTHER RESOURCES 468

[1] John Derbyshire, Prime Obsession, Joseph Henry Press, (2003) (Website)
A marvelous achievement of bringing the Riemann Hypothesis to the
(determined) lay reader while simultaneously making you care about post-
Napoleonic Europe. If I do say so myself.

[2] Roland van der Veen and Jan van de Craats, The Riemann Hypothesis,
Mathematical Association of America, (2016). (Website)
Interesting lecture notes leading to a basic understanding of the Riemann
Hypothesis, based on a high-school enrichment program in the Nether-
lands.

[3] Barry Mazur and William Stein, Prime Numbers and the Riemann Hy-
pothesis, Cambridge University Press, (2016). (Website)
This book goes straight for the jugular of the Riemann Hypothesis, start-
ing from scratch. That requires a lot of investment, but you won’t find it
from the perspective of working number theorists in other books, either.

[4] H. M. Edwards, Riemann’s Zeta Function, Dover, (2001) (Website)
Still useful comprehensive first text on this important topic.

[5] Jeffrey Stopple, A Primer of Analytic Number Theory, Cambridge, (2003).
(Website)
Very innovative book on exactly what it says; second half not neces-
sarily for every US undergraduate, but easiest introduction to Birch-
Swinnerton-Dyer I could find! Covers most traditional material, too,
and has copious entertaining historical notes.

[6] Tom Apostol, Introduction to Analytic Number Theory, Springer, (1976).
(Website)
The canonical “undergraduate” analytic number theory book. Monumen-
tal but very difficult; zillions of interesting results in exercises.

[7] Stan Wagon and David Bressoud, A Course in Computational Number
Theory, Wiley, (2008). (Website)
Contains Mathematica code to visualize and explore a lot of interesting
number theory, and is very consistent with the computational viewpoint
throughout.

[8] Paul Pollack, Not Always Buried Deep, American Mathematical Society,
(2009). (Website)
Definitely a second course in number theory, as the subtitle says, with
good material on arithmetic progressions and the Hilbert-Waring prob-
lem (the latter is difficult to find in a textbook).

[9] Şaban Alaca and Kenneth S. Williams, Introductory algebraic number
theory, Cambridge University Press, (2003). (Website)
As the title says, and one appropriate for an undergraduate library.

[10] Harold Davenport, The Higher Arithmetic, Cambridge University Press,
(2008). (Website)
Another well-known general resource, with a very good description of how
to find if a rational conic has a rational point (which directly connects
to integer points on conics as well).

[11] Stephen Richards, A Number for Your Thoughts, S. P. Richards, (1982)
(No website)
Many very interesting topics for the general reader, from repunits to all
sorts of other topics. Intriguing story must lie behind the essentially
identical book by a different author several years later.

[12] Samuel S. Wagstaff, Jr., The Joy of Factoring, American Mathematical

https://www.nap.edu/catalog/10532/prime-obsession-bernhard-riemann-and-the-greatest-unsolved-problem-in
http://www.booksandculture.com/articles/2009/janfeb/prime.html
http://www.maa.org/press/books/the-riemann-hypothesis
http://wstein.org/rh/
http://store.doverpublications.com/0486417409.html
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/primer-analytic-number-theory-pythagoras-riemann
http://www.springer.com/us/book/9780387901633
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470412151.html
http://bookstore.ams.org/mbk-68
https://www.cambridge.org/core/books/introductory-algebraic-number-theory/9F53B233CD4D717B1A31ECD117FFEA7D
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/higher-arithmetic-introduction-theory-numbers-8th-edition

APPENDIX E. REFERENCES AND FURTHER RESOURCES 469

Society, (2013). (Website)
The title says it all, and more accessible to college students than one
would think. By one of the leaders in the field.

[13] George Andrews and Kimmo Eriksson, Integer Partitions, Cambridge
University Press, (2004). (Website)
A brilliant, accessible, inventive book which makes me very sad there is
only enough time for so many topics in a one-semester course. Indispens-
able for bringing partitions to undergraduates.

[14] Richard Friedberg, An Adventurer’s Guide to Number Theory, Dover,
(1995) (Website)
Very conversational and enjoyable; not really a textbook. Key feature
is a detailed discussion of how Euler missed what is essentially unique
factorization in a certain number field for two of his more interesting
results – and he does it without actually proving unique factorization!

[15] Julian Havil, Gamma: Exploring Euler’s Constant, Princeton, (2009).
(Website)
This book turns out to be about both Γ the function and γ the constant
(recall Definition 20.3.10), and includes a description of Apéry’s tomb
(see Remark 24.4.1 with regard to ζ(3)).

[16] C. D. Olds, Anneli Lax, Giuliana Davidoff, The Geometry of Numbers,
Mathematical Association of America, (2000) (Website)
Delightful introduction to and inspiration for many of the lattice topics
pursued in this text. The second half goes fairly deep, and is more than
worth pursuing as a directed study with undergraduates.

[17] Paulo Ribenboim, The Little Book of Bigger Primes, Springer, (2004)
(Website)
This book has incredible amounts of interesting detail regarding many of
the prime topics considered here. An example: a discourse on whether
the pseudoprime criterion base 2 was really discovered by ancient Chinese
mathematicians.

[18] Paulo Ribenboim, My Numbers, My Friends, Springer, (2000) (Website)
Based on a series of lectures, this book is rather higher level, but has cor-
respondingly more truly interesting material, including an entire chapter
inspired by 1093 and a very early prime-generating algorithm by a certain
Pocklington.

[19] Thomas R. Shemanske, Modern Cryptography and Elliptic Curves: A
Beginner’s Guide, American Mathematical Society, (2017) (Website)
This really is a beginner’s guide, which developmentally arrives at addi-
tion on projective elliptic curves. The focus on cryptography is clear with
Lenstra’s ECM algorithm as payoff, but BSD is also reasonably described.
But why mention safe primes and not Germain primes?

[20] Martin H. Weissman, An Illustrated Theory of Numbers, American Math-
ematical Society, (2017), (Website)
Lushly illustrated, including for nonstandard topics like Conway’s topo-
graph and Gaussian/Eisenstein. Emphasis on dynamical point of view,
even for Euler’s Theorem. Well-researched historical notes, and linked
Jupyter notebooks on the website.

