
Number Theory
In Context and Interactive

Number Theory
In Context and Interactive

Karl-Dieter Crisman
Gordon College

January 24, 2017

About the Author Karl-Dieter Crisman has degrees in mathematics from
Northwestern University and the University of Chicago. He has taught at a
number of institutions, and has been a professor of mathematics at Gordon
College in Massachusetts since 2005. His research is in the mathematics of
voting and choice, and one of his teaching interests is (naturally) combining
programming and mathematics using SageMath. He has given invited talks on
both topics in various venues on three continents.

Other (mathematical) interests include fruitful connections between math-
ematics and music theory, the use of service-learning in courses at all levels,
connections between faith and math, and editing. Non-mathematical interests
he wishes he had more time for include playing keyboard instruments and ex-
ploring new (human and computer) languages. But playing strategy games
and hiking with his family is most interesting of all.

Edition: 2017/1 Edition

Website: math.gordon.edu/ntic

© 2011–2017 Karl-Dieter Crisman

This work is (currently) licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License.

http://www.sagemath.org
http://math.gordon.edu/ntic
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

To my students and the Sage community;
let’s keep exploring together.

Acknowledgements

This text evolved over the course of teaching MAT 338 Number Theory for
many years at Gordon College, and immense thanks are due to the students
through five offerings of this course for bearing with using a text-in-progress.
The Sage Math team and especially the Sage cell server have made an interac-
tive book of this nature possible online, and the Mathbook XML and MathJax
projects have contributed immensely to its final form, as should be clear.

In addition, no acknowledgement would be complete without recognizing
the patience of my family with respect to the days and weeks of travel, from an
hour away in New England to as far away as Cape Town and India, in order to
learn more about Sage and teach using Sage in the classroom. It was always
done with the goal in view of enriching others’ lives and not just my own, and
I hope I have lived up to that promise.

vii

http://www.sagemath.org
http://sagecell.sagemath.org
http://mathbook.pugetsound.edu/
http://www.mathjax.org/

viii

To Everyone

Welcome to Number Theory! This book is an introduction to the theory and
practice of the integers, especially positive integers – the numbers. We focus on
connecting it to many areas of mathematics and dynamic, computer-assisted
interaction. Let’s explore!

Carl Friedrich Gauss, a great mathematician of the nineteenth century, is
said to have quipped that if mathematics is the queen of the sciences, then
number theory is the queen of mathematics ([C.4.4]). If you don’t yet know
why that might be the case, you are in for a treat.

Number theory was (and is still occasionally) called ‘the higher arithmetic’,
and that is truly where it starts. Even a small child understands that there is
something interesting about adding numbers, and whether there is a biggest
number, or how to put together fact families. Well before middle school many
children will notice that some numbers don’t show up in their multiplication
tables much, or learn about factors and divisors. One need look no further
than the excellent picture book You Can Count on Monsters [C.5.1] by Richard
Evans Schwartz to see how compelling this can be.

Later on, perfect squares, basic geometric constructs, and even logarithms
all can be considered part of arithmetic. Modern number theory is, at its
heart, just the process of asking these same questions in more and more general
situations, and more and more interesting situations.

They are situations with amazing depth. A sampling:

• The question of what integers are possible areas of a right triangle seems
very simple. Who could have guessed it would lead to fundamental ad-
vances in computer representation of elliptic curves?

• There seems to be no nice formula for prime numbers, else we would have
learned it in middle school. Yet who would have foreseen they are so very
regular on average?

• Taking powers of whole numbers and remainders while dividing are el-
ementary and tedious operations. So why should taking remainders of
tons of powers of whole numbers make online purchases more secure?

This book is designed to explore that fascinating world of whole numbers.
It covers all the ‘standard’ questions, and perhaps some not-quite-as-standard
topics as well. Roughly, it covers the following broad categories of topics.

• Basic questions about integers

• Basic congruence arithmetic

• Units, primitive roots, and Euler’s function (via groups)

• Basics of cryptography, primality testing, and factorization

ix

https://www.youtube.com/watch?v=N-7tcTIrers

x

• Integer and rational points on conic sections

• The theory and practice of quadratic residues

• Basics of arithmetic functions

• The prime counting function and related matters

• Connecting calculus to arithmetic functions

Finally, it won’t take long to notice that the way in which this book is
constructed emphasizes connections to other areas of math and encourages
dynamic interaction. (See the note To the Instructor.) It is my hope that all
readers will find this ‘in context and interactive’ approach enjoyable.

To the Student

Hi! Not too many students read this bit in textbooks, but I hope you do, and
I hope you circle stuff you think is important. In pen.

Doing math without writing in the book (or on something, if you’re only
using an electronic version) is sort of like reading much literature (like Shake-
speare or Homer) or many religious texts (like the Psalms or Vedas) without
paying attention to the spoken aspect. It’s possible, and we all may have done
it (some successfully), but it’s sort of missing the point.

So read this book and write in it. My students do. They even like it.
Here are three things that will lead to success with this book.

• You should like exploring numbers and playing with them. If you were
the kind of kid who added

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + · · ·

on your calculator when you were bored to see if there would be an
interesting pattern, and actually liked it, you will like number theory. If
you then tried

2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · · · ·

you will really like it.

• I also hope you are open to using computers to explore math and check
conjectures. As Picasso said, “[T]hey can only give you answers” – but
oh what answers! We use the SageMath system, one that will grow with
you and that will always be free to use (for several meanings of the word
free). You don’t have to know how to program to use this, though it’s
useful. Plus, you are using number theory under the hood anyway if you
use the internet much, so why not?

• Finally, you should want to know why things are true. I assume a stan-
dard introduction to proof course as background, but different people
are ready in different ways for this. If you are reasonably familiar with
proofs by induction and contradiction, and have some basic experience
with sets and relations, that is a good start. Some good free resources
online include A Gentle Introduction to the Art of Mathematics [C.2.2]
and The Book of Proof [C.2.1].
Some of the proofs will be hairy, and some exercises challenging. (Not
all!) Do not worry; by trying, you will get better at explaining why
things are true that you are convinced of. And that is a very useful skill.
(Provided you are convinced of them; if not, go back to the first bullet
point and play with more examples!)

xi

http://www.sagemath.org
https://opensource.org/osd
https://www.gnu.org/philosophy/free-sw.en.html

xii

Remark 0.0.1. As a final note before you dig in, if you think that it is worth
exploring the possible truth (see Section 25.3) of

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + · · · = − 1

12

or if as a kid you did

23
45

67
89

···

to see what would happen, then maybe you should become a mathematician.
In that case, click on all links in the text and find a cool problem that interests
you!

To the Instructor

Assuming that the reader of this preface is an instructor of an actual course,
may I first say thank you for introducing your students to number theory!
Secondly of course I’m grateful for your at least briefly considering this text.

In that case, gentle reader, you may be asking yourself, “Why on earth
yet another undergraduate number theory text?” Surely all of these topics
have been covered in many excellent texts? (See the preface To Everyone for
a brief topic list, and the Table of Contents for a more detailed one.) And
surely there is online content, interactive content, and all the many topics here
in other places? Why go to the trouble to write another book, and then to
share it? These are excellent questions I have grappled with myself for the
past decade.

There are two big reasons for this project. The first is reminiscent of Ter-
tullian’s old quote about Athens and Jerusalem; what has arithmetic to do
with geometry? (Or calculus, or combinatorics, or anything?) At least in
the United States, away from the most highly selective institutions (and in my
own experience, there as well), undergraduate mathematics can come across as
separate topics connected by some common logical threads, and being at least
vaguely about ‘number’ or ‘magnitude’, but not necessarily part of a unified
whole.

When I first taught this course, I was dismayed at how few texts really fully
tackled the geometry, algebra, and analysis inherent in number theory. Many
do one or two (especially algebra, since number theory might often be a second
course in abstract algebra), but few attacked all connections. Still, there are
some which do, and I even found Elementary Number Theory by Jones and
Jones [C.1.1] which does a very good job of this, though at a slightly higher
level of sophistication than I found my students ready for. Those familiar with
it will find that my presentation of certain topics (e.g. arithmetic functions,
the zeta function), of certain proofs, and some topic order is influenced by it.
I try to point out the former cases, and I have substantively modified even
those in ways more appropriate for typical us undergraduates, as well as with
somewhat different emphases.

Given my first goal, I would have happily used this text with some extra
details for my students, were it not for the magic and wonder of the internet.
How could I not harness this to have my students do approximations to the size
of computations that their browsers are constantly doing as they go shopping
on the web? Having found Sage, I found it hard to avoid using it whenever I
could, and encouraging students to do the same to explore things like Euler’s
ϕ function (as I encourage yours to do in Section 9.2 by hand).

Interactivity and visualization is becoming common currency in mathemat-
ics education. In calculus and lower-level courses this has been true for some
time, but even in abstract algebra there are books like Nathan Carter’s Visual
Group Theory [C.5.2], specialized software projects like PascGalois, and many
general applets (including ones from the Wolfram Demonstrations or Maple

xiii

http://www.sagemath.org/
http://www.pascgalois.org/

xiv

Möbius projects). This has been coming into number theory too, naturally,
beyond the programming projects many books have included. An early number
theory text involving explicit programs (and a CD-ROM!) written for exten-
sive course work was [C.3.7], and the first book invoking extensive use of Sage
commands was probably the founder’s own [C.1.3]. Very recently (in fact, after
the unofficial release of this text) the book [C.1.10] (which has similar content
and aims to the current work, though at a somewhat higher level) appeared
in second edition with complete SageMath worksheets on its website, which
could be used on a Sage or SageMathCloud server. Hence the time is more
than right for a fully online resource.

So my second goal for this book is to bring online interactivity into a
mainstream number theory text. It is wonderful to see students with an interest
in the arts respond to the dynamic visualization in Sage interacts, while those
with interests in computer science love to ask questions about how to view the
source code or some of the details of representing large numbers. And all the
students have access to computations from simple ones involving the aliquot
parts function to the full Riemann formula for the prime number function.

Why should you not use this book? First, I make few claims to topical or
mathematical originality1. The ordering is somewhat different than usual, I
include a few topics I haven’t seen addressed adequately very often in truly
introductory texts (notably a beginning of the geometry of numbers and long-
term averages of arithmetic functions), and I have created many visualization
and exploration oriented applets.

At the low end of other reasons you might not use it, some topics of great
importance which are perfect for beginners (especially partitions and continued
fractions) are absent. You can’t cover everything in a semester, after all, and I
have shied away a bit from more purely combinatorial stuff, though I hope to
return to it in future editions2. At the high end of preparation, I do not and
cannot expect a course in abstract algebra or complex (or even real) analysis
for my students, and so this book reflects that reality. Knowing about proofs
by induction and contradiction, as well as basics of sets, integers, and relations,
is what I can assume. In fact, I have great recommendations for you if you
know all your students can do contour integration or are ready to define a
number field – see References and Further Resources. Finally, I don’t have a
corporation behind me.

On the other hand, I think you should consider using it. This is class-
tested material for standard topics (plenty for a semester-long course at most
institutions), and not beholden to any interests beyond being a good resource
for instructors in ‘mainstream’ undergraduate math programs in the United
States. There are plenty of exercises (though not a surfeit, so feel free to
supplement), fun links, and hopefully a quirky and engaging sense of wonder
and exploration. The price is also right. Finally, I don’t have a corporation
behind me.

Should you choose to use this text, I have only a few recommendations for
how to use it (see also my notes To the Student).

• Encourage in-class exploration. Put away books, turn off the computers,
and just try stuff out. Create your own worksheet to explore (say) the
Möbius function or solutions to linear Diophantine equations. In short,
make sure your students see mathematics as a dynamic enterprise – par-
ticularly because so many of the theorems involved are highly abstract.

1I have tried hard to credit any non-standard proofs which are essentially in the form I
found them, and appreciate forbearance (and notification) if I have missed any such citations.

2See [C.1.11] for a nice introduction in a more combinatorial vein, particularly to partition
identities.

http://tvazzana.sites.truman.edu/introduction-to-number-theory/
https://cloud.sagemath.com

xv

• Less is more. I will often pick one representative proof in a section,
project it on the screen, and then really follow it through on an adjacent
blackboard with specific numbers (such as p = 13, which is just big
enough to be interesting but not so big as to be overwhelming).

• Use computer examples judiciously. Sage (or any other system) can just
as easily become a Delphic oracle (pun intended) spewing forth cryptic
utterances as a useful tool to help create and solve conjectures. You’re
possibly doing your students a disservice if you don’t use it at all, but
despite having written this text with Sage in mind throughout, I don’t
regard its use as completely essential. Number theory in this form has
been around since Euclid, so the past thirty years of mass-market com-
putation is a drop in the bucket of time. If you want a true inquiry-based
approach, I like the text Number Theory through Inquiry [C.1.5] a lot.

• Note the Sage notes (full list at the List of Sage notes). Especially if
you have more than just a few students who have a little programming
experience, this is a perfect course to find projects to challenge them with,
such as those in the venerable [C.1.4]. The Sage notes gently remind or
give short introductions to some aspects of how to use Python and Sage.
They are not formally structured or arranged, or comprehensive; if you
are looking for this, you should supplement your course with a real basic
programming text in Python, such as [C.2.6] or [C.2.7].)

• Use the exercises, and ones outside the book if you want. There are exer-
cises for each chapter, of varying difficulty levels (in the grand tradition
of upper-level math texts, I do not provide solutions). In general, assign-
ing daily, collecting weekly seems to be a decent model – though be sure
to give students ample warning as to which ones will be collected! The
last few chapters’ material is more advanced, and there are correspond-
ingly fewer possible exercises. I find this to be a good time for a small
project in the history of number theory; especially if you have students
from several different cultural heritages, having them discover where it
comes up in theirs (it nearly always does) has been a perennial favorite.

There are no sections marked as optional, or table of dependencies, though
these should be pretty similar to most elementary texts. (I do pretty much
everything in my own course, picking results or sections to skip on the fly if
time or the students seem to require this.) Here are some minor suggestions,
though.

• If you are teaching a shorter course or wish to spend more time on some
topic, the chapters on Beyond Sums of Squares and More on Prime Num-
bers are certainly optional in this sense.

• The chapters concerning Points on Curves and Long-Term Function Be-
havior are not optional in my view of number theory, but may be viewed
as ‘selected topics’.

• The introductory (short) chapters 1 and 18 should not be considered
optional, but may be emphasized or not to instructor taste. The point is
just to motivate what we are doing before getting to formal definitions.

• If you don’t like cryptography or believe (like Hardy) that there are
no applications to number theory, you can certainly create a nearly
application-free course by skipping the chapters on An Introduction to
Cryptography and Some Theory Behind Cryptography.

https://www.python.org

xvi

• I don’t consider the last several chapters on the prime counting function
and other arithmetic functions connecting to calculus to be optional, but
I have the luxury of having mostly juniors and seniors for a full semester.
In a quarter course or one aimed more at sophomores (in the United
States), one should still at the very least spend a couple days at the end
of the course talking about these topics, perhaps discussing sections 21.2
and 21.3, and smatterings of Chapter 25.