[21] Benjamin Hutz, An Experimental Introduction to Number Theory, Amer-
ican Mathematical Society, (2018), (Website)
Many in-depth topics somewhat beyond a standard semester course, such
as height and Diophantine approximation. Unique is covering dynamical

http://bookstore.ams.org/stml-68
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/integer-partitions
http://store.doverpublications.com/0486281337.html
http://press.princeton.edu/titles/7494.html
http://www.maa.org/press/ebooks/the-geometry-of-numbers
http://www.springer.com/us/book/9780387201696
http://www.springer.com/us/book/9780387989112
https://bookstore.ams.org/stml-83
http://illustratedtheoryofnumbers.com
https://bookstore.ams.org/amstext-31

APPENDIX E. REFERENCES AND FURTHER RESOURCES 470

systems on polynomials over Q. The intriguing exploratory exercises lack
pseudocode.

[22] Alasdair McAndrew, Introduction to Cryptography with Open-Source Soft-
ware, CRC, (2011), (Website)
I have not read this, but with full sections on DES and AES, elliptic
curves, and “El Gamal in Sage”, I think it could be a good complement
on the application side to many of the texts in these references.

[23] Avner Ash and Robert Gross, Fearless Symmetry, Princeton, (2008),
(Website)
Astonishingly, builds up in a conversational tone from practically nothing
to Galois representations coming from elliptic curves and the connection
to Fermat’s Last Theorem. Explicitly connects quadratic reciprocity to
quadratic curves, for instance. Highly recommended.

[24] Avner Ash and Robert Gross, Elliptic Tales, Princeton, (2012), (Website)
A followup to [E.4.23], which attempts to explain elliptic curves from the
ground up through to their L-functions and the Birch-Swinnerton-Dyer
conjecture.

[25] Lasse Rempe-Gillen and Rebecca Waldecker, Primality Testing for Be-
ginners, American Mathematical Society, (2014), (Website)
Although it does cover a lot of basic number theory, the unusual main
focus is making the proof of Agrawal, Kayal, and Saxena that deciding
whether a number is prime is in the computational complexity class P
directly accessible to (talented) high school and university students.

[26] Paul Pollack, A Conversational Introduction to Algebraic Number Theory,
American Mathematical Society, (2017), (Website)
Definitely requires a good ring and field background, but also truly con-
versational. It starts with a very thorough treatment of quadratic number
fields, then starts over, meanwhile making reference to a startling num-
ber of both original papers from the nineteenth century and very recent
Monthly articles.

E.5 Historical References
Number Theory is also a very old field, as should be clear from using this
book. Here I have collated references intended both for mathematicians and
the fabled ‘educated laity’. (Note that many of the other books referenced here
have significant historical content, notably [E.4.5].)

[1] Jim Tattersall, Elementary Number Theory in Nine Chapters, Cambridge
University Press, (2005) (Website)
Oodles of class-tested historical material and many, many exercises, in-
cluding a welter of them on topics surrounding amicable numbers.

[2] John J. Watkins, Number Theory: A Historical Approach, Princeton,
(2013). (Website)
A very nice historically-oriented approach to elementary number theory.
Includes Sage material in an appendix.

[3] Oystein Ore, Number Theory and Its History, Dover, (1948). (Website)
Another conversational classic by Ore, with plenty of historical goodies.

[4] Jay Goldman, The Queen of Mathematics, AK Peters, (1997) (Website)
A truly historical sojourn through much of number theory up through

https://www.crcpress.com/Introduction-to-Cryptography-with-Open-Source-Software/McAndrew/p/book/9781439825709
https://press.princeton.edu/books/paperback/9780691138718/fearless-symmetry
https://press.princeton.edu/books/hardcover/9780691151199/elliptic-tales
https://bookstore.ams.org/stml-70
https://bookstore.ams.org/stml-84
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/elementary-number-theory-nine-chapters-2nd-edition?format=PB
http://press.princeton.edu/titles/10165.html
http://store.doverpublications.com/0486656209.html
https://www.crcpress.com/The-Queen-of-Mathematics-A-Historically-Motivated-Guide-to-Number-Theory/Goldman/p/book/9781568810065

APPENDIX E. REFERENCES AND FURTHER RESOURCES 471

the early twentieth century, with extensive primary source material and
investigation of Gauss’ monumental work. Sadly, largely beyond the level
of this text.

[5] William Dunham, Journey Through Genius, Wiley, (1990). (Website)
This is intended for those without calculus, but has many great number-
theoretic bits all the same.

[6] William Dunham, Euler: The Master of Us All, Mathematical Associa-
tion of America, (1999). (Website)
This book has some nice discussion of Euler’s number theory alongside
many other historical vignettes with real math power.

[7] A. Knoebel et al., Mathematical Masterpieces: Further Chronicles by the
Explorers, Springer, (2007). (Website)
Collection of additional classroom resources focused on primary source
material, including the Basel problem and quadratic reciprocity.

[8] André Weil, Number Theory: An approach through history From Ham-
murapi to Legendre, Birkhäuser, (1984). (Website)
Absolutely first-rate mathematician’s insider view into the contributions
of Fermat and Euler. Plenty of opinions and connections to modern
mathematics, though sadly it will never be updated to connect Wiles’
work on elliptic curves to Fermat’s legacy.

[9] Waclaw Sierpínski, Pythagorean Triangles, Dover, (2013). (Website)
In general it’s accessible to a student using this book, though as a reprint
of a fifty-year-old book it (as a recent College Mathematics Journal review
put it) could use ‘certain updates’.

[10] Ulrich Libbrecht, Chinese Mathematics in the Thirteenth Century, Dover,
(1973). (No website)
Reprint of MIT Press original publication (now out of print), an ex-
tremely thorough discussion of Qin Jiushao’s entire mathematical opus
within its cultural context. About half the book is a monograph on the
Chinese Remainder Theorem, hence its inclusion in this set of references.

[11] Alireza Djafari Naini, Geschichte der Zahlentheorie im Orient, Verlag
Klose und Co., (1982). (No website)
Special focus on number theory in the medieval era in the Islamic world,
especially Persian mathematicians. Many explicit examples, and compar-
isons with Diophantus and more modern sources.

E.6 Other References
Some books are just interesting, even if they are not primarily about number
theory. I enjoyed all of these a great deal and recommend them.