As a final note, I hope you enjoy using the text as much as I’ve enjoyed
teaching from it. Everyone should have that day where a student’s jaw drops
from a cool theorem displayed visually, or when the students are working so
intently on an in-class project that they don’t even notice the class period end.
It’s been my privilege to have that happen, and my hope is this text can bring
you closer to that goal.

Contents

Acknowledgements vii

To Everyone ix

To the Student xi

To the Instructor xiii

1 Prologue 1
1.1 A First Problem . 1
1.2 Review of Previous Ideas . 2
1.3 Where are we going? . 4
1.4 Exercises . 5
1.5 How to Use Computation . 5

2 Basic Integer Division 7
2.1 The Division Algorithm . 7
2.2 The Greatest Common Divisor 10
2.3 The Euclidean Algorithm . 10
2.4 The Bezout Identity . 12
2.5 Exercises . 14

3 From Linear Equations to Geometry 17
3.1 Linear Diophantine Equations 17
3.2 Geometry of Equations . 19
3.3 Positive Integer Lattice Points 21
3.4 Pythagorean Triples . 24
3.5 Surprises in Integer Equations 30
3.6 Exercises . 31
3.7 Two facts from the gcd . 32

4 First Steps with Congruence 35
4.1 Introduction to Congruence . 35
4.2 Going Modulo First . 36
4.3 Properties of Congruence . 38
4.4 Equivalence classes . 39
4.5 Why modular arithmetic matters 41
4.6 Toward Congruences . 43
4.7 Exercises . 45

xvii

xviii CONTENTS

5 Linear Congruences 47
5.1 Solving Linear Congruences . 47
5.2 A Strategy For the First Solution 49
5.3 Systems of Linear Congruences 51
5.4 Using the Chinese Remainder Theorem 54
5.5 More Complicated Cases . 57
5.6 Exercises . 58

6 Prime Time 61
6.1 Introduction to Primes . 61
6.2 To Infinity and Beyond . 63
6.3 The Fundamental Theorem of Arithmetic 64
6.4 First consequences of the FTA 67
6.5 Applications to Congruences 69
6.6 Exercises . 71

7 First Steps With General Congruences 73
7.1 Exploring Patterns in Square Roots 73
7.2 From Linear to General . 74
7.3 Congruences as Solutions to Congruences 77
7.4 Polynomials and Lagrange’s Theorem 79
7.5 Wilson’s Theorem and Fermat’s Theorem 80
7.6 Epilogue: Why Congruences Matter 82
7.7 Exercises . 84

8 The Group of Integers Modulo n 87
8.1 The Integers Modulo n . 87
8.2 Powers . 89
8.3 Essential Group Facts for Number Theory 90
8.4 Exercises . 96

9 The Group of Units and Euler’s Function 99
9.1 Groups and Number Systems 99
9.2 The Euler Phi Function . 102
9.3 Using Euler’s Theorem . 103
9.4 Exploring Euler’s Function . 106
9.5 Proofs and Reasons . 107
9.6 Exercises . 110

10 Primitive Roots 111
10.1 Primitive Roots . 111
10.2 A Better Way to Primitive Roots 112
10.3 When Does a Primitive Root Exist? 115
10.4 Prime Numbers Have Primitive Roots 117
10.5 A Practical Use of Primitive Roots 120
10.6 Exercises . 123

11 An Introduction to Cryptography 125
11.1 What is Cryptography? . 125
11.2 Encryption . 127
11.3 A Modular Exponentiation Cipher 130
11.4 An Interesting Application: Key Exchange 135
11.5 RSA Public Key . 137
11.6 RSA and (Lack Of) Security . 141
11.7 Other applications . 145

CONTENTS xix

11.8 Exercises . 148

12 Some Theory Behind Cryptography 149
12.1 Finding More Primes . 149
12.2 Primes – Probably . 152
12.3 Another Primality Test . 156
12.4 Strong Pseudoprimes . 158
12.5 Introduction to Factorization 160
12.6 A Taste of Modernity . 165
12.7 Exercises . 170

13 Sums of Squares 171
13.1 Some First Ideas . 172
13.2 Primes Can Be Written in at Most One Way 174
13.3 A Lemma About Square Roots Modulo n 176
13.4 Primes as Sum of Squares . 178
13.5 All the Squares Fit to be Summed 184
13.6 A One-Sentence Proof . 185
13.7 Exercises . 186

14 Beyond Sums of Squares 189
14.1 A Complex Situation . 189
14.2 More Sums of Squares and Beyond 192
14.3 Related Questions About Sums 194
14.4 Exercises . 195

15 Points on Curves 197
15.1 Rational Points on Conics . 198
15.2 A tempting cubic interlude . 201
15.3 Bachet and Mordell Curves . 202
15.4 Points on Quadratic Curves . 205
15.5 Making More and More and More Points 209
15.6 The Algebraic Story . 212
15.7 Exercises . 215

16 Solving Quadratic Congruences 217
16.1 Square Roots . 217
16.2 General Quadratic Congruences 219
16.3 Quadratic Residues . 220
16.4 Send in the Groups . 223
16.5 Euler’s Criterion . 224
16.6 The Legendre Symbol . 225
16.7 Our First Full Computation . 227
16.8 Exercises . 229

17 Quadratic Reciprocity 231
17.1 More Legendre Symbols . 231
17.2 Another Criterion . 233
17.3 Using Eisenstein’s Criterion . 235
17.4 Quadratic Reciprocity . 237
17.5 Some Surprising Applications of QR 241
17.6 A Proof of Quadratic Reciprocity 244
17.7 Exercises . 248

xx CONTENTS

18 An Introduction to Functions 251
18.1 Three Questions for Euler phi 252
18.2 Three Questions, Again . 254
18.3 Exercises . 257

19 Counting and Summing Divisors 259
19.1 Exploration: A New Sequence of Functions 259
19.2 Conjectures and Proofs . 260
19.3 The Size of the Sum of Divisors Function 263
19.4 Perfect Numbers . 264
19.5 Odd Perfect Numbers . 269
19.6 Exercises . 271

20 Long-Term Function Behavior 275
20.1 Sums of Squares, Once More 275
20.2 Average of Tau . 277
20.3 Digging Deeper and Finding Limits 280
20.4 Heuristics for the Sum of Divisors 286
20.5 Looking Ahead . 288
20.6 Exercises . 289

21 The Prime Counting Function 291
21.1 First Steps . 291
21.2 Some History . 294
21.3 The Prime Number Theorem 296
21.4 A Slice of the Prime Number Theorem 299
21.5 Exercises . 303

22 More on Prime Numbers 305
22.1 Prime Races . 305
22.2 Sequences and Primes . 309
22.3 Types of Primes . 312
22.4 Exercises . 316

23 New Functions from Old 319
23.1 The Moebius Function . 319
23.2 Inverting Functions . 322
23.3 Making New Functions . 323
23.4 Generalizing Moebius . 326
23.5 Exercises . 329

24 Infinite Sums and Products 331
24.1 Products and Sums . 331
24.2 The Riemann Zeta Function . 332
24.3 From Riemann to Dirichlet and Euler 335
24.4 Multiplication . 336
24.5 Multiplication and Inverses . 338
24.6 Four Facts . 341
24.7 Exercises . 347

CONTENTS xxi

25 Further Up and Further In 349
25.1 Taking the PNT Further . 349
25.2 Improving the PNT . 351
25.3 Toward the Riemann Hypothesis 352
25.4 Connecting to the Primes . 354
25.5 Connecting to Zeta . 356
25.6 Connecting to Zeros . 358
25.7 The Riemann Explicit Formula 360
25.8 Epilogue . 362
25.9 Exercises . 363

A List of Sage notes 365

B Notation 367

C References and Further Resources 369
C.1 General References . 369
C.2 Proof and Programming References 370
C.3 Specialized References . 371
C.4 Historical References . 373
C.5 Other References . 374
C.6 Useful Articles . 374

Index 377

xxii CONTENTS

Chapter 1

Prologue

What is number theory? Briefly, it is the study of the integers and questions
arising from them.

Definition 1.0.1. The set of counting numbers is denoted

N = {0, 1, 2, 3, 4, · · · }

Note that in this text, this set begins at zero. The integers is the set of
positive and negative counting numbers:

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }

This is a fairly dry definition, though. The best way to find out what that
means is just try to answer some questions about integers!

1.1 A First Problem
Let’s start! Suppose you have lots of left-over postage stamps1 that are of just
a few different denominations. It could be fun to see what amounts you could
make from them.

To be concrete, let’s assume first that all your stamps are numbered 2¢ and
3¢. Here are two questions we could ask. They are mathematically equivalent,
but might take your exploration in two very different directions!

• Which denominations of postage can you get by combining just these
kinds?

• Which denominations can you not get with just these two kinds?

Once you’ve thought about that, try the same problem with 2¢ and 4¢
stamps. What is the same, what is different?

Now let’s get to a nontrivial case; what about with 3¢ and 4¢ stamps?
In this case, after some experimentation, it looks like only 1, 2, and 5 are
not possible, so anything six or above is possible. We call this number the
conductor of the set {3, 4}.

What we are really asking, which might be clear by now, is which positive
integers n are impossible (or possible) to write in the form n = 3x+4y, for some
nonnegative integers x and y. This is also sometimes called the Frobenius2 or
coin problem.

1Perhaps because you only use email or texting now; too bad for you!
2For a very full discussion, see [C.6.20]. But not until after you have started the next

chapter of this book!

1

2 CHAPTER 1. PROLOGUE

Continue trying this with different small pairs of numbers (see also Exer-
cise 1.4.5–Exercise 1.4.7). Pay attention to two things:

• What is the conductor of the pair? (You might want to ask whether there
is such a number!)

• How many numbers lower than the conductor cannot be written in this
way?

1.2 Review of Previous Ideas
Before going further, we need a bit of review. The following three topics may
be considered prerequisites for the course.

1.2.1 Well-Ordering
The first principle is both simply and deep. It is an axiom of the positive
integers, but we give it its usual name.

Axiom 1.2.1 (Well-Ordering Principle). Any nonempty set of positive integers
has a least/smallest element.

This principle actually holds with any subset of Z which is bounded below,
such as N.

Let’s use it as an example to prove the following fact you probably didn’t
know required proof.

Fact 1.2.2 (Consecutive Integers). There are no integers between 0 and 1.

Proof. This proof proceeds by contradiction. Assume there are some such
integers, and let

S = {x ∈ Z | 0 < x < 1} .

This set must then have a least element a, and 0 < a < 1. Thus a2 is another
element such that 0 < a2 < 1, but we also know that a2 < a in this case,
because of the usual properties of ordering positive numbers.

But then a2 should be in S but is smaller than any element of S. That is
a contradiction, so our original assumption was wrong, and there are no such
integers (i.e. S is empty).

To review, proofs by contradiction and contrapositive both start by
assuming the negation of the conclusion. A proof by contrapositive uses that
to prove the negation of the original assumption, while a proof by contradiction
can negate any other true fact or lead to some other absurdity; in this case,
you can’t have two different smallest elements of a set.

1.2.2 Induction
Sometimes we need a way to prove a statement for all integers n after a certain
point, for instance greater than or equal to n = 1. This is usually called proof
by induction. There are (usually) two steps in a typical ‘simple’ induction.

• First we prove the “base case” (often n = 1 or n = 0).

• Then we prove the “induction step”, that the case n = k implies case
n = k + 1.

1.2. REVIEW OF PREVIOUS IDEAS 3

These combine to prove a fact for all cases n ≥ 1.

Example 1.2.3 (Archetype for Induction). We shall show that

n∑
i=1

i =
n(n+ 1)

2

Solution. The base case is that 1 = 1(1+1)
2 , which is easy.

The induction step begins with the assumption that

k∑
i=1

i =
k(k + 1)

2

For this proof, to add just one more integer k + 1 means

k+1∑
i=1

i =
k∑

i=1

i+ (k + 1)

and we can just plug in the induction assumption to obtain

k(k + 1)

2
+ (k + 1) = (k + 1)(

k

2
+ 1) =

(k + 1)(k + 2)

2

which is exactly what is required to finish the induction step.

We could use well-ordering (Axiom 1.2.1) to prove that the induction proof
technique works, but will not do so here.

1.2.3 Divisibility
Definition 1.2.4. If an integer n can be written as a product kd = n of two
integers k and d, then we say that d divides n, or that n is divisible by d, or
that d is a divisor of n. We write d | n for this concept.

Examples:

• For instance, n even is just the same thing as 2 | n.

• The divisors of 8 are … ±1, 2, 4, 8! (Don’t forget negative divisors.)

• Very often we can write this generically, so that n | x + 1 means that
x+ 1 can be written as the product of n and some other integer m.

There are lots of interesting things to say about divisibility. We can prove
a somewhat unexpected statement using induction and just what we already
know.

Example 1.2.5. Show that 4 | 5n − 1 for n ≥ 0.

Solution. This proof will proceed by induction. This time the base case will
be n = 0.

• Base step: If n = 0 this is just saying that 4 divides 50 − 1 = 1− 1 = 0,
which is definitely true.

• Induction step:

4 CHAPTER 1. PROLOGUE

◦ Suppose 4 | 5k − 1. Then, by Definition 1.2.4, 5k − 1 = 4x for some
integer x.

◦ Hence 5k = 1 + 4x.
◦ Our goal in this step is to show 4 | 5k+1 − 1.
◦ Since we need something true about 5k+1 − 1, let’s start with just

5k+1. Using the induction assumption we can write this as 5k · 5 =
(1 + 4x)5; this means that

5k+1 − 1 = 5(1 + 4x)− 1 = 20x+ 4.

◦ Certainly 20x+ 4 is divisible by 4, so we are done with the proof.

There are lots of other propositions about divisibility you are probably
familiar with from previous courses. Here is a sampler.

Proposition 1.2.6 (Divisibility Facts).

1. If a | b and b | c then a | c.

2. If a | b then ca | cb.

3. If c | a and c | b then c | au+ bv for any integers u, v.

4. All divisors of n are less than or equal to n, unless n = 0.

These are not hard to prove (see Exercise 1.4.1). For instance, the second
one can be proved by simply noting b = ka for some k ∈ Z, so that cb =
c(ka) = c(ak) = (ca)k. The others are similar, and are good practice with
such manipulation.

1.3 Where are we going?
Before moving on from these preliminaries and our introductory Prologue, let’s
step back. What will we cover in this text?

• We have started by exploring basic integer questions, and will continue
like this at first (Chapter 1–Chapter 3).

• We’ll be essentially forced to move to the concepts of congruences and
primes by the material (Chapter 4–Chapter 7).

• Next, we’ll explore a more advanced point of view of integers and congru-
ences, including groups, to attack cryptography efficiently (Chapter 8–
Chapter 12).

• About halfway through, geometry and how it infiltrates number theory
will be up (Chapter 13–Chapter 17).

• Finally, functions and limits will help us illuminate primes in depth, as
well as show us how the ideas of calculus really do show up in num-
ber theory quite naturally (Chapter 18–Chapter 24), concluding with an
introduction to the legendary Riemann Hypothesis in Chapter 25.

Let’s get ready for an exciting exploration of number theory!