[1] Richard Evans Schwartz, You Can Count on Monsters, A K Peters,
(2010) (Website)
This delightful picture book has a different monster for each prime num-
ber, with bizarre combinations for composites. Personal experience says
it satisfies for ages three and up.

[2] Nathan Carter, Visual Group Theory, Mathematical Association of Amer-
ica, (2009). (Website)
Visualize group theory; gorgeous pictures.

[3] John H. Conway and Richard Guy, The Book of Numbers, Springer,

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471500305.html
http://www.maa.org/press/books/euler-the-master-of-us-all
http://www.springer.com/us/book/9780387330600
https://www.springer.com/la/book/9780817645656#reviews
https://store.doverpublications.com/0486174832.html
http://www.richardevanschwartz.com/monsters.html
http://www.maa.org/publications/ebooks/visual-group-theory

APPENDIX E. REFERENCES AND FURTHER RESOURCES 472

(1996). (Website)
A joyous and pictorially engaging romp.

[4] Arthur T. Benjamin and Ezra Brown (eds.), Biscuits of Number Theory,
Mathematical Association of America, (2009). (Website)
A very good compendium of many articles (published throughout the
years) most appropriate for teachers of undergraduate number theory.

[5] Kerins et al., Famous Functions in Number Theory, American Mathe-
matical Society, (2015). (Website)
Aimed at bringing number theory to in-practice or pre-practice educators,
this has a very nice treatment of arithmetic functions. Once you’ve heard
of summation and Moebius inversion as ‘parent’ and ‘child’ relationships,
you’ll never think of them the same again.

[6] Kerins et al., Applications of Algebra and Geometry to the Work of Teach-
ing, American Mathematical Society, (2015). (Website)
Aimed at bringing algebra and geometry to in-practice or pre-practice
educators; manages to bring Gaussian and Eisenstein integers and some
quadratic forms in at the ground level.

[7] T. S. Michael, How to Guard an Art Gallery, Johns Hopkins, (2009)
(Website)
The subtitle is “and other discrete mathematical adventures”, and that
about says it. Covers a surprising amount of number theory in very visual
ways.

[8] Robert Young, Excursions in Calculus: An Interplay of the Continuous
and Discrete, Mathematical Association of America, (1992) (Website)
Unfortunately no longer in print, but a very good source of ideas for
connecting what we usually think of as the continuous world of calculus
and various discrete topics (not just number theory, though this shows
up in several chapters).

[9] Dora Musielak, Prime Mystery: The Life and Mathematics of Sophie
Germain, AuthorHouse, (2015) (Website)
The title says it all, and probably the most comprehensive resource on
this intriguing mathematician out there. As is typical for a samizdat, it
could use more editing and probably speculates a bit much, but given
how little we know about Germain still impressive.

[10] Alan Beardon, Mathematical Exploration, Cambridge, (2016) (Website)
Part of the AIMS Library Series, this book includes plenty of fun, di-
rected, proto-research on topics like families of Pythagorean triples and
the conductor. Explore!

[11] Apostolos Doxiadis, Uncle Petros and Goldbach’s Conjecture, Blooms-
bury, (2000) (Website)
This ‘novel of mathematical obsession’ is a Bildungsroman of sorts that
does a surprisingly good job of also introducing the still-unproven con-
jecture that any even number greater than four is the sum of two odd
primes.

E.7 Useful Articles
Throughout the text, I’ve attempted to reference articles in so-called ‘generalist’
mathematics publications which have been useful or intriguing. See also the
collection [E.6.4], where some of these appear.

http://www.springer.com/us/book/9780387979939
http://www.maa.org/press/books/biscuits-of-number-theory
http://bookstore.ams.org/sstp-3/
http://bookstore.ams.org/sstp-2
https://jhupbooks.press.jhu.edu/content/how-guard-art-gallery-and-other-discrete-mathematical-adventures
http://www.maa.org/publications/books/excursions-in-calculus
https://www.authorhouse.com/BookStore/BookDetails/703856-Prime-Mystery
https://www.cambridge.org/core/books/mathematical-explorations/F926A2DFE3FEC8B34542EC598C8D7DE3
https://aims.ac.za
https://apostolosdoxiadis.com/book/uncle-petros-and-goldbachs-conjecture/

APPENDIX E. REFERENCES AND FURTHER RESOURCES 473

[1] Ivan Niven and Barry Powell, Primes in Certain Arithmetic Progressions,
The American Mathematical Monthly, June-July 1976, 83 no. 6, 467–469.

[2] D. Zagier, A One-Sentence Proof That Every Prime p ≡ 1(mod 4) Is
a Sum of Two Squares, The American Mathematical Monthly, February
1990, 97 no. 2, 144–144.

[3] Andrew Granville and Greg Martin, Prime Number Races, The American
Mathematical Monthly, January 2006, 113 no. 1, 1–33.

[4] David A. Cox, Why Eisenstein Proved the Eisenstein Criterion and Why
Schönemann Discovered It First, The American Mathematical Monthly,
January 2011, 118 no. 1, 3–21.

[5] Steven H. Weintraub, On Legendre’s Work on the Law of Quadratic Reci-
procity, The American Mathematical Monthly, March 2011, 118 no. 3,
210–216.

[6] Jonathan Bayless and Dominic Klyve, Reciprocal Sums as a Knowledge
Metric: Theory, Computation, and Perfect Numbers, The American
Mathematical Monthly, November 2013, 120 no. 9, 822–831.

[7] Xianzu Lin, Infinitely Many Primes in the Arithmetic Progression kn−1,
The American Mathematical Monthly, January 2015, 122 no. 1, 48–51.

[8] Reinhard Laubenbacher and David Pengelley, Eisenstein’s Misunder-
stood Geometric Proof of the Quadratic Reciprocity Theorem, The College
Mathematics Journal, January 1994, 25 no. 1, 29–34.

[9] Roger B. Nelsen, Proof Without Words: Square Triangular Numbers and
Almost Isosceles Pythagorean Triples, College Mathematics Journal, May
2016, 47 no. 3, 179–179.

[10] David Lowry-Duda, Unexpected Conjectures about -5 Modulo Primes,
College Mathematics Journal, January 2015, 46 no. 1, 56–57.

[11] William G. Stanton and Judy A. Holdener, Abundancy “Outlaws” of the
Form σ(N)+t

N , Journal of Integer Sequences, 10
[12] D. R. Slavitt, Give Way To God, or The Dying Christ – Pierre de Fermat,

The Mathematical Intelligencer, Summer 2012, 34 no. 2, 3–5.
[13] Paul Nahin, The Mysterious Mr. Graham, The Mathematical Intelli-

gencer, Spring 2016, 38 no. 1, 48–51.
[14] P. A. Weiner, The abundancy index, a measure of perfection, Mathemat-

ics Magazine, October 2000, 73 no. 4, 307–310.
[15] Andrew Bremner, Positively prodigious powers or how Dudeney done it?,

Mathematics Magazine, April 2011, 84 no. 2, 120–125.
[16] Rafael Jakimczuk, The Quadratic Character of 2, Mathematics Magazine,

April 2011, 84 no. 2, 126–127.
[17] Russell A. Gordon, Properties of Eisenstein Triples, Mathematics Maga-

zine, February 2012, 85 no. 1, 12–25.
[18] Roger B. Nelsen, Proof Without Words: Infinitely Many Almost-Isosceles

Pythagorean Triples Exist, Mathematics Magazine, April 2016, 89 no. 2,
103–104.

[19] C. Edward Sandifer, How Euler Did It: Odd Perfect Numbers, MAA
Online, November 2006

[20] Matthias Beck, How to change coins, M&M’s, or chicken nuggets: The
linear Diophantine problem of Frobenius, in Resources for Teaching Dis-

APPENDIX E. REFERENCES AND FURTHER RESOURCES 474

crete Mathematics: Classroom Projects, History Modules, and Articles
(B. Hopkins, ed.), Mathematical Association of America, 2009, 65–74.

[21] S. A. Rankin, The Euclidean Algorithm and the Linear Diophantine Equa-
tion ax+by = gcd(a, b), The American Mathematical Monthly, June-July
2013, 120 no. 6, 562–564.

[22] F. Saidak, A new proof of Euclid’s theorem, The American Mathematical
Monthly, December 2006, 113 no. 10, 937–938.

[23] Yannick Saouter and Patrick Demichel, A sharp region where π(x)− li(x)
is positive, Mathematics of Computation, October 2010, 79 no. 272, 2395–
2405.

[24] Kent Boklan and John Conway, Expect at Most One Billionth of a New
Fermat Prime!, The Mathematical Intelligencer, 2017, 39 no. 1, 3–5.

[25] Bruce Berndt et al., The Circle Problem of Gauss and the Divisor Prob-
lem of Dirichlet—Still Unsolved, The American Mathematical Monthly,
February 2018, 125 no. 2, 99–114.

[26] William Dunham, The Early (and Peculiar) History of the Möbius Func-
tion, Mathematics Magazine, April 2018, 91 no. 2, 83–91.

[27] Enrique Treviño, An Inclusion-Exclusion Proof of Wilson’s Theorem, The
College Mathematics Journal, November 2018, 49 no. 6, 367–377.

[28] John Cosgrave and Karl Dilcher, Extensions of the Gauss-Wilson Theo-
rem, Integers, 2008, 8 no. 1, A39.

[29] Ernest Eckert, The Group of Primitive Pythagorean Triangles, Mathe-
matics Magazine, February 1984, 57 no. 1, 22–27.

[30] John Brillhart, A Note on Euler’s Factoring Problem, The American
Mathematical Monthly, December 2009, 116 no. 10, 928–931.

[31] Christian Aebi and Grant Cairns, Sums of Quadratic Residues and Non-
residues, The American Mathematical Monthly, February 2017, 124 no. 2,
166–169.

[32] A. Rotkiewicz and K. Ziemak, On Even Pseudoprimes, The Fibonacci
Quarterly, May 1995, 33 no. 2, 123–125.

[33] Lars-Daniel Öhman, Are Induction and Well-Ordering Equivalent?, The
Mathematical Intelligencer, September 2019, 41 no. 3, 33–40.

[34] Trevor Woolsey, A Superpowered Euclidean Prime Generator, The Amer-
ican Mathematical Monthly, April 2017, 124 no. 4, 351–352.

[35] Edray Goins et al., Lattice Point Visibility on Generalized Lines of
Sight, The American Mathematical Monthly, August-September 2018,
125 no. 7, 593–601.

[36] Dylan Fridman et al., A Prime-Representing Constant, The American
Mathematical Monthly, January 2019, 126 no. 1, 70–73.

[37] Roger Nelsen, Even Perfect Numbers End in 6 or 28, Mathematics Mag-
azine, April 2018, 91 no. 2, 140–141.

[38] Howard Sporn, Pythagorean Triples, Complex Numbers, and Perplex
Numbers, The College Mathematics Journal, March 2017, 48, no. 2, 115–
122.

[39] Aalok Thakkar, Infinitude of Primes Using Formal Languages, The Amer-
ican Mathematical Monthly, October 2018, 125, no. 8, 745–749.

[40] Hing-Lun Chan and Michael Norrish, A String of Pearls: Proofs of Fer-

APPENDIX E. REFERENCES AND FURTHER RESOURCES 475

mat’s Little Theorem in “Hawblitzel C., Miller D. (eds.) Certified Pro-
grams and Proofs, CPP 2012”, Lecture Notes in Computer Science, 7679,
188–207.

[41] Solomon Golomb, Combinatorial Proof of Fermat’s “Little” Theorem,
The American Mathematical Monthly, December 1956, 63, no. 10, 718.

[42] Steven R. Benson, Pythagorean Paper Folding, Mathematics Magazine,
February 2021, 94, no. 1, 34–42.

[43] Zafer Selcuk Aygin and Kenneth S. Williams, Why does a Prime p Divide
a Fermat Number?, Mathematics Magazine, October 2020, 93, no. 4, 288–
294.