1.4. EXERCISES 5

1.4 Exercises
1. Prove some or all of the facts in Proposition 1.2.6.

2. Find a counterexample to show that when a|b and c|d, it is not necessarily
true that a+ c|b+ d.

3. Prove that 2n > n for all integers n ≥ 0 by induction.

4. Prove, by induction, that if c divides integers ai and we have other integers
ui, then c |

∑n
i=1 aiui.

5. Write up a proof of the facts from the first discussion about the conductor
idea (in Section 1.1) with the pairs {2, 3}, {2, 4}, and {3, 4}.

6. What is the conductor for {3, 5} or {4, 5}? Prove these in the same manner
as in the previous problem.

7. Try finding a pattern in the conductors. Can you prove something about it
for at least certain pairs of numbers, even if not all pairs?

8. What is the largest number d which is a divisor of both 60 and 42?

9. Try to write the answer to the previous problem as d = 60x+42y for some
integers x and y.

10. Get a Sage account somewhere, such as at the SageMath Cloud or a Sage
notebook server on your campus, if you don’t already have one.

1.5 How to Use Computation
This text is advertised as having interactive computation, but so far any com-
putation has been your own. How does it fit in? We’ll skip ahead slightly here
to see how this will work.

In the interactive version of this text, the areas below are called Sage cells,
or cells for short. Assuming you’re connected to the internet, this very first cell
will use SageMath (usually just called Sage) to check whether this number
leaves a fraction when reduced, or whether it reduces to an integer. Click
“Evaluate” to try it out.

38/19

Go ahead, try changing the numbers and clicking the evaluate button again.
As we go through the text, you’ll see lots of opportunities to use Sage.

Sometimes I’ll give you the opportunity to learn a little bit about how to use
it in Sage notes, such as the following one.

Sage note 1.5.1 (About Sage notes). Sage notes will teach you useful things
about basic programming, or more general facts about Sage and Python, the
language Sage is based on.

Let’s try another computational cell. We haven’t defined prime numbers
yet (see Chapter 6), but I figure you know what they are. Here you can check
whether an integer is prime.

is_prime (3169)

https://cloud.sagemath.com
http://www.sagemath.org
http://www.python.org

6 CHAPTER 1. PROLOGUE

Sage note 1.5.2 (Using commands in Sage cells). Assuming you are using
this online, you can put any legitimate Sage command in the cells above. (Try
integrate(x^3,x) if you know some calculus.) Or you use these commands in
your own Sage worksheet at your local Sage server or in the SageMathCloud,
so that you can save your work!

If you are using an offline or hard copy version, I still highly recommend
sifting through some of the code and commands; much of it will enlighten the
reader. (Then try it out online or on your local computer!)

Finally, let’s test some conductor ideas using technology. In the cell below,
Sage will automatically list all the nonnegative numbers up to n that can be
written as n = ax + by for nonnegative integers x and y. The default values
are the a = 3, b = 4 combination.

@interact
def _(a=(3 ,[2..10]) ,b=(4 ,[2..10]) ,n=(20 ,[10..50])):

list_of_them=list(set([a*x+b*y for x in srange(n/a+1)
for y in srange(n/b+1)]))

list_of_them =[item for item in list_of_them if item <=
n]; list_of_them.sort()

pretty_print(html("The␣nonnegative␣integers␣up␣to␣
$n=%s$␣which␣can␣be"%(str(n))))

pretty_print(html("written␣as␣positive␣combinations␣of␣
$a=%s$␣and␣$b=%s$␣are:"%(str(a),str(b))))

print list_of_them

Notice that with the one tried above we definitely are getting the same
answers. Also notice that the algorithm I used in the code is very naive – I
just listed all possible combinations under a certain size. It would be interesting
to use this to try to verify patterns you may have noticed about the precise
size of the conductor, and when it exists.

Chapter 2

Basic Integer Division

In this chapter, we introduce some concepts of numbers which are familiar, but
key for our further study. In particular, we try to understand why they work.

• The division algorithm (Section 2.1),

• The greatest common divisor (Section 2.2), and

• The Euclidean algorithm (Section 2.3).

Then we’ll put them together with the Bezout identity (Section 2.4).

2.1 The Division Algorithm
2.1.1 Statement and examples
Let’s start off with the division algorithm. This says that if you divide an
integer a by a positive integer b, you will always get an integer remainder r
that is nonnegative, but less than b. Equally important, there is only one way
to write this – that is, there is a unique remainder under these circumstances.

Theorem 2.1.1 (Division Algorithm). For a, b ∈ Z and b > 0, we can always
write a = qb+ r with 0 ≤ r < b and q an integer. Moreover, there is only one
way to do this.

The proof is below in Subsection 2.1.2.
Using this is really easy to do for small examples like a = 13, b = 3 by

division.
13 = 4 · 3 + 1 so q = 4 and r = 1

For bigger values it’s nice to have it implemented in Sage.

divmod (281376 ,29)

(9702 , 18)

The first element is the quotient, the second the remainder. We can check
that this algorithm works by multiplying and adding back together.

9702*29+18

281376

7

8 CHAPTER 2. BASIC INTEGER DIVISION

Sage note 2.1.2 (Counting begins at zero). There are several things to note
about this early computation. First, note that the answer to divmod came in
parentheses, a so-called ‘tuple’ data type.

Second, there is another way to approach this computation, more program-
matically so that it’s easier to reuse. What do you think the [0] and [1]

mean?
divmod (281376 ,29) [0] * 29 + divmod (281376 ,29) [1]

281376

To access the first and second parts of the answer (the quotient and remain-
der), we use square brackets, asking for the 0th and 1st parts! In Python (the
programming language behind Sage), as in many other languages, counting
begins at zero.

The discussion in the previous note actually turns out to be an enduring
argument in number theory, too. Do we only care about positive numbers, or
nonnegative ones as well? We saw this in the stamps example, since one could
send a package for free under certain circumstances (campus mail), but might
not care about that case. Similarly, are we required to use at least one of each
type of stamp, or is it okay (as in our problem) to not use one type?

2.1.2 Proof of the Division Algorithm
The neat thing about the division algorithm is that it is not hard to prove but
still uses the Well-Ordering Principle; indeed, it depends on it. The key set is
the set of all possible remainders of a when subtracting multiples of b, which
we call

S = {a− kb | k ∈ Z} .
Here is the proof:

• S must be nonempty (why?), and call the nonnegative piece S′ = S ∩N.
(Why must this also be nonempty?)

• The well-ordering principle must apply to S′. Give the name r to the
smallest element of S′, which must be writeable as r = a− bq (that’s the
definition of being in S′ ⊂ S, after all).

• Now, if r ≥ b, we could have subtracted another copy of b while keeping
the remainder in S′; hence, we must have that r < b. (Note that r is the
smallest nonnegative such number.)

• These elements r and q must be unique. First let’s observe that the r
is unique, which would follow if the least element of a well-ordered set
is unique. But think about that! If r and r′ are both least elements of
S, then in particular they are less than (or equal to) each other – the
definition of equality.

• Finally, we will need a factoring argument, the fact that (for any integers
x and y) if xy = 0 then x = 0 or y = 0 (or both). Since we have shown
r = r′, then bq = bq′. Hence b(q − q′) = 0 so (since b > 0) we have that
q − q′ = 0, which means the quotient is unique.

It’s worth actually trying out this proof with some a and b, say with a = 26
and b = 3.

As a scholium (see Exercise 2.5.1) note that if b < 0 there can still be a
positive remainder, but here we would need 0 ≤ r < |b| in the theorem.

2.1. THE DIVISION ALGORITHM 9

2.1.3 Uses of the division algorithm
It’s kind of fun to prove interesting things about powers with this fact, and
likely you did in a previous course. Here is some pattern for remainders of
perfect squares modulo 4, for instance.

for i in [0..10]:
pretty_print(html("The␣remainder␣of␣%s␣squared␣with␣

respect␣to␣4␣is␣%s"%(i,divmod(i^2,4) [1])))

Sage note 2.1.3 (Repeating commands for different input). The syntax for

i in [0..10]: just means we want to do the next command for integers from
0 to 10.

The rest of the command (all the percent symbols and so forth) is mostly
for correct formatting. That includes the indentation in the second line – an
essential part of Python and Sage.

This certainly provides strong numerical evidence for the following propo-
sition. But better is a proof!

Proposition 2.1.4. A perfect square always leaves remainder r = 0 or r = 1
when divided by 4.

Proof. Using the division algorithm, take n = 4q + r.

• What happens if we square it, (4q + r)2?

• Algebraically, we get 16q2 +8qr+ r2. Clearly this is a multiple of 4 plus
r2. So the only possible remainders are the remainders of r2, where r is
already known to be less than 4!

• Now check these yourself to see that the only possibilities are the ones
stated.

One cool thing about this proof is that if we just change the proof from
using n = (4q+ r)2 to one using n = (mq+ r)2, we can essentially do the same
thing for several divisions at once. If the number we divide by is m, then

(mq + r)2 = m2q2 + 2mqr + r2 = m(mq2 + 2qr) + r2 ,

hence all that matters for the final remainder is r2, since the rest is already
divisible by m.

But we know that there are only b possibilities for r, so it’s easy to check
all their squares. For m = 6:

for i in [0..5]:
pretty_print(html("The␣remainder␣of␣%s␣squared␣with␣

respect␣to␣6␣is␣%s"%(i,divmod(i^2,6) [1])))

This verifies that r = 0, 1, 3, 4 are the only possible remainders of perfect
squares when you divide by six.

10 CHAPTER 2. BASIC INTEGER DIVISION

2.2 The Greatest Common Divisor
It seems intuitive that of all the numbers dividing a number (the divisors), one
is biggest.
Definition 2.2.1 (Common Divisors). If we consider the various divisors of
two numbers a and b, we say that d is a common divisor of a and b if d | a
and d | b. If d is the biggest such common divisor, it is called the greatest
common divisor, or gcd, written d = gcd(a, b).

What are all the common divisors of 6 and 10? What is the gcd?
We now come to a great definition-theorem.

Theorem 2.2.2. The greatest common divisor (gcd or gcd) of two integers
a and b (not both zero) is:

• The largest integer d such that d|a and d|b. (See above.)

• The number achieved by applying the Euclidean algorithm (a repeated
division algorithm) to a and b. (See Section 2.3.)

• The smallest positive number which can be written as ax + by for some
integers x and y. (See Section 2.4 and Subsection 2.4.2.)

This is amazing, and the first real indication of the power of having multiple
perspectives on a problem. It means that the very theoretical issue of when a
gcd exists (and finding it) can be treated as a purely computational problem,
characterized completely independent of actually finding divisors. And further,
there is a definition purely in terms of addition and multiplication, not division
or subtraction.

If you need to actually calculate a gcd, you use the algorithm. If you want
to prove something about it that has to do with dividing, you use the original
definition. And if you need to prove something about it where division is hard
to use, you use the third characterization. This sort of idea will come up again
and again in this book – that having multiple ways to define something really
helps.

2.3 The Euclidean Algorithm
The Euclidean algorithm says that to find the gcd of a and b, you do the
division algorithm until you get zero as the remainder, each time replacing the
old division by the new remainder, and the old number by the old division
number. The last non-zero remainder is the gcd.

We’ll state and prove this momentarily (Algorithm 2.3.2). Let’s try it with
a reasonably sized problem, a = 60 and b = 42.

60 = 42 · 1 + 18

42 = 18 · 2 + 6

18 = 6 · 3 + 0

So gcd(60, 42) = 6.
This procedure is named after Euclid because of this proposition in Euclid’s

Elements. There is an amazing complete Java interactive implementation of
all the propositions, by David Joyce; his version of this proposition includes
some explanation of what Euclid assumes in doing this. In particular, Euclid
basically assumes the Well-Ordering Principle, although of course he didn’t
think of it in such anachronistic terms.

http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII2.html
http://aleph0.clarku.edu/~djoyce/java/elements
http://aleph0.clarku.edu/~djoyce/java/elements

2.3. THE EUCLIDEAN ALGORITHM 11

Remark 2.3.1. Euclid, a mathematician in Alexandria during the Hellenis-
tic era, appears to have written the Elements as a compendium of rigorous
mathematical knowledge. In addition to being the main geometry textbook in
the Western and Islamic worlds for two millennia (as late a teacher as Charles
Dodgson a.k.a. Lewis Carroll was extolling its virtues in print), there are sub-
stantial number-theoretic portions as well. No one really knows how much of
the Elements is original to Euclid, but the work as a whole is monumental and
well-organized, despite some well-known criticisms.

Try the algorithm on your own by hand for the gcd of 280 and 126. Or,
for even more practice, try it with gcd(2013, 1066) and then check your work
with Sage.

gcd (2013 ,1066)

Algorithm 2.3.2 (Euclidean algorithm). To get the greatest common divisor
of a and b, perform the division algorithm until you hit a remainder of zero,
as below.

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3

· · ·
rn−3 = rn−2qn−1 + rn−1

rn−2 = rn−1qn + 0

Then the previous remainder, rn−1, is the greatest common divisor.

Proof. First let’s see why this even does anything. The division algorithm
says each ri is less than the previous one, yet they may not be less than zero.
So let’s apply the Well-Ordering Principle to the set of remainders. (Think
about that.) This set must have a least positive element, and will be the
answer. Another way to think about it is that since b is finite, there won’t be
an infinite number of steps.

Of course, that just gives a number, with no guarantee it has any connection
to the gcd. So consider the set of common divisors d | a and d | b. All such d
also divide

a− q1b = 1 · a+ (−q1) · b = r1

So these d also divides r2 = b − q2r1, and indeed divide all the remainders,
even rn−1 = rn−3 − qn−1rn−2. So all common divisors of a and b are divisors
of rn−1.

On the other hand, if d divides rn−1, it divides rn−2 = rn−1qn, and thus
divides rn−3 = rn−2qn−1 + rn−1, and so forth. Hence d divides a and b.

So the set of common divisors of a and b are equal to the set of divisors of
rn−1, so this algorithm really does give the gcd.

As you might expect, the proof makes more sense if you try it out with
actual numbers; for the theoretical view, see Exercise 2.5.14. Especially if you
can find a and b for which the algorithm takes four or five steps, you will gain
some insight.

12 CHAPTER 2. BASIC INTEGER DIVISION

2.4 The Bezout Identity
2.4.1 Backwards with Euclid
Now, before we get to the third characterization of the gcd, we need to be
able to do the Euclidean algorithm backwards. This is sometimes known as the
Bezout identity.

Definition 2.4.1 (Bezout identity). A representation of the gcd d of a and
b as a linear combination ax + by = d of the original numbers is called an
instance of the Bezout identity. (This is not unique.)

It is worth doing some examples. Perhaps you already have gotten one,
probably by trial and error. For instance,

6 = 60 · (−2) + 42 · 3 .

The third characterization in Theorem 2.2.2 implies that doing this is al-
ways possible; gcd(a, b) = ax + by for some integers x and y. Doing the
Euclidean algorithm backwards gets this.

Sometimes it’s good to write the Euclidean algorithm down one side of
a table, and then go backwards up the other side of the table to obtain an
instance of the Bezout identity. Here’s an example with the gcd of 8 and 5;
follow it from top left to the bottom and then back up the right side. The
middle column provides the necessary rewriting.