APPENDIX E. REFERENCES AND FURTHER RESOURCES 476

Index

abundancy index, 331
and odd perfect numbers, 335

abundancy outlaws, 332
abundant number, see number,

abundant
aliquot parts, see divisor, proper
amicable numbers, 332

algorithm, 333
Apéry’s constant, 420

via Twitter, 426
Aryabhata, 15
associates, 239
asympotic, 367
average, see long-term average

Bachet equation, 38, 255
as special case of Mordell, 38
Euler’s ‘proof’ of, 256

Bachet, sieur de Méziriac, 37
base a test, 190, 191

Miller’s, see Miller’s test base
a

Bertrand’s postulate, 372
Bezout identity, see Euclidean

algorithm, extended
Big Oh notation, see Landau

notation
Brahmagupta, 71, 216, 264

quote about mathematicians,
269

Brun’s constant, 395

Carmichael numbers, 192
characterization of, 192

certificate of primality, 197
Chebyshev, 372
Chinese remainder theorem, 63,

65, 126
example, 65
for solving polynomial

congruences, 273

practical application of, 70
cipher, 155
class number, 221
CoCalc, xiv
code, 155
coin problem, see conductor
combinatorics, 102
completing the square, 275
composite number, 73
conductor, 2

exercises, 5
explore with Sage, 7
solution, 135

congruence
arithmetic well-defined, 47
of two numbers, 44
same as having same

remainder, 44
congruences

as solutions to congruences,
94

giving system of congruences,
68

linear, see linear congruences
modular equivalent of

equations, 52, 57
quadratic, 271
system of, see system of

congruences
congruent number problem, 34, 38
conjecture

Artin’s, 306
Birch-Swinnerton-Dyer, 454,

468, 470
Carmichael’s, 133
Catalan’s, 38, 257
generalized

Elliott-Halberstam, 396
Goldbach, 394
Polignac’s, 392

477

INDEX 478

Riemann hypothesis, 443
twin prime, see twin prime

conjecture
Von Koch’s, 438
Wagstaff’s, 396

continued fraction, 204
convolution, see Dirichlet product
coprime, 17

cancellation in linear
congruences, 59

chances at random, 426
needed for Diffie-Hellman, 162

coprime in pairs, see mutually
coprime

counting numbers, see numbers,
counting

CRT, see Chinese remainder
theorem

cryptography, 155, see also
encryption method

Advanced Encryption
Standard, 183

asymmetric key, 161
cipher, 155
decode, 156
decryption, 158
digital signature, 175
elliptic curve, 169
encode, 156
encryption, 158
key exchange, 167
‘man in the middle’ attack,

168, 174
public-key, 161, 169, 305
secret sharing, 179
symmetric key, 158
trapdoor, 169

Cython, 364

decode, 156
decryption, 158

key, 158
def, 156
deficient number, see number,

deficient
density

positive, 390
zero, 390, 432

Diffie-Hellman
encryption, 162, 164
key exchange, 167

digital signature, 175
Diophantine equations

general, 31

higher-order, 248
linear, see linear Diophantine

equations
Diophantus, 21
Dirichlet, 389
Dirichlet product, 403
Dirichlet series, 418
Dirichlet’s Theorem, see primes, in

an arithmetic progression
divisibility, 4

basic facts, 4
division algorithm, 9

uses of, 11
divisor, 4

common, 12
greatest common, 12

characterization, 12
use in Pollard rho, 206
zero and zero, 12

proper, 4, 328
divmod, 10
Dodgson, Charles, see Lewis

Carroll
Dudeney, 253

eggs in a basket, 71
Eisenstein, 293, 296
Eisenstein criterion

ambiguous name, 296
for quadratic residues, 296

Elements, see Euclid’s Elements
elliptic curves, 38, 452, 454

cryptographic applications,
169, 204

Mordell curves as special case,
255

Mordell’s theorem on rational
points, 258

use in proving Fermat’s Last
Theorem, 243

encode, 156
encryption key, 158
encryption method

Diffie-Hellman, 162, 164
El-Gamal, 182
elliptic curve, 169
Goldwasser-Micali, 305
RSA, 171

eponymy
Boyer’s law of, see Stigler’s

law of eponymy
Stigler’s law of, see Stigler’s

law of eponymy
equivalence class, 48

INDEX 479

mod n, 47
equivalence relation, 46

congruence as example of, 46
Eratosthenes, 78

sieve of, see sieve of
Eratosthenes

Euclid’s Elements, 13
perfect numbers, 328

Euclidean algorithm, 13, 240
applied to Fibonacci numbers,

18
example, 13
extended, 14, 15

example, 14, 15
proof, 14
statement, 13

Euler, 213, 257
and quadratic residues, 278
son (Johann Albrecht), 244

Euler ϕ function, 124, 316
long-term average, 431

Euler products, 419
Euler’s criterion

for quadratic residues, 284
Euler’s theorem, 125

exploring formulas, 128
multiplicative, 130
using for inverses, 125
visualization, 138

Euler-Mascheroni constant, 355,
393, 396, 469

ir/rationality unknown, 355
euler_phi, 126
exponentiation (mod n)

algorithm for, 51
in cryptography, 161, 169
not well-defined, 48
visualization, 110

factor, 74
factorial, 82, 97, 221, 272

prime, see prime, factorial
factorization

continued fraction, 210
Fermat, 202
in cryptography, 198
non-unique, 80, 87, 221
of an integer, 78
Pollard p− 1, 210
Pollard rho, 206
prime, 78
prime power, 78
quadratic sieve, 210
trial, see trial division

unique, 80, 240, 257, see also
fundamental theorem of
arithmetic

in Gaussian integers, 240
Fermat, 213
Fermat factorization, 202
Fermat numbers, 170, 185

factoring, 208
Pépin’s test for primality, 304
primes from, 186

Fermat prime, 185
Fermat’s last theorem, 36, 243
Fermat’s little theorem, 98

square root of, 194
visualization, 194

visualization, 137, 194
Fibonacci, 71, 216

numbers, see numbers,
Fibonacci

field, 109
number, see number field
with one element, 124

Fields Medal, 255, 371, 390, 452
floor function, see greatest integer

function
Frobenius number, see number,

Frobenius
FTA, see fundamental theorem of

arithmetic
function

arithmetic, 315
average value, see long-term

average
Chebyshev theta, 376
Dirichlet identity, 404
floor, see greatest integer

function
Gamma, 355, 469
greatest integer, see greatest

integer function
identity, 326
Liouville, 406
Moebius µ, see Moebius µ

function
multiplicative, see

multiplicative function
probability density, 367
Riemann zeta, see zeta

function
step, 375
sum of divisors, see sum of

divisors functions
unit, 326

fundamental region, 228

INDEX 480

fundamental theorem of
arithmetic, 78

gamma, see Euler-Mascheroni
constant

Gauss
brief biographical notes, 237
Gaussian integers, 237
introducing congruence