8 = 1 · 5 + 3 8− 1 · 5 = 3 1 = 2 · 3− 1 · 5 = 2 · (8− 1 · 5)− 1 · 5 = 2 · 8− 3 · 5
5 = 1 · 3 + 2 5− 1 · 3 = 2 1 = 3− 1 · 2 = 3− 1 · (5− 1 · 3) = 2 · 3− 1 · 5
3 = 1 · 2 + 1 3− 1 · 2 = 1 1 = 3− 1 · 2
2 = 2 · 1 + 0 Go up this column...

This question of the Bezout identity is implemented in Sage as xgcd(a,b),
because this is also known as the eXtended Euclidean algorithm.

xgcd (60 ,42)

Or, 6 = −2 · 60 + 3 · 42, as we saw above.

Example 2.4.2. Try to get the xgcd/Bezout identity for gcd(1492, 1066). You
should get 2 = −5 · 1492 + 7 · 1066.

Try the following Sage cell to check that it works.

xgcd (1492 ,1066) [1]*1492 + xgcd (1492 ,1066) [2]*1066

Sage note 2.4.3 (Remind how to get list elements). Do you remember what
the [1] means? What do you think the [2] means in this context?

2.4.2 Proving the final characterization
The final characterization of the greatest common divisor (Theorem 2.2.2) is
that it is the least positive integer which can be written au + bv for integers
u, v. Let’s prove that now.

• Call c the smallest such au+ bv.

2.4. THE BEZOUT IDENTITY 13

• By Proposition 1.2.6, any integer which divides a and b divides any such
au + bv, so it divides the smallest such au + bv = c. In particular, the
gcd of a and b (which we’ll call d) divides c. So d ≤ c.

• On the other hand, we know from the backward/extended Euclidean
algorithm/Bezout identity that d can be written d = ax + by for some
integers x and y. Since c is the smallest such (positive) integer, c ≤ d.

• Concluding that d = c is the only way to avoid a contradiction!

2.4.3 Other gcd questions
You might also want to do more than one linear combination, for variety. How
might we get another such representation?

Example 2.4.4 (Using Bezout to get another Bezout). We used the backwards
Euclidean algorithm to see that 6 = −2·60+3·42. Let’s use that to get another.

• Since 6 is itself a divisor of both 60 and 42, let’s pick one (the smaller
one!), 42, and write it as 42 = 7 · 6.

• Then we can really write

42 = 7 · 6 = 7 · (−2 · 60 + 3 · 42) ,

since after all we just saw that was a way to represent 6!

• Now we plug this back into the original equation:

6 = −2 · 60 + 3 · 42 = −2 · 60 + 3 · (7 · 6)

= −2 · 60 + 3 · (7 · (−2 · 60 + 3 · 42))

If we simplify it out, that means 6 = −44 · 60 + 63 · 42, which is indeed
correct!

So, substituting a Bezout identity into itself yields more and more such
identities. How many such identities are there? Is there a general form?

Another interesting question is that some gcds of large numbers are very
easy to compute. What makes finding gcd(42000, 60000) so easy? If you’re in
a classroom, this is a perfect time to discuss.

On a related note, if gcd(a, b) = d, could you make a guess as to a formula
for gcd(ka, kb) (for k > 0)? Can you prove it in Exercise 2.5.16? (Hint: here
is where our original definition or the Bezout version could be useful.)

2.4.4 Relatively prime
There is one final thing that the linear combination version of the gcd can
give us. It is something you may think is familiar, but which can arise very
naturally from the Bezout identity.

When do a and b have as greatest common divisor the smallest possible,
gcd(a, b) = 1? From this point of view, it is precisely when you can write
ax+ by = 1 for some integers x and y.

Think about this, though; it means that you can write any integer as a
(linear) combination of a and b if their gcd is 1! This is a property I think people
would have come up with no matter how the development of mathematics had
gone; the pairs of integers such that you can write any number as a combination
of them.

14 CHAPTER 2. BASIC INTEGER DIVISION

Definition 2.4.5 (Relatively Prime). If the greatest common divisor of two
numbers is one, we call these relatively prime numbers or coprime numbers.

Proposition 2.4.6. Here are two interesting facts about coprime integers a
and b:

• If a | c and b | c, then ab | c.

• If a | bc, then a | c.

Proof. The first is not too hard to prove, if you think in terms of Bezout. It
does need a little cleverness.

• Remember that ax+ by = 1 by definition.

• So c = cax+ cby.

• Now write c = kb and c = ℓa, and substitute them in the opposite parts
of the previous line.

• This gives c = (kb)ax+(ℓa)by, and ab definitely divides both parts of this,
so it divides the whole thing by our earlier proposition about divisibility.

We leave the second as an exercise (Exercise 2.5.19).

It’s also useful to try to find counterexamples! Can you find place where
gcd(a, b) ̸= 1, a | c and b | c, but ab does not divide c? (See Exercise 2.5.20.)

2.5 Exercises
1. Try stating and proving the division algorithm (Theorem 2.1.1) but for
b < 0.

2. Can you find an n such that the possible remainders of a perfect square
when divided by n are all numbers between zero and n − 1? If you can, how
many different such n can you find? If not, can you prove there are none?

3. Write the gcd of 3 and 4 as a linear combination of 3 and 4 in three different
ways. (Hint: trial and error.)

4. You can define the gcd of more than two numbers as the greatest integer
dividing all of the numbers in your set. So, for instance, gcd(20, 30, 70) = 10.
Calculate the gcd of some hard-looking sets of three numbers by listing divisors.

gcd ([3800 ,7600 ,1900])

Sage allows you to calculate arbitrary gcds like this.

5. Find the gcd of the four numbers 1240, 6660, 15540, and 19980 without
Sage.

6. Prove that gcd(a, a+ 2) = 1 if a is odd and gcd(a, a+ 2) = 2 is a is even.

7. Let a be a positive integer. What is the greatest common divisor of a and
a+ 1? Prove it.

8. Use the Euclidean algorithm to find the gcd of 51 and 87, and then to write
that gcd as a linear combination of 51 and 87. Do the same thing for 151
and 187. Find another way to write the gcd of one of these pairs as a linear
combination.

2.5. EXERCISES 15

9. Define the least common multiple of a and b to be the smallest positive
number which is divisible by both a and b. Prove that the least common
multiple of a and b is ab precisely when a and b are coprime.

10. Find the gcd of 151 and 187 using the Euclidean algorithm, then write it
as a linear combination of these two numbers in two different ways.

11. Find the gcd of 500000001 and 5000001 in any way you see fit other than
asking someone else.

12. Does the pattern you see in the following interact continue? How would
you find a counterexample, how might you prove it?

@interact
def _(m=(3 ,[1..20]) ,n=(2 ,[1..20])):

pretty_print(html("The␣gcd␣of␣$%s$␣and␣$%s$␣is␣
$%s$"%(5*10^m+1 ,5*10^n+1,gcd (5*10^m+1 ,5*10^n+1))))

13. Find the gcd of three four digit numbers, none of which is divisible by ten.

14. To make the proof of the Euclidean algorithm, Algorithm 2.3.2, very com-
plete, one would want to use induction to replace “and so forth” verbiage. Do
so for practice with induction.

15. Prove that if a and c are coprime, and likewise b and c are coprime, then
ab and c are coprime. (Hint: use Bezout.)

16. If gcd(a, b) = d and k > 0, prove a formula for gcd(ka, kb).

17. You probably know the Fibonacci numbers 1, 1, 2, 3, 5, 8, · · ·, where fn+2 =
fn+1 + fn and we number as f1 = 1, f2 = 1. Try applying the Euclidean
algorithm to a pair of consecutive Fibonacci numbers? How long does it take
compared to n? (For a more general approach see [C.1.1, Exercises 1.17-1.19].)

18. Try the above exercise again, but with a variant of the Fibonacci numbers
where fn+2 = fn+1 + 2fn. This would start 1, 1, 3, 5, 11, 21, · · ·.

19. Prove that if a and b are coprime, and if a | bc, then a | c. (Hint: use the
Bezout fact again.)

20. Find examples that contradict the facts about coprime integers (Proposi-
tion 2.4.6) if a and b do share a factor greater than 1.

21. We discussed relatively prime numbers in this chapter. Write down your
own definition of a prime number. Then compare it with the book, a few
internet sources, or some other authoritative source. Should 1 be considered
prime? What about −1?

22. Search books and/or the Internet and find at least three different proofs
that there is no largest prime number. (Ours, Theorem 6.2.1, is the oldest
one we know of.) You don’t have to understand all the details; they should
be fairly different from each other, though. Do any of the proofs generate all
primes in order?

16 CHAPTER 2. BASIC INTEGER DIVISION

Chapter 3

From Linear Equations to
Geometry

So far, we have mostly investigated topics that will seem familiar even to the
high school student; for instance, the gcd shows up in adding fractions with
unequal denominators.

What makes number theory so interesting is that even a slight change in the
questions we ask, or the way in which we approach them, can yield completely
unexpected insights.

In this section, we will begin this process by going from the simple ques-
tions we started with into more subtle ones, largely motivated by a surprising
connection with geometry.

3.1 Linear Diophantine Equations
The first goal for this chapter is to completely solve all ‘Linear Diophantine
Equations’ (of two variables), generically

ax+ by = c for a, b, c ∈ Z

They have been studied since the late Roman era (by Greeks, of course), but
it turns out that a general solution for equations like 6x+4y = 2 were already
known in the early medieval days by Indian mathematicians like Aryabhata.
When, shortly after 1600, Bachet de Méziriac came up with the same answer,
it was only the first in a long line of people coming up with this solution again
and again. And that’s the one we are doing today!

There are several main cases involved.

Theorem 3.1.1 (Solutions of Linear Diophantine Equations). We wish to
solve ax + by = c for all integers x, y that make it work. Let gcd(a, b) = d.
Then:

1. When c is not a multiple of d (or both a and b are zero) and c is not),
there is no solution.

2. When a or b is zero (but not both), there are infinitely many solutions
that require little work to obtain.

3. When c = d, there are infinitely many solutions, but you will need to first
obtain one solution in order to generate the others.

17

18 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

4. When c is a nontrivial multiple of d, there are infinitely many solutions
that are easiest to generate by means of a solution to ax+ by = d.

Proof. The details are in the following subsections.

1. When c is not a multiple of d: Subsection 3.1.1

2. When a or b is zero: Subsection 3.1.2

3. When c = d: Subsection 3.1.3

4. When c is a nontrivial multiple of d: Subsection 3.1.4

You should definitely follow the steps with specific simple numbers to see
how each proof works. Examples 3.1.2 and 3.1.3 are good models.

3.1.1 If c is not a multiple of gcd(a, b)
What is the possibility of solving ax+ by = c in this case?

• Here, our previous theorems say this is impossible. Can you see why?

• For instance, if a = 6, b = 9, and c = 5.

3.1.2 If a or b is zero

• Say b = 0 – in which case gcd(a, b) = a. Try a = 55.

• Then we are just solving ax = c, so it is true precisely when a|c, and
then all pairs

(
c
a , y
)

with integer y are solutions.

• If a = 0 the answer is analogous; write it down for yourself as practice!

3.1.3 If c = gcd(a, b)
Suppose a, b ̸= 0 and c actually is the gcd of a and b . . . then there is some
work to do. Follow along with a = 60, b = 42, and c = 6.

• Your first step should be to get that gcd via the Euclidean algorithm.
Let’s call it d.

• Then go backwards (i.e. Bezout identity 2.4.1) to get one solution
(x0, y0). That is important, since now at least one ax0 + by0 = c is
known.

• Next, simply write down the whole solution set:

x = x0 +
b

d
n, y = y0 −

a

d
n for n ∈ Z !

Notice that a and b switch their ‘affiliation’ here from x and y to y and x.
Also note that x and y have ± involved. It doesn’t really matter which
is which (switch −n for n to see why), but if they have the same sign it
is wrong. (When in doubt, try something and then check to see if the
answers are right.)

3.2. GEOMETRY OF EQUATIONS 19

• It’s easy to check this works:

a

(
x0 +

b

d
n

)
+ b

(
y0 −

a

d
n
)
= ax0 +

abn

d
+ by0 −

abn

d
= c .

• Why does this give all solutions? Well, pick another solution (x, y), and
let’s show it has this form. Start with

ax+ by = c = ax0 + by0, so that a

d
(x− x0) = − b

d
(y − y0) .

Now we use Proposition 2.4.6. Since b
d divides the right side, it divides

the left side. But since b
d is coprime to a

d , then it must divide the other
piece of the left side, so that

x− x0 = k
b

d
, which means x = x0 + k

b

d
,

which is exactly what we just said was the form of all solutions.

Example 3.1.2 (An easy example: 6x+4y = 2). Trial and error tells us that
6x+ 4y = 2 can be solved with x0 = 1, y0 = −1. Thus the full answer is

x = 1 +
4

2
n, y = −1− 6

2
n

or
x = 1 + 2n, y = −1− 3n .

3.1.4 If c works, but is not the gcd
What if c is not the greatest common divisor? Then let c = de, where again d
is the greatest common divisor.

• We still have the same solution as above for d, so we can find d = ax0+by0
for some (x0, y0) as above.

• Now if we multiply the whole thing by e, we have that de = ax0e+ by0e,
or that c = a(x0e) + b(y0e) is a solution.

• Now do exactly the same thing as above for the answer! The surprise is
that x = x0e+

b
dn, y = y0e− a

dn still works, but it’s easy to check again
(see Exercise 3.6.2), with virtually the same check working as above. You
don’t need the e in the fractions because they will just cancel anyway.

Example 3.1.3. Try to do 15x−21y = 6, a slightly harder one. (Hint: d = 3;
what are c and d?

3.2 Geometry of Equations
But just proving things are true and using them isn’t enough. Why is it true,
intuitively? I believe the right place to do this is in geometry. Try out the
following interactive cell.

@interact
def _(a=slider (-10,10,1,6),b=slider (-10,10,1,4),

c=slider (-20,20,1,2),viewsize=slider (3,20,1,5)):

20 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

p = plot(-(a/b)*x+c/b,-viewsize ,viewsize ,
plot_points =200)

lattice_pts =[[i,j] for i in [-viewsize .. viewsize] for
j in [-viewsize .. viewsize]]

plot_lattice_pts =
points(lattice_pts ,rgbcolor =(0,0,0), pointsize =2)

if mod(c,gcd(a,b))==0:
line_pts = [coords for coords in lattice_pts if

a*coords [0]+b*coords [1]==c]
if line_pts ==[]:

plot_line_pts = Graphics ()
else:

plot_line_pts =
points(line_pts ,rgbcolor =(0,0,1),
pointsize =20)

pretty_print(html("Showing␣solutions␣to␣
$%sx+%sy=%s$␣in␣this␣viewing␣
window"%(str(a),str(b),str(c))))

show(p+plot_lattice_pts+plot_line_pts ,
figsize =[5,5], xmin=-viewsize ,xmax=viewsize ,
ymin=-viewsize ,ymax=viewsize)

else:
pretty_print(html("The␣gcd␣of␣$%s$␣and␣$%s$␣is␣

$%s$,␣which␣does␣not␣divide␣
$%s$,"%(str(a),str(b),str(gcd(a,b)),str(c))))

pretty_print(html("so␣no␣solutions␣to␣
$%sx+%sy=%s$"%(str(a),str(b),str(c))))

show(p+plot_lattice_pts ,
figsize =[5,5],xmin=-viewsize ,xmax=viewsize ,
ymin=-viewsize ,ymax=viewsize)

The little gray dots in the graph above are called the integer lattice; this
is all the intersections of the lines y = m,x = n for all integers m,n. There are
many mathematical lattices, but this is the one we will focus on in this course.
Definition 3.2.1. The integer lattice is the set of points (m,n) for m,n ∈ Z.

In the graphic, for instance (−2, 3) is probably visible; however, note that
(−1, 1/2) should not be not a little dot, because it doesn’t have integer values.

Now, since ax+ by = c may be thought of as a line (in fact, the line

y = −a

b
x+

c

b

with slope −a
b), we now have a completely different interpretation of the most

basic number theory question there is, the linear Diophantine equation. It is
simply asking, “When (for what a, b, c combinations) does the line hit this
lattice? If it does, can you tell me all intersections?” If you play around with
the sliders you will quickly see that things work out just as promised in the
theorems.

But let’s go a little deeper. There are three interesting insights we can get.

• First, Theorem 3.1.1 now expresses a very mysterious geometric idea,
depending on whether

gcd(a, b) | c
If so, then this line hits lots of the lattice points; if not, the line somehow
slides between every single one of them! You can check this by keeping
a, b the same and varying c in the interact above.

3.3. POSITIVE INTEGER LATTICE POINTS 21

• Secondly, it makes the proof of why Theorem 3.1.1 gets all of the answers
much clearer. If you have one answer (for instance, (1,−1)) and go right
by the run and down by the rise in a

b (our example was a = 6, b = 4),
you hit another solution (perhaps here (−3, 5)) since it’s still all integers
and the slope was the line’s slope.
But wait, couldn’t there be points in between? Sure. So make a

b into
lowest terms (e.g. 3

2), which would be a/d
b/d . And this is the ‘smallest’

rise over run that works to keep you on the line and keep you on integer
points.

• Third, it can help clarify the role of the solution which the Bezout iden-
tity (extended Euclidean algorithm) gives for ax + by = c. Namely, as
pointed out in an article from 2013 in the American Math Monthly by
S.A. Rankin, the “solution provided … lies nearest to the origin.” Again,
try the applet to convince yourself of this!

Although we won’t pursue it, there is a question which this formulation
in an online text brings up. Namely, given that the ‘line’s in question are
themselves only pixellated approximations whose coordinates may not satisfy
ax + by = c, what is the connection between the computer graphics and the
number theory? See How to Guard an Art Gallery [C.5.7], Chapter 4, for an
accessible take on this1 from a number-theoretic viewpoint, as well as Exer-
cise 3.6.15.

3.3 Positive Integer Lattice Points
Now that we have the geometric viewpoint, here is a more subtle question:

Question 3.3.1. Assume there exists a solution (hence infinitely many) to
ax+ by = c. How many such solution pairs (x, y) have x and y both positive?

This is similar to the conductor question. It is closely related to integer
programming, something with industrial applications.

@interact
def _(a=slider (1,20,1,1), b=slider (1,20,1,1),

c=slider (1,20,1,4)):
ym = c/b + 1
xm = c/a + 1
p = plot(-(a/b)*x+c/b,-1,xm, plot_points = 200)
lattice_pts = [[i,j] for i in [0..xm] for j in [0..ym]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0), pointsize =2)
if mod(c,gcd(a,b))==0:

line_pts = [coords for coords in lattice_pts if
(coords [0]>0) and (coords [1]>0) and
(a*coords [0]+b*coords [1]==c)]

if len(line_pts)==0:
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' No␣positive␣lattice␣points␣

at␣all! '))
show(p+plot_lattice_pts , figsize = [5,5], xmin

= 0, xmax = xm, ymin = 0, ymax = ym)

1As well as several other topics in this text! But you’ll have to read it to find out which
ones.

http://www.maa.org/publications/periodicals/american-mathematical-monthly/american-mathematical-monthly-contents-junejuly-2013
http://www.maa.org/publications/periodicals/american-mathematical-monthly/american-mathematical-monthly-contents-junejuly-2013

22 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

else:
plot_line_pts = points(line_pts , rgbcolor =

(0,0,1), pointsize =20)
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' Number␣of␣positive␣lattice␣

points␣=␣ ' + str(len(line_pts))))
show(p+plot_lattice_pts+plot_line_pts , figsize

= [5,5], xmin = 0, xmax = xm, ymin = 0,
ymax = ym)

else:
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' No␣positive␣lattice␣points␣at␣

all! '))
show(p+plot_lattice_pts , figsize = [5,5], xmin =

0, xmax = xm, ymin = 0, ymax = ym)

Let’s explore this. How many such points are there in the following cases?
Draw pictures by hand, or use the interact above.

• x+ y = 4, x+ y = 5, x+ y = 6, . . .

• 2x+ y = 4, 2x+ y = 5, 2x+ y = 6, . . .

• 2x+ 2y = 4, 2x+ 2y = 5, 2x+ 2y = 6, . . .

• 3x+ y = 4, 3x+ y = 5, 3x+ y = 6, . . .

Can you get any good conjectures?
Note that what we are really asking is how many integer lattice points lie

between the intercepts.

3.3.1 Solution ideas
One way to think about this is the distance between solutions. Let’s assume
that the equation is ax+ by = c, and gcd(a, b) = 1. Then, using out technique
from last time, from the solution (x0, y0) we get a new solution (x0+ b, y0−a),
so the distance between any two solutions is, by the Pythagorean Theorem,√

[(x0 + b)− x0]2 + [(y0 − a) + y0]2 =
√
a2 + b2 .

Our strategy is to ask:

• How many times does that distance fit between the intercepts of the line?

Does that strategy make sense? It doesn’t give an exact answer, but should
give a good ballpark estimate.

Let’s calculate these things. You may want to follow it a = 3, b = 2, c = 4.

• The intercepts are c
a and c

b , respectively.

• Using the Pythagorean Theorem again, we see that the whole length
available is √(c

a

)2
+
(c
b

)2
=

c

ab

√
a2 + b2 .

• The ratio of this total length and the length between solutions is thus
c
ab .

3.3. POSITIVE INTEGER LATTICE POINTS 23

That’s a nice pat answer. There are two problems with it, though!

1. There is no guarantee that c
ab is an integer! In fact, it usually won’t be.

For instance, with 2x + 3y = 10, 10
2·3 ≈ 1.67. So should the number of

points be bigger than or less than this?

2. Secondly, even so it’s not clear what the precise connection between c
ab

and the actual number of points is. 2x+3y = 5 has one, and 2x+3y = 7
has one, but 2x + 3y = 6 doesn’t. Yet c

ab is about equal to one for all
three of these. In fact, the number of points is thus not even monotone
increasing with respect to c increasing, which is rather counterintuitive.

We will have to deal with each of these situations.

3.3.2 Toward the full solution
We can deal with each of these problems. To do so, we introduce a new
function:

Definition 3.3.2 (Greatest integer function). The greatest integer function
(also called the floor function) is the function which takes a real number x and
returns the next integer below it (or equal to it). We notate it ⌊x⌋.

Example 3.3.3. A few examples should suffice to understand it:

⌊1.5⌋ = 1 , ⌊1⌋ = 1 , ⌊1.99⌋ = 1 , ⌊0.99⌋ = 0 , ⌊−.01⌋ = −1 .

Now let’s use this to rectify our problems.

1. To take care of the integer problem, we will just consider n =
⌊

c
ab

⌋
, the

greatest integer function applied to c
ab .

2. Secondly, we simply recognize that there isn’t a nice formula. On average,
we should expect n lengths between integer points along the line segment
in question (and hence as many as n+ 1 lattice points, since a partition
of n intervals has n+ 1 endpoints associated to it).

Rather than give a general formula, we examine individual cases to show
what to expect. This applet helps.

@interact
def _(c=[5..12]):

a = 2
b = 3
ym = c/b + 1
xm = c/a + 1
p = plot(-(a/b)*x+c/b,-1,xm, plot_points = 200)
lattice_pts = [[i,j] for i in [0..xm] for j in [0..ym]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
if mod(c,gcd(a,b))==0:

line_pts = [coords for coords in lattice_pts if
(coords [0]>0) and (coords [1]>0) and
(a*coords [0]+b*coords [1]==c)]

if len(line_pts)==0:
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' No␣positive␣lattice␣points␣

at␣all! '))

24 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

show(p+plot_lattice_pts , figsize = [5,5], xmin
= 0, xmax = xm, ymin = 0, ymax = ym)

else:
plot_line_pts = points(line_pts , rgbcolor =

(0,0,1),pointsize =20)
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' Number␣of␣positive␣lattice␣

points␣=␣ ' + str(len(line_pts))))
show(p+plot_lattice_pts+plot_line_pts , figsize

= [5,5], xmin = 0, xmax = xm, ymin = 0,
ymax = ym)

else:
pretty_print(html(' Solutions␣to␣

$%sx+%sy=%s$: ' %(str(a),str(b),str(c))))
pretty_print(html(' No␣positive␣lattice␣points␣at␣

all! '))
show(p+plot_lattice_pts , figsize = [5,5], xmin =

0, xmax = xm, ymin = 0, ymax = ym)

Let’s focus on the case where a and b are relatively prime.

1. How could the fewest lattice points appear? That’s when both the x- and
y-intercepts actually are lattice points, because they do not have positive
coordinates. So if c/a and c/b are both integers, then we get precisely

n− 1 =
⌊ c

ab

⌋
− 1

lattice points. This is the transition between 2x+3y = 5 to 2x+3y = 6.

2. What if just one of the intercepts is a lattice point? Then, beginning at
that point, there is definitely room for the full n lengths to appear, and
you’re guaranteed to get n lattice points, because we just said the other
intercept isn’t a lattice point, so the nth one must appear before that
point. So here the formula is just plain old

n =
⌊ c

ab

⌋
.

Compare 2x+ 3y = 8 and 2x+ 3y = 9 to the others above.

3. Finally, if neither c/a nor c/b is an integer, then you get n or n+1 lattice
points (remember, n =

⌊
c
ab

⌋
). There’s no nice formula for this otherwise;

but notice that with 2x+3y = 11 you do get
⌊

11
2·3
⌋
+1 = 2 positive lattice

points! (And it jumps back down to
⌊

12
2·3
⌋
− 1 = 1 at c = 12!

For more details, see the excellent book The Geometry of Numbers [C.3.15].
If gcd(a, b) ̸= 1, it is not too hard to show that any such line with respect

to lattice points is the same as a line a′x + b′y = c′ for which gcd(a′, b′) = 1.
Which line would that be?

3.4 Pythagorean Triples
3.4.1 Definition
There are a lot of other interesting questions that one can ask about pure
integers, and polynomial equations they might satisfy (so-called Diophantine

3.4. PYTHAGOREAN TRIPLES 25

equations). However, answering many of those questions will prove challenging
without additional tools, so we will have to take a detour soon. But one such
question is truly ancient, and worth exploring more in this chapter.

It is also quite geometric. We just used the Pythagorean Theorem above,
but you’ll note that we didn’t really care whether the hypotenuse was an integer
there. Well, when is it? More precisely:

Question 3.4.1. When are all three sides of a right triangle integers?

Definition 3.4.2. We call a triple of integers x, y, z such that x2 + y2 = z2 a
Pythagorean triple.

There isn’t necessarily evidence that Pythagoras thought this way about
them. However, Euclid certainly did, and so will we. For that matter, we
should also think of them as x, y, z that fit on the quadratic curve x2+y2 = z2,
given z ahead of time.

Let’s try this out for a little bit. When do we get a triple? (Keep in mind
that we will always expect the triple (z, 0, z) and (0, z, z) where 02 + z2 = z2,
but that’s not really what we are interested in.)

@interact
def _(z=(2 ,[1..100])):

f(x,y)=x^2+y^2-z^2
max = z
p = implicit_plot(f,(x,-1,max),(y,-1,max),plot_points

= 200)
lattice_pts = [[i,j] for i in [0.. max] for j in

[0.. max]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
curve_pts = [coords for coords in lattice_pts if

f(coords [0], coords [1]) ==0]
if len(curve_pts)==0:

show(p+plot_lattice_pts , figsize = [5,5],
aspect_ratio =1)

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1),pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5,5], aspect_ratio =1)

3.4.2 Characterizing Pythagorean triples
It seems quite random for which z we get a Pythagorean triple existing! (We’ll
return to that question later.) Let’s see what triples are even possible.

First, it turns out we really only need to worry about the case when x, y, z
are all relatively prime to each other.

Definition 3.4.3. A Pythagorean triple with x, y, z mutually relatively prime
is called a primitive Pythagorean triple.

Proposition 3.4.4. Any Pythagorean triple with two numbers sharing a factor
can be reduced to a primitive triple.

Proof. If x = x′a and y = y′a, for instance, then

x2 + y2 = (x′)2a2 + (y′)2a2 = z2

http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html

26 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

which means that a2 | z2, and hence that a | z as well. The other cases are
similar. (One can prove the last statement with the gcd and Bezout as well,
but I trust you believe it for now. See below in Proposition 3.7.1.)

So let’s consider just the case of primitive triples. In just a little while we
will discover we have the proof of a result, Theorem 3.4.5.

We can start with very elementary considerations of even and odd. By the
previous proposition, x and y can’t both be even.

I claim they can’t both be odd, either. For if they were, we would have
x = 2k + 1 and y = 2ℓ+ 1 for some integers k, ℓ, and then

(2k + 1)2 + (2ℓ+ 1)2 = 4
(
k2 + ℓ2 + k + ℓ

)
+ 2

But this contradicts Proposition 2.1.4 with respect to the remainder of a perfect
square when divided by four.

So we may assume without loss of generality that x is odd and y is even,
(which means z is odd).

3.4.2.1 An intricate argument

So we have gcd(x, y, z) = 1 and x, z are odd and y is even. Now we will do
a somewhat intricate, but familiar, type of argument about factorization and
divisibility.

Let’s rewrite our situation as

y2 = z2 − x2 .

The right-hand side factors as

z2 − x2 = (z − x)(z + x) .

Certainly z − x and z + x are both even, so that z − x = 2m and z + x = 2n.
But since their product is a square (y2), then that product 2m · 2n = 4mn is
also a perfect square. Since y is even, y = 2k for some k ∈ Z and y2 = 4k2, so
mn = k2 is a perfect square.

Let’s look at these mysterious factors m = z−x
2 and n = z+x

2 . Are they
relatively prime? Well, if they shared a factor, then x = m+ n and z = n−m
also share that factor. But gcd(x, z) = 1, so there are no such factors and

gcd
(
z − x

2
,
z + x

2

)
= gcd(m,n) = 1

Now recall that y is even. Letting y = 2j, we see that y2 = 4mn yields
j2 = mn; however, this time m and n are relatively prime!