notation, 44
letter to Encke, 369
many proofs of quadratic

reciprocity, 298
prime numbers, 367, 369
quote, ix

Gaussian integers, see integers,
Gaussian

Gaussian prime, see prime,
Gaussian

gcd, see divisor, greatest common
generator, see group, generator of
Germain, 178
Germain primes, 178

and Artin’s conjecture, 306
and Fermat’s Last Theorem,

243
and Mersenne numbers, 305

GIMPS, 187
Girard, 213
greatest common divisor, see

divisor, greatest common
greatest integer function, 29

convenience for turning
functions into sums, 377

use in estimating number of
divisors, 346

group, 114
Abelian, 118, 262, 293, 406
cyclic, 117, 139, 145
example of non-Abelian, 118
finite, 115
generator of, 117, 139
homomorphism, 285
ideal class, 221
identity, 113
of quadratic residues, see

quadratic residue, group
of units, see units, group of
order of, 116
order of an element, 116
quotient, 280
socks and shoes property, 115,

118
solving equations in, 115, 121

hardware bugs found using
number theory, 187, 395

harmonic series, 355, 417
prime, see prime harmonic

series
Hensel’s lemma, 92

for solving polynomial
congruences, 273

quadratic example, 93, 273
Historical remarks

list of, 457

identity element, 113
induction proof, see proof by

induction
infinite descent, see proof by

infinite descent
integer lattice, 25, 320, 348

as complex numbers, 238
positive points, 26, 30

integers, 1
Eisenstein, 244
Gaussian, 237

unique factorization, 240
modulo n, 107

integral test for series convergence,
417

@interact, 209
interacts, see Sage interacts
inverse

computing with Sage, 64
modulo p, 109
of a group element, 114
of a number, 64

group of units, 123
of a product, 115
used in proof of CRT, 65
visualize, 109

inverse_mod, 64, 109
irrational number, 25

Apéry’s constant, 420
examples, 86
γ status unknown, 355

is_prime, 73

Jacobi symbol, 301, 303
same as Legendre for 2, 313

key
decryption, 158
encryption, 158
exchange, 167

Korselt’s theorem, 192
Kronecker symbol, 302
kronecker_symbol, 302

INDEX 481

Lagrange, 279
and quadratic residues, 278

Lagrange’s theorem
for polynomials, 95

false for composite moduli,
96

vindicated, 221
on group order, 117

λ(n), see function, Liouville
Landau notation, 343

basic exercises, 361
prime counting function π(x)

computation, 373
lattice

general, 223
integer, see integer lattice
positive integer points, 26, 30
sublattice, 226

lcm, see least common multiple
least common multiple, 18, see

also divisor, greatest
common

exercises, 86
Legendre

biography, 279
prime numbers, 367
quadratic residues, 285

Legendre symbol, 285
computation, 300

as checking parity, 295
using Jacobi symbol, 302
via Eisenstein, 296
via Euler’s criterion, 286
via quadratic reciprocity,

299
multiplicative, 281, 291

legendre_symbol, 285
lemma, 44

correct Greek plural of, 79
easier English plural of, 79

Lewis Carroll, 13
Li(x), see logarithmic integral
linear congruences, 57

full solution, 57
simplification strategies, 59

linear Diophantine equations, 21
geometric interpretation, 25
solutions of, 21

list comprehension, 52, 127
filtered, 139

logarithm
discrete, 150
natural, 349

logarithmic integral, 367

long-term average
Euler ϕ function, 431
sum of divisors functions, 351,

358
sums of squares, 322, 343

Lucas-Lehmer test, 188

‘man in the middle’ attack, 168,
174

MathJax, vii
maximum, 81
Mersenne, 187

amicable numbers, 333
Mersenne numbers, 187

and Germain primes, 305
primes from, 188

Mersenne primes, 187
computer search, see GIMPS
in perfect numbers, 329

Mihailescu’s theorem, 38, see also
conjecture, Catalan’s

Miller’s test base a, 195
Miller-Rabin test for primality,

197
minimum, 81
Minkowski, 231
Minkowski’s Theorem, 222
mod(x,m), 43
modulus, 44
moebius, 402
Moebius µ function, 399

alternate definition, 401
multiplicative, 410

Moebius inversion formula, 402
monkeys, see pirates
monoid

commutative, 406
Mordell equation, 37, 255

finitely many integer points,
255

rational points, 258
special cases, 100, 256, 257,

306
visualization, 100

Mordell’s theorem, 258
µ(n), see Moebius µ function
multiplicative function, 316

Euler’s function as, 130
Legendre symbol as, 281, 291
Moebius function as, 410
preserved by Dirichlet

product, 408
preserved by inversion, 408
preserved by summation, 326

INDEX 482

mutually coprime, 77
application of CRT, 70, 179
combine solutions, 91
definition, 17
in Pythagorean triples, 31
needed for CRT, 63

mutually relatively prime, see
mutually coprime

Möbius, 400

natural numbers, see numbers,
counting

Newton’s method, 94
next_prime, 155
norm, 224, 240
number

abundant, 330
Carmichael, see Carmichael

numbers
composite, 73
deficient, 330
Fermat, see Fermat numbers
Frobenius, see conductor
irrational, see irrational

number
k-perfect, 330
Mersenne, 187
perfect, see perfect numbers
prime, see prime
pseudoperfect, 330
pseudoprime, see pseudoprime
rational, see rational number
Skewes’, 370
superabundant, 330
weird, 330

number field, 204
numbers

amicable, see amicable
numbers

complex, 237, 271
counting, 1
Fibonacci, 18
natural, see numbers,

counting

ω(n), 406
operation

associative, 113
example where fails, 113

binary, 112
closed, 113
commutative, 118

opposite parity, see parity,
opposite

order
of a group, 116
of a group element, 116

parametrization, 249
parity

big problems reduce to
checking, 295, 297, 310

opposite, 33
same, 33

partition
of a number, 454
of sets, 48, 104, 131

Pell’s equation, 264
perfect numbers, 328, see also

abundancy index
and Mersenne primes, 329
characterization of even, 329
in Euclid’s Elements, 328
odd, 334, 335

and abundancy index, 335
currently known criteria,

336
ϕ(n), see Euler ϕ function
π(x), see prime counting function

π(x)
Picasso

quote, xi
pigeonhole principle, 116
pirates, 71
points

adding, 262
doubling, 262
rational on conics, 248
rational on elliptic curves, see