At this point we need what may seem to be an intuitive fact about squares
and division; if coprime integers make a square when multiplied, then they are
each a perfect square. (See Proposition 3.7.2.) So m = p2 and n = q2 for some
integers (obviously coprime) p and q.

This clearly implies that j2 = p2q2, so y = 2pq.

3.4.2.2 The punch line

Now we can put everything together.

z − x = 2p2, z + x = 2q2, and y = 2pq .

That is:

3.4. PYTHAGOREAN TRIPLES 27

Theorem 3.4.5 (Characterization of primitive Pythagorean triples). For a
primitive triple x, y, z, we have

z = p2 + q2, x = q2 − p2, and y = 2pq .

Further, since x is odd, p and q cannot both be odd or both even.

Definition 3.4.6. We say two integers p, q have opposite parity if one is
even and the other is odd, and we say they have the same parity otherwise.

Algorithm 3.4.7. We can find all primitive Pythagorean triples by finding co-
prime integers p and q which have opposite parity, and then using this formula!
And we get all Pythagorean triples by multiplying.

It’s really worth trying to find these by hand; it gives one a very good sense
of how this all works.

Of course, you could generate some by computer as well …

n=10
Generators =[(p,q) for p in range(1,n) for q in

range(p+1,n) if (gcd(p,q)==1) and not
(mod(p,2)==mod(q,2))]

for pairs in Generators:
x = pairs [1]^2- pairs [0]^2; y = 2*pairs [0]* pairs [1]; z

= pairs [0]^2+ pairs [1]^2
pretty_print(html(' $%s$␣squared␣plus␣$%s$␣squared␣is␣

$%s$␣squared␣-␣$%s$ ' %(x,y,z,x^2+y^2==z^2)))

Remark 3.4.8. One can find many infinite subfamilies of Pythagorean triples.
A nice brief article by Roger Nelsen [C.6.18] shows that there are infinitely
many Pythagorean triples giving nearly isoceles triangles (where the smaller
sides are just one unit different). What families can you find?

3.4.3 Areas of Pythagorean triangles
3.4.3.1 Which areas are Possible?

Historically, one of the big questions one could ask about such Pythagorean
integer triangles was about its area. For primitive ones, the legs must have
opposite parity (do you remember why?), so the areas will be integers. (For
ones which are not primitive, the sides are multiples of sides with opposite
parity, so they are certainly also going to have an integer area.)

So what integers work? You all know one with area 6, and it should be
clear that ones with area 1 and 2 can’t work (because the sides would be too
small and because 2, 1 doesn’t lead to a triple); can you find ones with other
areas?

n=10
Generators =[(p,q) for p in range(1,n) for q in

range(p+1,n) if (gcd(p,q)==1) and not
(mod(p,2)==mod(q,2))]

for pairs in Generators:
x = pairs [1]^2- pairs [0]^2; y = 2*pairs [0]* pairs [1]; z

= pairs [0]^2+ pairs [1]^2
pretty_print(html(' The␣primitive␣triple␣$%s$␣gives␣a␣

triangle␣of␣area␣$%s$ ' %((x,y,z),x*y/2)))

28 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

It is worth asking why there are no odd numbers in the list so far. In fact,
we can prove quite a bit about these things.

Remember, x and y can be written as x = q2 − p2 while y = 2pq, for
relatively prime opposite parity q > p. Then the area must be

pq(q2 − p2) = pq(q + p)(q − p) .

So can the area be odd?

Proposition 3.4.9. In a primitive Pythagorean triple given by the formula in
Theorem 3.4.5, the four factors of the area

pq(q2 − p2) = pq(q + p)(q − p)

must all be relatively prime to each other.

Proof. We already know that p and q are coprime.
The factors p and p + q must also share no factors, since any factor they

share is shared by (p+ q)− p = q, but gcd(p, q) = 1. The same argument will
work in showing that p and q − p are, as well as q and either sum.

If q + p and q − p share a factor, since they are odd it must be odd, and
it must be a factor of their sum and difference 2q and 2p. Since the putative
factor is odd, it is coprime to 2, and so we can use Proposition 2.4.6 to say that
it is a factor of both p and q, which is impossible unless said factor is 1.

So one could analyze a number to see if it is possible to write as a product
of four relatively prime integers as a starting point. E.g. 30 = 2 · 3 · 5 · 1
is the only way to write 30 as a product of four such numbers (assuming no
more than one of those is 1!), and since q+ p must be the biggest, we must set
q + p = 5. Quickly one can see that q = 3, p = 2 works with this, so there is
such a triangle. What are the sides?

This turns out to be a very deep unsolved problem. This news update from
the American Institute of Mathematics gives some background on the congru-
ent number problem, which asks the related question of which Pythagorean
triangles with rational side lengths give integer areas. This page in particular
is interesting from our present point of view.

3.4.3.2 Which areas are square?

But we can ask another question, which led Fermat to some of his initial
investigations into this theory.

Question 3.4.10. Namely, when is the area of a Pythagorean triple triangle
a perfect square?

@interact
def _(n=20):

Generators =[(p,q) for p in range(1,n) for q in
range(p+1,n) if (gcd(p,q)==1) and not
(mod(p,2)==mod(q,2))]

list = []
for pairs in Generators:

x = pairs [1]^2- pairs [0]^2; y =
2*pairs [0]* pairs [1]; z = pairs [0]^2+ pairs [1]^2

if is_square(x*y/2):
pretty_print(html(' The␣primitive␣triple␣

$%s,%s,%s$␣gives␣a␣triangle␣of␣square␣area␣
$%s$ ' %(x,y,z,x*y/2)))

http://www.aimath.org/news/congruentnumbers/
http://www.aimath.org/news/congruentnumbers/
http://www.aimath.org/news/congruentnumbers/ecconnection.html

3.4. PYTHAGOREAN TRIPLES 29

list.append ((x,y,z))
if not list:

pretty_print(html("No␣triangles␣of␣square␣area␣up␣
to␣$p,q\leq␣%s$!"%(n,)))

If you’ll notice, we don’t see to be getting a lot of these. In fact, none.
What would we need to do to investigate this?

Remember, x and y can be written as x = q2 − p2 while y = 2pq, for
relatively prime opposite parity q > p. Then the area must be

pq(q2 − p2) = pq(q + p)(q − p) .

Now, in the previous section, we showed each of these quantities was relatively
prime to each other. So if the area is also a perfect square, then since they are
coprime, they themselves are all perfect squares!

Now we will do something very clever. It is a proof strategy, similar to
something the Greeks used occasionally, and it is something Fermat used for
many of his proofs, called infinite descent. We are going to take that (hy-
pothetical) triangle, and produce a triangle with strictly smaller sides but
otherwise with the same properties – including integer sides and square area!
That means we could apply the same argument to our new triangle, and then
the next one … but the Well-Ordering Principle (1.2.1) won’t allow that. So
the original triangle was impossible to begin with.

So let’s make that smaller triangle!
Proposition 3.4.11. If a primitive Pythagorean triangle has area a perfect
square, we can create another one of strictly smaller hypotenuse length.
Proof. We know that q + p and q − p are (odd) squares. Call them u2 and v2.
That means that we can write u and v as u+v

2 + u−v
2 and u+v

2 − u−v
2 (which

are integers since u and v are odd).
Letting a = u+v

2 and b = u−v
2 , we have that q + p = (a + b)2 and q − p =

(a − b)2. Then a little algebra shows that q = a2 + b2 and p = 2ab. These
are both squares, so a2 + b2 = q = c2 (!), which defines a triangle with area
ab
2 = 2ab

4 = p
4 , another perfect square.

But c < z. This is because z = q2 + p2 =
(
c2
)2

+ p2 = c4 + p2, so that
unless p = 0, c is strictly less than z. But p = 0 doesn’t give a triangle at all!
So we have our strictly smaller triangle satisfying the same properties. This
process could be continued infinitely often – hence the name.

Corollary 3.4.12. No difference of perfect fourth powers can be a perfect
square. That is,

v4 − u4 = t2

cannot be solved in integers.
Proof. In the proof of the proposition, we really showed that there is no pair
p and q of (coprime) squares such that q2 − p2 is also a perfect square t2; that
is what we started with, after all. So, if p = u2 and q = v2 we have that

v4 − u4 = t2

is impossible.

In Exercise 3.6.9 you will use this to prove the famous first case of Fermat’s
Last Theorem:

x4 + y4 = z4

is not possible for any three positive integers x, y, z. See also Subsection 14.2.2.

30 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

3.5 Surprises in Integer Equations
This chapter has discussed linear and quadratic Diophantine equations. As
you can see, even relatively simple questions become much harder once you
have to restrict yourself to integer solutions. And doing it without any more
tools becomes increasingly unwieldy.

But there is one final example of a question we can at least touch on.
Recall that Pythagorean triples come, at their heart, from the observation
that 32 + 42 = 52. This is an interesting coincidence with close numbers. So
too, we can notice that 32 and 23 are only one apart, and 52 and 33 are only
two units apart.

@interact
def _(k=(1 ,[-5..25])):

f(x,y)=y^2-x^3-k
p = implicit_plot(f,(x,-3,3) ,(y,-6,6),plot_points =

200)
lattice_pts = [[i,j] for i in [-3..3] for j in [-6..6]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
curve_pts = [coords for coords in lattice_pts if

f(coords [0], coords [1]) ==0]
if len(curve_pts)==0:

show(p+plot_lattice_pts , figsize = [5,5],
aspect_ratio =1)

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1),pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5,5])
pretty_print(html("Solutions␣of␣$x^3+%s=y^2$␣in␣this␣

viewing␣window"%(k,)))

This is known as Bachet’s equation or the Mordell equation. Louis
Mordell, an early 20th-century mathematician, proved that there are only
finitely many integer solutions to this sort of equation for a given k. How-
ever, finding them all, or even some (!) turns out to be quite tricky, especially
since many have no solution. See this link for some tables of what is known.

It turns out that this, too, has incredibly deep connections to a concept we
will not investigate called elliptic curves; given their importance in cryptog-
raphy and theory, that is enough reason to study them. However, it is inde-
pendently interesting that there are some Mordell equations which are solvable
by more elementary means, and in Section 15.3 there is the opportunity to do
a few. Here are some examples to whet your appetite.

• The history of the solution 25 + 2 = 27 for k = 2 is interesting. Ba-
chet himself, in his translation and commentary on Diophantus, talked
about rational solutions. Fermat asked the English mathematician John
Wallis (of infinite product fame) whether there were other solutions, and
implied there were no others. Euler proved this, but using some hidden
assumptions so that the proof was incomplete. (See Fact 15.3.4.)

• Euler’s proof in 1738 that 9 − 1 = 8 was the only nontrivial solution to
k = −1, however, is correct. He uses the same method of infinite descent
we saw in Proposition 3.4.11. (He even shows that there aren’t even any

http://hr.userweb.mwn.de/numb/mordell.html
http://eulerarchive.maa.org/pages/E098.html

3.6. EXERCISES 31

other rational number solutions to y2−1 = x3, all in the midst of a paper
actually about demonstrating Exercise 3.6.9.)

This is also related to a very old question which was called Catalan’s con-
jecture, yet again related to these funny little coincidences. Namely:

Question 3.5.1 (Catalan’s Conjecture). Eight and nine are consecutive per-
fect powers; are there others?

@interact
def _(end_range =10):

pretty_print(html("Solutions␣through␣numbers␣and␣
powers␣$%s$"%end_range))

print [(x,p,y,q) for x in range(1,end_range) for y in
range(1,end_range) for p in range(2,end_range) for
q in range(2,end_range) if x^p+1==y^q]

This was called Catalan’s conjecture because, as of 2002, it is Mihailescu’s
Theorem! The history of this question goes back to the 1200s; [C.3.17] has a
nice overview of many important pieces of its history, and Wolfram MathWorld
has an accessible introduction.

3.6 Exercises
1. For each of the following linear Diophantine equations, either find the form
of a general solution, or show there are no integral solutions.

• 21x+ 14y = 147

• 30x+ 47y = −11

2. Check the details in Subsection 3.1.4.

3. Find all simultaneous integer solutions to the following system of equations.
(Hint: do what you would ordinarily do in high school algebra or linear algebra!
Then finish the solution as we have done.)

• x+ y + z = 100

• x+ 8y + 50z = 156

4. Compute the number of positive solutions to the linear Diophantine equa-
tion 6x + 9y = c for various values of c and compare to the analysis we did
above.

5. Explore the patterns in the positive integer solutions to ax+by = c situation
above. For sure I want you to do this for the ones I mention there, but try
some others and see if you see any broader patterns!

6. Prove that any line ax+by = c which hits the integer lattice but gcd(a, b) ̸=
1 is the same as a line a′x + b′y = c′ for which gcd(a′, b′) = 1, and explain
why that means that without loss of generality the first topic doesn’t need any
more explanations.

7. Find a primitive Pythagorean triple with at least three digits for each side.

8. Prove that 360 cannot be the area of a primitive Pythagorean triple triangle.

http://mathworld.wolfram.com/CatalansConjecture.html

32 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

9. Find a way to prove that x4 + y4 = z4 is not possible for any three positive
integers x, y, z. (Hint: use Corollary 3.4.12; this one is harder.)

10. We already saw that if x, y, z is a primitive Pythagorean triple, then ex-
actly one of x, y is even (divisible by 2). Assume that it’s y, and then prove
that y is divisible by 4.

11. Under the same assumptions as in the previous problem, prove that exactly
one of x, y, z is divisible by 3. (Combined with the previous exercise, this proves
that every area of a Pythagorean triple triangle is divisible by 6. Is it also true
that exactly one of x, y, z is divisible by 5?)

12. A Pythagorean triple satisfies x2 + y2 = z2. Explore patterns for triples
of positive integers which satisfy x2 − xy + y2 = z2. If Pythagorean triples
correspond to right triangles, what sort of triangles do these triples correspond
to?

13. Find a (fairly) obvious solution to the equation mn = nm for m ̸= n. Are
there other such solutions?

14. Show that
gcd(x, y)2 = gcd(x2, xy, y2)

which we use in Proposition 3.7.2. You can try this using the set of divisors
definition of gcd, or using the definition gcd(a, b, c) = gcd(gcd(a, b), c).

15. Explore Bresenham’s algorithm in print or online. What is the connection
to this chapter? How do non-solutions to linear Diophantine equations relate
to actual solutions, in this context?

3.7 Two facts from the gcd
Here are two facts that seem really obvious but do need proofs. All can be
done just with the gcd; kudos go to users Math Gems and coffeemath at
math.stackexchange.com for most of these clever arguments.

Proposition 3.7.1 (When perfect squares divide each other). For integers
a, z it is true that

a2 | z2 =⇒ a | z

Proof. First, let d = gcd(a, z). Then we can write z2 = a2 · k for some integer
k, and immediately write

(z′)2d2 = (a′)2d2k

for some integers z′ and a′, by definition of gcd. (That is, z = z′d and a = a′d.)
Cancelling the d2 (yes, we do assume this property of integers) yields

(z′)2 = (a′)2k .

Since gcd(a′, z′) = 1, we have a′x+z′y = 1 for some x, y ∈ Z; now we substitute
for 1 in a′ · 1 · x (!) to get

a′(a′x+ z′y)x+ z′y = 1

Now we have that a′2x+z′(a′xy+y) = 1, so that gcd((a′)2, z′) = 1 as well.
But of course a′ | (z′)2. Clearly if a positive number is a divisor, but their
greatest common divisor is 1, then that number is going to have to be 1 by
definition of divisors. So a′ = 1. (If a′ was negative, the same argument for
−a′ shows −a′ = 1, so really a′ = ±1.)

Hence a = a′d = ±d, which is a divisor of z, we have the desired result.

http://math.stackexchange.com/users/23500/math-gems
http://math.stackexchange.com/users/30316/coffeemath
http://math.stackexchange.com/users/

3.7. TWO FACTS FROM THE GCD 33

Proposition 3.7.2 (When the product of coprime numbers is a square). If
integers j2 = mn and gcd(m,n) = 1, then m and n are also both perfect
squares.

Proof. First, we will need a general fact about gcds:

gcd(x, y)2 = gcd(x2, xy, y2)

See Exercise 3.6.14.
We know that 1 = gcd(m,n) = gcd(m,n, j), so

m = m · gcd(m,n, j) = gcd(m2,mn,mj) = gcd(m2, j2,mj)

Now we use the fact, so that

m = gcd(m, j)2

. That’s a perfect square.
The same argument with n and j yields n = gcd(n, j)2.

34 CHAPTER 3. FROM LINEAR EQUATIONS TO GEOMETRY

Chapter 4

First Steps with
Congruence

Our next big goal is a better notion of how to deal with divisibility and re-
mainders, one we are all familiar with. That is the notion of congruence!

We will begin by reviewing that notion, and start asking the kinds of ques-
tions that one will be able to ask with this notion.

4.1 Introduction to Congruence
Let’s start by a little calculation. What is the remainder of 25 when divided
by 6?

25 % 6

In general, the command x % m computes “x modulo m”, which is to say
the remainder of x when you divide by m.

An alternate way to do this is with the command mod(x,m).

mod(25,6)

In a moment this will be more desirable, but for now it is less so, because
it creates a different kind of Sage object.

Because of the division algorithm, we know that there is a unique such
remainder. If we call it r (so that r = x % m), then 0 ≤ r < m, which is very
important. However, lots and lots of different numbers can have the same
remainder:

[x % 6 for x in [1, 7, 13, 19, 25, -5, -11, 6001, -17]]

(See Sage note 4.6.2 for this type of list construction.)
In mathematics, what we often do in such a situation where structure is

shared is connect things with a relation.
A relation is a very general notion, and basically it exists once you de-

fine it; however, we will not pursue this further. Our relation will be called
congruence, and it is massively important. It is also relatively new! We es-
sentially use the same definitions and notation that Gauss came up with just
two centuries ago.

35

36 CHAPTER 4. FIRST STEPS WITH CONGRUENCE

Definition 4.1.1 (Congruence). We say that a is congruent to b, or

a ≡ b (mod n)

precisely if n | (a− b). We call n the modulus.

Often we can prove a small helping statement, usually called a lemma.

Lemma 4.1.2 (Congruence-Remainder). Saying a ≡ b (mod n) is exactly the
same thing as saying a and b leave the same remainder when divided by n.

Proof. We can sketch the proof. It is a good exercise (see Exercise 4.7.12) to
fill in the details.

• Write a = nq + r and b = nq′ + r′. (Why is this possible, what are the
various symbols?) Then there are two steps (why do they suffice?)

• First, if r = r′ then there is a k such that a− b = nk, which means a ≡ b
(mod n). (Why?)

• The other direction is showing if a− b = nk for some k ∈ Z, then r = r′.
This is a little harder; try thinking about getting the remainders on one
side, and what r ̸= r′ would imply with respect to n.

Example 4.1.3. In our case, saying 25 ≡ 1 ≡ −5 (mod 6) is the same as
saying 25 = 4 · 6 + 1 and 1 = 0 · 6 + 1 and −5 = −1 · 6 + 1.

It’s fun to use congruence as a conceptual assistant. Here are some examples
of our previous thinking recast in this way.

• Recall the fact about remainders when dividing by four, Proposition 2.1.4.
This is just saying that the only possibilities are

x2 ≡ 0 or 1 (mod 4)

• Could you try to use this idea to think of possible last (decimal) digits
of a perfect square? Which modulus would be helpful?

• What about cubes; what remainders are possible modulo 4? What last
digits are possible?

4.2 Going Modulo First
Okay, that’s all fun. But we need power, too. Here’s an example of such power.
Even though I’m not physically present, I can do amazing computations! Let
me compute 21000000000 (mod 3)! I’ll do it instantaneously.

Ready for the answer? It’s 1!
Perhaps you don’t believe an absent author. We can check it with Sage:
%time 2^1000000000 % 3

1

Sage note 4.2.1 (Timing your work). In a Sage worksheet, putting %time

before a command tells you how long it took. Putting %timeit instead runs the
command many times and gives a ‘best of’ timing. (This does not universally
work in the embedded cells in the web version of this book.)

4.2. GOING MODULO FIRST 37

Hmm, but that took more than a few milliseconds – strange that I could
do it so fast!

Sage note 4.2.2 (Too big of numbers). If I add one more zero, it will throw
a very nasty error, like MemoryError: failed to allocate 1250000024 bytes, be-
cause things are too big. We can quickly go beyond the bounds of what our
computers can do in number theory!

Now consider that I did this huge computation instantaneously in my head.
Surely I must be full of brains, like the Scarecrow in L. Frank Baum’s Oz books?

Of course, the reason is not that I am clever, but that congruence can be
turned into arithmetic! Unlike the Wizard, I will give away my secret. I just
used the following useful property.

Fact 4.2.3. If a ≡ b (mod n), then am ≡ bm (mod n) no matter how huge m
is.

Proof. See Exercises 4.7.4 and 4.7.5.

Now I do my first congruence computation:

2 ≡ −1 (mod 3) and (−1)1000000000 = 1 ,

the latter like all even powers of negative one. Ta-dah!
What I’ve done is first think of the original number as in the congruence,

and then taken its power.

4.2.1 Computer diversion
Sage can verify this approach is much faster, and even for much bigger powers.
Here we will need to use the mod(x,m) syntax:

print mod(2,3) ^1000000000; print
mod(2,3) ^1000000000000000000000000000030

Even the presumptively very, very big latter computation should be as fast
as your internet connection.

Sage note 4.2.4 (Give it a name). We can use print to output multiple things
per line of code, though it only prints them. Of course, writing this a lot can
get annoying. So instead we can assign our ‘modulo integer’ a name, like b,
and then just do as normal. This makes it easy to do lots of interesting tests.

b=mod (2000 ,31)
b,b^1000 ,b^2000,b^3000,b^4000

The last command is what prints out.

Sage note 4.2.5 (Making tuples). In this case, we put commas between things
so that all of the stuff in the last row prints out. It’s in parentheses because
the commas create a tuple (a special Python way of making a list with certain
nice properties).

Sage note 4.2.6 (Types matter). What was computed above is not a trick; I
definitely couldn’t do 20001000, or even 161000, in my head. How does Sage do
it? The answer lies in the kind of thing b really is, which confirms that Sage
is using modular numbers, not normal integers.

38 CHAPTER 4. FIRST STEPS WITH CONGRUENCE

b=mod (2000 ,31)
b, type(b)

In Python, we can ask for the type of anything.In this case, we asked to
print out b and then to print out its type, which is definitely not an ordinary
integer, and can be manipulated much more efficiently.

This was a lot of computer business. The point is that if the computer
thinks it’s a good idea to just think of the remainder before you do any arith-
metic, maybe we should too.

4.3 Properties of Congruence
There are two main sets of propositions that make this possible. The proofs
are not hard, and you may skip them on a first reading.

Proposition 4.3.1 (Congruence is an equivalence relation). Congruence is
reflexive, symmetric, and transitive, which combine to make it an equiv-
alence relation.

• For any a ∈ Z, a ≡ a (mod n).

• If a ≡ b (mod n), then b ≡ a (mod n).

• If it happens that both a ≡ b and b ≡ c (mod n), then a ≡ c (mod n) as
well.

See any intro-to-proof text for more background. For our purposes, this
means all the things you know are true about equality are also true about
congruence (with a particular modulus n picked, of course).

Proof. We will show each of the properties, leaving some pieces to the reader
(Exercise 4.7.6).

• (Reflexive) For any a ∈ Z, a ≡ a (mod n).

◦ The definition of congruence means we want to show n | (a− a).
◦ But a− a = 0. So we claim n | 0.
◦ Any questions?

• (Symmetric) If a ≡ b (mod n), then b ≡ a (mod n).

◦ For the reader!

• (Transitive) If it happens that both a ≡ b and b ≡ c (mod n), then a ≡ c
(mod n) as well.

◦ The definition of congruence means we want to show if n | (a − b)
and n | (b− c), then n | (a− c) as well.

◦ We use the definitions to see a − b = nk and b − c = nℓ for some
k, ℓ ∈ Z.

◦ Add these two equations to get a − c = n(k + ℓ), which is the
definition of n | (a− c).

4.4. EQUIVALENCE CLASSES 39

Proposition 4.3.2 (Congruence arithmetic is well-defined). Congruence is
well-defined with respect to addition and multiplication. That is, if a ≡ c and
b ≡ d (modulo some fixed modulus n):

• a+ b ≡ c+ d

• ab ≡ cd

Proof. Let a ≡ c and b ≡ d (modulo some fixed n):

• a+ b ≡ c+ d

◦ There must exist k and ℓ such that a = c+ kn and b = d+ ℓn.
◦ So a+ b = c+ kn+ d+ ℓn = (c+ d) + (k + ℓ)n.
◦ So a+ b and c+ d must have the same remainder modulo n.

• ab ≡ cd

◦ For the reader; see Exercise 4.7.7.

Just below, in Section 4.4, we will see that these propositions and the
following fact mean we are ready to roll with modulo and integers.

Fact 4.3.3. Any set that has an equivalence relation on it can be broken up
into disjoint subsets called equivalence classes. It can be useful to considered
these classes as elements of a set of all such classes.

Proof. We consider this to be background; see any intro-to-proof text.

So we can break up Z into disjoint subsets, and use well-definedness. If I
want to do a computation, I can pick any number with the same remainder
modulo n, and it will still work fine. (Hopefully I pick an easier number to
work with!) Here is an example.

Example 4.3.4. For instance, 2 ≡ 5 (mod n) is the same thing as saying
5 ≡ 2 (mod n), and if 2 ̸≡ 6 (mod n), then 5 ̸≡ 6 (mod n) either.

Or instead of computing 2 ·2 ·2 ·2 modulo 3, I might choose −1 ·−1 ·−1 ·−1
instead, getting the same answer (modulo 3)

It won’t always be that clear-cut, but that is the general idea.

4.4 Equivalence classes
Let’s make the previous discussion a bit more rigorous.

Definition 4.4.1. Assume throughout that we have fixed a modulus n.

• We call any number congruent to a a residue of a.

• We call the collection of all residues of a the equivalence class of a.

40 CHAPTER 4. FIRST STEPS WITH CONGRUENCE

• We denote this class by the notation

[a] = {all numbers congruent to a modulo n} .

(Sometimes this is notated [a]n, but the modulus is nearly always evident
from the context.)

Example 4.4.2. For instance, the equivalence class we started with is

[1] = {1, 7, 13, 19, 25,−5,−11, 6001, . . .}

or perhaps better written as

{1 + 6n | n ∈ Z} = [1] .

The point is you can choose your favorite number in an equivalence class
to serve as a representative for all of them. To connect to before, for the con-
gruence relation, there are only finitely many classes, otherwise the division
algorithm would be meaningless. After, all, there are only n possible remain-
ders.

Let’s solve the ‘magic trick’ above using this concept in a slightly different
way.

21000000000 = (22)500000000 = 4500000000 ≡ 1500000000 = 1 .

Example 4.4.3. Here is something which is not a legal manipulation.

21000000000 ≡ 21 ≡ 2 .

Even though 1000000000 ≡ 1 modulo 3, clearly the end result is wrong, because
21 ̸≡ 1 (mod 3), which was the right answer. In general, we have only see you
can reduce in the base of a power; nothing is said about the exponent! (Later
we’ll see how to do reduction in the exponent under controlled circumstances
– with a different modulus.

4.4.1 Residue systems
As you saw above, knowing the ‘right’ residue can be very helpful. Because
of this, we make two sets of them for general use. We call a set of integers
with precisely one for each equivalence class a complete residue system or
complete set of residues for a given modulus.

• Usually, we just use the ‘normal’ remainders; this is called the set of
least nonnegative residues. This is just what you think it is; for
n = 6, it is {0, 1, 2, 3, 4, 5}, representing the set of equivalence classes
{[0], [1], [2], [3], [4], [5]}. They are easy to think of and understand.

• The problem is that they get big! To calculate 420 (mod 6), I need to
reduce a lot, e.g.

420 ≡ (42)10 ≡ 1610 ≡ 410 ≡ (42)5 ≡ 165 ≡ 45 ≡ (42)2·4 ≡ 42·4 ≡ 4·4 ≡ 4

It’s at least a little easier on the ol’ noggin to mostly use 4 ≡ −2 (mod
6) like this:

420 ≡ (−2)20 ≡ ((−2)2)10 ≡ 410 ≡ (−2)10 ≡ ((−2)2)5 ≡ 45

≡ (−2)5 ≡ ((−2)2)2 · (−2) ≡ 42 · (−2) ≡ (−2)3 ≡ −8 ≡ 4 .

Notice in the second one I never broke single digits! So we sometimes
use the set of least absolute residues, the collection of representatives
of each class which are closest to zero. In this case the least absolute
residues are {−2,−1, 0, 1, 2, 3} for {[4], [5], [0], [1], [2], [3]}.

4.5. WHY MODULAR ARITHMETIC MATTERS 41

4.5 Why modular arithmetic matters
4.5.1 Starting to see further
This has been fun and all. But why are we doing all this? There are two
reasons.

The first is practical. Simply put, modular arithmetic makes it much easier
to solve certain otherwise very difficult problems about integers, because we
can check whether things are possible when we look at things just modulo n.
For instance, we can prove things like:

• “The polynomial x3 − x+ 1 has no integer roots”.

• “The curve x3 = y2 − 7 has no lattice points”.

Most practical of all are the rules for using modular arithmetic.

• First off, always first reduce modulo n, then do our arithmetic (add,
multiply, exponentiate). We have seen lots of examples of this.

• Secondly, always use whichever residue of a number modulo n is conve-
nient for our purposes.
For example, to add [22]+ [21] modulo 23 it might be smarter to use the
residues −1 ∈ [22] and −2 ∈ [21]. The answer [−3] is of course the same
as [22 + 21] = [43] = [20] modulo 23.

mod (22 ,23)+mod (21 ,23)==mod(-3,23)

Sage note 4.5.1 (Checking equality). We can check if two numerical expres-
sions are equal using ==.

There are a few things to be aware of when doing this, of course. One very
important such caveat is that with exponentiation, you can only replace the
base with something in the same congruence class. Just to make sure you get
this, on your own compare

23 (mod 5), 73 (mod 5), and 28 (mod 5) .