elliptic curves, Mordell’s
theorem on rational
points

Pollard rho factorization, 206
PolyMath Projects, 395
polynomial

prime-generating, 75
positive density, see density,

positive
powers, see exponentiation (mod

n)
PreTeXt, vii
prime, 73

as conjectured from concept
of relatively prime, 18

constellation, 396
factorial, 396
Fermat, see Fermat prime
Gaussian, 239

INDEX 483

visualization, 239
Germain, see Germain primes
harmonic series, 428
Mersenne, see Mersenne

primes
primorial, 396
races, 383
relatively, see coprime
repunit, 85
safe, 178, 307

prime counting function π(x), 363
explicit formula, see Riemann

explicit formula for π(x)
Landau (Big Oh)

computation, 373
not useful formula, 364

prime number theorem, 371
elementary proof, 371

prime_divisors, 82
prime_pi, 364
prime_range, 74
primes

arithmetic progressions of,
389

cousin, 396
in an arithmetic progression,

388
proof of infinitude of, 76, 384,

388
sexy, 396
twin, see twin primes

primitive root, 138, 280
characterization of, 139
number of, 144
primes possess, 145
testing for, 140
use in solving congruences,

147
primitive_root, 148
primorial, 391, 428

prime, see prime, primorial
print, 67
proof

by contradiction, 2
by contrapositive, 2
by induction, 3, 80

another easy example, 4
by infinite descent, 35, 38
direct, 5

proper divisor, see divisor, proper
pseudoperfect number, see

number, pseudoperfect
pseudoprime, 191

infinitely many, 197

strong, see strong
pseudoprime

public-key cryptography, 161
Pythagorean theorem, 28, 31
Pythagorean triple, 31

characterization of primitive,
33

primitive, 31
group operation, 241

Python, xv, 6
comments, 74
indexing, 10
loop, 11

Pépin’s test, 186, 304

Qin Jiushao, 63, 71
QR, see quadratic residue
quadratic congruences, see

congruences, quadratic
quadratic forms, 259
quadratic formula, 271
quadratic nonresidue, 276
quadratic reciprocity, 298

alternate form, 298, 300
applications of, 303

cryptography, 305
factoring, 303
primality testing, 303

many proofs, 298, 312
meaning, 299
proof of, 307

quadratic residue, 276, see also
Legendre symbol, see
also quadratic reciprocity

consecutive ones, 289
Eisenstein criterion, 296
Euler criterion, 284
group, 280
visualization, 282

quadratic sieve, 210
quadratic_residues, 277
quaternions, 242
quotient, 9

range, 11, 149
rational number, 25
reify, 285
relation, 43

equivalence, see equivalence
relation

relatively prime, see coprime
remainder, 9

connection to congruence, 44
repunit, 85

INDEX 484

residue
(mod n), 47
quadratic, see quadratic

residue
residues

complete system of, 48
least absolute, 48, 49
least nonnegative, 48, 49

Riemann, 415
Riemann explicit formula for π(x),

450
Riemann Hypothesis, 443

consequences of, 451
ring, 107

example of non-unique
factorization domain, 87

example of unique
factorization domain, 1,
240, 257

of arithmetic functions, 408
of integers (hint of), 237, 244,

260, 267
RSA, see encryption method, RSA

Sage, xi, 6
cell server, vii
cells, 6
get worksheet, 6
interactive help, 64
interacts, xiv, 209

Sage notes
about, xv, 6
list of, 455

SageMath, see Sage
same parity, see parity, same
secret sharing, 179
set partition, see partition of sets
sets, 112
sieve

of Eratosthenes, 77
quadratic, 210

σ(n), see sum of divisors functions
sigma, 324
σk(n), see sum of divisors

functions
Skewes’ number, 370
solve_mod, 274
square root modulo n, 220

preliminary exploration, 89
Stigler’s law of eponymy, 264, see

also eponymy, Boyer’s
law of

example, 15, 106, 264, 400
strong pseudoprime, 196

sum of divisors functions, 323
long-term average, 351, 358

sums of squares, 213, 237, 318
full statement, 232
insane fact concerning, 322
long-term average, 322, 343
more than two squares, 241
primes as, 222
visualization, 215
Zagier one-sentence proof, 233

superabundant number, see
number, superabundant

system of congruences, 63, 68
linear fully solved, 68

table
addition, 107
multiplication, 108

τ(n), see sum of divisors functions
Taylor series

in Hensel’s Lemma, 92
proving Euler’s formula, 440

Tertullian
quote, xiii

Thabit ibn Qurra, 333, 339
Θ(x), see function, Chebyshev

theta
trapdoor, 169
trial division, 200

algorithm, 200
trial factorization, see trial

division
try/except, 215
tuple, 10, 45, 274
twin prime

conjecture, 392
constant, 394

twin primes, 392
and Fermat factorization, 203

type, 46

units, 123
examples, 123
group of, 122, 177
modulo n, see units, group of
quadratic residues quotient

group of, 280
quadratic residues subgroup

of, 280, 285

visualization
Euler’s theorem, 138
exponentiation (mod n), 110
Fermat’s little theorem, 137,

194

INDEX 485

Gaussian primes, 239
Mordell equation, 100
quadratic residue, 282
Riemann zeta function, 441
sums of squares, 215

Waring’s Problem, 243
weird number, see number, weird
well-defined, 47

exponentiation (mod n) not
an example, 48

well-ordering principle, 2
not equivalent to induction, 3
Euclid implicitly assuming, 13
proof of division algorithm

using, 10

proof of Euclidean algorithm
using, 14

use in infinite descent, 35
use to define order of group

element, 116
Wilson’s theorem, 97

false for composite moduli,
102

xgcd, 15

zero density, see density, zero
zeta function, 415

special values of, 420
visualization, 441

Zhang, 395

INDEX 486

Number theory is a beautiful subject, where intuition from our earliest years can
lead to subtle, yet still unsolved problems. Number Theory: In Context and
Interactive covers standard topics such as systems of congruences, primitive roots,
and arithmetic functions, while encouraging a sense of wonder with graphical and
handwritten explorations right up through stating the Riemann Hypothesis. The
online version of this book has dozens of interactive graphics and other exploratory
code using the open source software SageMath.

————

Karl-Dieter Crisman has taught Number Theory to undergraduates at Gordon College for 15

years. Their response to free interactive computation to help solidify these concepts has been

overwhelming and gratifying. Their support, and that of the SageMath and PreTeXt open source

communities, led to the creation of this book.

“An invaluable resource for my students.”
—Mike Janssen, Dordt University

“The embedded Sage demos were particularly useful for
helping students visualize certain concepts.”
—Mike Spivey, University of Puget Sound

“I was very happy and fortunate to have your text available
[during the COVID pivot] . . . I plan to continue to use this innovative open text.”

—Ben Coté, Western Oregon University

“Really spot on for what we needed . . . I’m confident that we’ll use it again.”
—Matt DeLong, Marian University

————

Cover: In the foreground, a matrix of the powers of integers in modular arithmetic shows hidden surprises. Using
different color schemes to represent the numbers can help us visualize theorems about the group of units. In the
background, the prime counting function is well approximated by the undulations of the Riemann explicit formula in
terms of the (still-mysterious) zeros of the Riemann zeta function.

Cover design: Rebecca Powell Endorsed by the AIM Open Textbook Initiative

	Acknowledgements
	To Everyone
	To the Student
	To the Instructor
	Prologue
	A First Problem
	Review of Previous Ideas
	Where are we going?
	Exercises
	Using Sage for Interactive Computation

	Basic Integer Division
	The Division Algorithm
	The Greatest Common Divisor
	The Euclidean Algorithm
	The Bezout Identity
	Exercises

	From Linear Equations to Geometry
	Linear Diophantine Equations
	Geometry of Equations
	Positive Integer Lattice Points
	Pythagorean Triples
	Surprises in Integer Equations
	Exercises
	Two facts from the gcd

	First Steps with Congruence
	Introduction to Congruence
	Going Modulo First
	Properties of Congruence
	Equivalence classes
	Why modular arithmetic matters
	Toward Congruences
	Exercises

	Linear Congruences
	Solving Linear Congruences
	A Strategy For the First Solution
	Systems of Linear Congruences
	Using the Chinese Remainder Theorem
	More Complicated Cases
	Exercises

	Prime Time
	Introduction to Primes
	To Infinity and Beyond
	The Fundamental Theorem of Arithmetic
	First consequences of the FTA
	Applications to Congruences
	Exercises

	First Steps With General Congruences
	Exploring Patterns in Square Roots
	From Linear to General
	Congruences as Solutions to Congruences
	Polynomials and Lagrange's Theorem
	Wilson's Theorem and Fermat's Theorem
	Epilogue: Why Congruences Matter
	Exercises
	Counting Proofs of Congruences

	The Group of Integers Modulo n
	The Integers Modulo n
	Powers
	Essential Group Facts for Number Theory
	Exercises

	The Group of Units and Euler's Function
	Groups and Number Systems
	The Euler Phi Function
	Using Euler's Theorem
	Exploring Euler's Function
	Proofs and Reasons
	Exercises
	The Conductor, solved

	Primitive Roots
	Primitive Roots
	A Better Way to Primitive Roots
	When Does a Primitive Root Exist?
	Prime Numbers Have Primitive Roots
	A Practical Use of Primitive Roots
	Exercises
	All the Primitive Roots

	An Introduction to Cryptography
	What is Cryptography?
	Encryption
	A Modular Exponentiation Cipher
	An Interesting Application: Key Exchange
	RSA Public Key
	RSA and (Lack Of) Security
	Other applications
	Exercises

	Some Theory Behind Cryptography
	Finding More Primes
	Primes – Probably
	Another Primality Test
	Strong Pseudoprimes
	Introduction to Factorization
	A Taste of Modernity
	Exercises

	Sums of Squares
	Some First Ideas
	At Most One Way For Primes
	A Lemma About Square Roots Modulo n
	Primes as Sum of Squares
	All the Squares Fit to be Summed
	A One-Sentence Proof
	Exercises

	Beyond Sums of Squares
	A Complex Situation
	More Sums of Squares and Beyond
	Related Questions About Sums
	Exercises

	Points on Curves
	Rational Points on Conics
	A tempting cubic interlude
	Bachet and Mordell Curves
	Points on Quadratic Curves
	Making More and More and More Points
	The Algebraic Story
	Exercises

	Solving Quadratic Congruences
	Square Roots
	General Quadratic Congruences
	Quadratic Residues
	Send in the Groups
	Euler's Criterion
	Introducing the Legendre Symbol
	Our First Full Computation
	Exercises

	Quadratic Reciprocity
	More Legendre Symbols
	Another Criterion
	Using Eisenstein's Criterion
	Quadratic Reciprocity
	Some Surprising Applications of QR
	A Proof of Quadratic Reciprocity
	Exercises

	An Introduction to Functions
	Three Questions for Euler phi
	Three Questions, Again
	Exercises

	Counting and Summing Divisors
	Exploring a New Sequence of Functions
	Conjectures and Proofs
	The Size of the Sum of Divisors Function
	Perfect Numbers
	Odd Perfect Numbers
	Exercises

	Long-Term Function Behavior
	Sums of Squares, Once More
	Average of Tau
	Digging Deeper and Finding Limits
	Heuristics for the Sum of Divisors
	Looking Ahead
	Exercises

	The Prime Counting Function
	First Steps
	Some History
	The Prime Number Theorem
	A Slice of the Prime Number Theorem
	Exercises

	More on Prime Numbers
	Prime Races
	Sequences and Primes
	Types of Primes
	Exercises

	New Functions from Old
	The Moebius Function
	Inverting Functions
	Making New Functions
	Generalizing Moebius
	Exercises

	Infinite Sums and Products
	Products and Sums
	The Riemann Zeta Function
	From Riemann to Dirichlet and Euler
	Multiplication
	More series and convergence
	Four Facts
	Exercises

	Further Up and Further In
	Taking the PNT Further
	Improving the PNT
	Toward the Riemann Hypothesis
	Connecting to the Primes
	Connecting to Zeta
	Connecting to Zeros
	The Riemann Explicit Formula
	Epilogue
	Exercises

	Appendices
	List of Sage notes
	List of Historical Remarks
	Notation
	List of Figures
	References and Further Resources
	Introduction to the References
	General References
	Proof and Programming References
	Specialized References
	Historical References
	Other References
	Useful Articles

	Back Matter
	Index