These are quite different.
Referring to our earlier wording, we can assume [a]n is well-defined, but

there is no guarantee that a[n] makes any sense.
The second reason for doing modular arithmetic is theoretical. We get a

new number system! (See Chapter 8.) It’s a number system which has new
problems, new solutions, and new things to explore. And that’s what we’ll be
doing from now on.

4.5.2 Taking powers
As one example of how modular arithmetic might matter a bit, let’s examine
the following algorithm for taking ridiculously high powers of numbers (modulo
n). We first need the following interesting fact.

Fact 4.5.2. For any integer a:

1. a2
1

= a2

42 CHAPTER 4. FIRST STEPS WITH CONGRUENCE

2. a2
2

= (a2)2

3. a2
3

= (a2
2

)2

In general,
a2

n

=
(
a2

n−1
)2

That is to say, each “power of a to a power of 2” is the square of the previous
“power of a to the previous power of 2”.

Proof. What does a2
n even mean? By definition,

2n = 2n−1 · 2 = 2n−1 + 2n−1 ,

so a2
n is the same as

a2
n−1+2n−1

= a2
n−1

· a2
n−1

=
(
a2

n−1
)2

Example 4.5.3. In this case, it will be easier to do examples before stating
the algorithm. To compute x20, first we see that 16 is the highest power of 2
less than 20.

• Compute x2 modulo n.

• Square that for (x2)2 = x22 = x4 (modulo n).

• Then square twice more for x23 = x8 and x24 = x16; we reduce modulo
n at each point.

Now write x20 as x to a sum of powers of 2;

x20 = x16+4 = x24+22 = x22 · x24

Then do this final multiplication modulo n as well. You might want to try it
to see you get the same thing.

Example 4.5.4. Now let’s get really explicit, and calculate 223 (mod 11).
First,

23 = 24 + 22 + 2 + 1, so 223 = 22
4

· 22
2

· 22 · 2 .

Now let’s get the powers of 2 needed:

22 ≡ 4 (mod 11),
(
22
)2

= 42 ≡ 5 (mod 11),(
24
)2

= 52 ≡ 3 (mod 11), and
(
28
)2

= 32 ≡ 9 (mod 11)

So we get, as a computation one can do completely without a calculator,

22
4

· 22
2

· 22 · 2 ≡ 9 · 5 · 4 · 2 ≡ 18 · 20 ≡ 7 · 9 ≡ 63 ≡ −3 ≡ 8 (mod 11)

Algorithm 4.5.5. In general, we can compute xk modulo n:

• Write the exponent k =
∑ℓ

i=1 ki2
i, where each ki = 0 or 1. (This is

called the binary representation of k.)

• Compute x2, x4, x8, and so forth as above, each time reducing modulo
n.

4.6. TOWARD CONGRUENCES 43

• Multiply
∏ℓ

i=1 x
ki2

i together as in the examples above. Obviously, if
ki = 0 (such as for i = 3 in the x20 example) you skip it, as it just
contributes one to the product.

Those interested in efficiency should note that this requires roughly two
times the number of binary digits of your number operations, or about 2 log2(n)
operations, as opposed to normal powers which might require n operations; in
addition, you only deal with numbers at most size n2, as opposed to gigantic
ones, when you mod out after each step, so it requires very little memory.

4.6 Toward Congruences
Question 4.6.1. What are the possible last digits of a perfect cube? (This
was touched on at the end of Section 4.1.)

We can think of this more systematically now. For instance, if the last digit
of x > 0 is 3, then x = 10m + 3 for some integer m. That is, [x] = [3] (mod
10). So the cube would look like

x3 = (10m+ 3)3 = 1000m3 + 900m2 + 270m+ 27 = 10(stuff + 2) + 7

This would presumably have last digit 7.
We can ask Sage to answer this for all possible last digits very quickly:

[mod(i,10)^3 for i in [0..9]]

Sage note 4.6.2 (List comprehensions). This programming structure is known
as a list comprehension. Think of it as set builder notation

{i3 (mod 10) | 0 ≤ i < 10}

That’s the set of all cubes modulo i, for i between 0 and 9. Sage replaces 0..9

with the integers from 0 to 9.

If you check, what this is doing is getting the (least nonnegative) residue
modulo 10 of the cube of every possible last digit. Notice that we also get every
possible last digit.

It’s possible to think of this more generally. Since we just said the last
digit is all we cared about, we could think of this as answering a related kind
of question. For all last digits d, is there an x such that the following works?

x3 ≡ d (mod 10)

Definition 4.6.3. Any (integer) equation with congruence in place of equality
is called a congruence.

As a result, the previous calculation says that there is a solution to the
congruence x3 ≡ d (mod 10) for all possible d. Another way to say this is that
every number (equivalence class) modulo 10 has a cube root. For instance, the
cube root of [7] is [3].

This is definitely not true in Z; the usual cube root of 7 (where 7 ̸= [7]) is
not even rational! This exemplifies the following fact.

Fact 4.6.4. Things which are false for the integers might be true in modular
arithmetic.

44 CHAPTER 4. FIRST STEPS WITH CONGRUENCE

However, it is worth thinking about the following, though I will leave
“things” vague.

Fact 4.6.5. Things which are true for the integers are normally true in modular
arithmetic.

Now let’s try the same question again, but with a different modulus.

[mod(i,4)^3 for i in [0..3]]

This seems to imply that every equivalence class modulo 4 “has a cube
root” except [2].

This is suggestive. Maybe the right generalization is to ask this.

Question 4.6.6. Given a modulus n, when is there a solution to

x3 ≡ d (mod n)

Or, for what moduli does d have a cube root modulo n?

Once we’ve opened things up to one such congruence, the sky’s the limit.

Question 4.6.7. Over the integers, there are only two solutions to x2 = x,
the familiar x = 0 and x = 1. This leads to another natural question we can
ask in modular arithmetic.

Namely, what are solutions to the congruence

x2 ≡ x (mod n)

for different moduli n?

Sage can help us explore this sort of question.

@interact
def _(n=(2 ,[0..100])):

list=[x for x in [0..n-1] if (mod(x,n)==mod(x,n)^2)]
pretty_print(html("The␣solutions␣to␣the␣congruence␣

$x^2\ equiv␣x$␣(mod␣$%s$)"%(n,)))
pretty_print(html("are␣"+str(list)))

Often, it seems we get the same answers as over the integers. But not
always! Can you try to conjecture for which n we do get the same answer?
(See Exercise 4.7.14.)

We begin to see that there are two aspects of solving congruences, which
will come up again and again for us.

• Solving a given congruence

• Figuring out for which moduli a congruence has solutions (or how many
or …)

Much of the course will return to these ideas, such as sooner in Chapters 5
and 7 and later in Chapter 17.

4.7. EXERCISES 45

4.7 Exercises
1. Give the least absolute residues and the least nonnegative residues for n =
21.

2. Prove that 13 divides 1456 + 1 and 431 divides 243 − 1 without a computer
(but definitely using congruence).

3. Compute 743 (mod 11) as in Subsection 4.5.2 without using Sage or any-
thing that can actually do modular arithmetic. (You should never have to
compute a number bigger than (11 − 1)2 = 100, so it shouldn’t be too trau-
matic.)

4. Use the properties of congruence (in Proposition 4.3.1) or the definition to
show that if a ≡ b (mod n), then a3 ≡ b3 (mod n).

5. Use the properties of congruence (in Proposition 4.3.1, not the definition)
and induction to show that if a ≡ b (mod n), then am ≡ bm (mod n) for any
positive m.

6. Finish the details of proving Proposition 4.3.1, especially the second part
(symmetric).

7. Finish the details of proving Proposition 4.3.2.

8. Find and prove what the possible last decimal digits are for a perfect square.

9. Prove that if the sum of digits of a number is divisible by 3, then so is the
number. (Hint: Write 225 as 2 · 102+2 · 10+5, and consider each part modulo
3.)

10. Prove that if the sum of digits of a number is divisible by 9, then so is the
number.

11. For which positive integers m is 27 ≡ 5 (mod m)?

12. Complete the proof that having the same remainder when divided by n is
the same as being congruent modulo n.

13. Find some a and n such that an (mod 6) equals an+6 (mod 6), where
a ̸≡ 0, 1 and n ̸= 0, 1. Then try to find an example where they are not equal.

14. Explore, using the interact after Question 4.6.7 or ‘by hand’, for exactly
which moduli n the only solutions to x2 ≡ x (mod n) are x = [0] and x = [1].

46 CHAPTER 4. FIRST STEPS WITH CONGRUENCE

Chapter 5

Linear Congruences

There are many questions one can ask of the integers, and in the preceding ma-
terial we have already encountered many, especially those asking for solutions
of simple equations in one or two variables.

One can ask very similar questions (and many more) about the integers
modulo n. So we will focus on congruences, which are simply equations modulo
n (see Definition 4.6.3). To exemplify this, consider the following similar ideas:

• 2x+ 3y = 5 (solutions are pairs of integers)

• 2x + 3y ≡ 5 (mod 7) (solutions would be pairs of equivalence classes
[x], [y] modulo 7)

• 2x + 3y ≡ 5 (mod n) for any particular n (solutions would be triplets
[x], [y], n, since it would depend on n)

Try comparing solutions to these by hand; what is similar about them,
what is not?

In one sense these are actually a big improvement in the level of difficulty.
After all, you just have to try x, y from 0 to 6 (the least nonnegative residues)
in the congruence 2x+ 3y ≡ 5 (mod 7).

On the other hand, if the congruence was modulo n = 10100, that would be
less desirable, especially if the techniques for Z proved not to be useful with a
congruence.

If we slapped an x2 in the middle of the congruence, it might very hard
indeed to solve quickly. So in this chapter, we will stay focused on the simplest
case, of the analogue to linear equations, known as linear congruences (of
one variable). This includes systems of such congruences (see Section 5.3).

5.1 Solving Linear Congruences
Our first goal to completely solve all linear congruences ax ≡ b (mod n). The
most important fact for solving them is as follows.

Proposition 5.1.1.

ax ≡ b (mod n) has a solution precisely when gcd(a, n) | b .

Proof. The proof of this is pretty straightforward, as long as we recall when
linear Diophantine (integer) equations have solutions.

The following are clearly equivalent:

• Solutions x to ax ≡ b (mod n)

47

48 CHAPTER 5. LINEAR CONGRUENCES

• Solutions x to n | ax− b

• Solutions x, y to ax− b = ny

• Solutions x, y to ax− ny = b

And we know from Theorem 3.1.1 that this final equation has solutions
precisely when gcd(a, n) | b.

Before going on, test yourself by checking which of the following four con-
gruences has a solution and which ones don’t.

• 7x ≡ 8 (mod 15)

• 6x ≡ 8 (mod 15)

• 7x ≡ 8 (mod 14)

• 6x ≡ 8 (mod 14)

5.1.1 The nitty-gritty of solving
Just like in linear algebra or calculus, though, it’s not enough to know when
you have solutions; you want to actually be able to construct solutions. If
possible, one wants to construct all solutions. In this case, we can do it.

Proposition 5.1.2. If we can construct one solution to the linear congruence
ax ≡ b (mod n), we can construct all of them.

Proof. Consider the proof of Proposition 5.1.1 above. We don’t care about
y (other than that it exists, and it does). So if we have one solution to the
congruence, that is the same as having a solution x0, y0 to the equation ax−
ny = b.

But we already know what solutions to that look like, from Theorem 3.1.1.
Looking just at the x components, the solutions are

x0 +
n

d
t t ∈ Z where d = gcd(a, n) .

This argument also gives us the exact number of solutions, because letting t
go from 0 to d− 1 will give all different solutions.

Example 5.1.3. Let’s solve

12x ≡ 9 (mod 15) .

Here, gcd(a, n) = 3 so we will have 3 solutions, all separated by n
d = 15

3 = 5.
We need one solution first. Trying by guess and check small values gives us

• 12(1) = 12 ̸≡ 9,

• but 12(2) = 24 ≡ 9 (mod 15).

So we may take x = 2 as our x0. Then we add 5 to each of these, and we
see that x = [2], [7], [−3] all work.

Alternately,
2 + 5t, t ∈ Z

is the general solution.

5.2. A STRATEGY FOR THE FIRST SOLUTION 49

5.2 A Strategy For the First Solution
The previous proposition always works. However, it can be very tedious to find
that first solution if the modulus is bigger. This section is devoted to strategies
for simplifying a congruence so that finding such a solution is easier.

Fact 5.2.1 (Strategies that work for simplifying congruences). We have two
main types of simplification we can do. First, there are two types of cancellation
we can use.

• If a, b, and n all are divisible by a common divisor, we can cancel that
out (keeping in mind that we still will need our final solution to be modulo
n).

• If a and b share a common divisor which is coprime to the modulus, we
can cancel it from a, b (only).

See Propositions 5.2.4 and 5.2.5 for precise statements and proofs.
Secondly, there are two counterintuitive ways that may lead to a simpler

congruence after taking remainders.

• We could multiply a and b by something coprime to n. If, after reducing
modulo n, that makes a or b smaller, then that was a good idea!

• We can add some multiple of n to b. Again, if that happens to make a
and (the new) b share a factor, then that was a good idea!

These steps may be applied in any order, though typically the first two are
done as often as possible.

Example 5.2.2 (A big example). Let’s do a big problem exemplifying all the
steps.

Solve 30x ≡ 18 (mod 33) .

1. First, note that all three of the coefficients and modulus are divisible by
3. So right away we should simplify by dividing by 3. But keep in mind
that our final solution will need to be modulo 33, not modulo eleven! We
should still end up with gcd(30, 33) = 3 total solutions, and if we don’t,
we have messed up somewhere.

2. Now we have 10x ≡ 6 (mod 11). (Again, although this will have one
solution modulo 11, we will need to get the other two solutions modulo
33.) Since 10 and 6 are both divisible by 2, and since gcd(2, 11) = 1, we
can divide the coefficients (not modulus) by 2 without any other muss.

5x ≡ 3 (mod 11)

3. So take 5x ≡ 3 (mod 11), and let’s try to replace 3 by another number
congruent to 3 modulo 11 which would allow me to use the above steps
again.

• I could try 3 + 11 = 14, but that gives

5x ≡ 14 (mod 11)

and 14 doesn’t share a divisor with 5 (from the 5x).

50 CHAPTER 5. LINEAR CONGRUENCES

• If I try 3 + 22 = 25, giving

5x ≡ 25 (mod 11)

then 25 does share a divisor with 5.

4. Now I can go back and reduce 5x ≡ 25 (mod 11) to

x ≡ 5 (mod 11)

And that’s the answer!

5. Or is it? Remember in the first step that we started modulo 33, and that
all the answers will be equivalent modulo 11. So we see that

x = 5 + 11t for t ∈ Z

will be the answer, which is the three equivalence classes {[5], [16], [27]}.

Does it check out?
[mod (30*x,33) ==18 for x in [5 ,16 ,27]]

One final observation is that we avoided trial and error as long as possible.
At various points we could have done so, but x = 1 and x = 2 wouldn’t have
worked right away, and I am lazy…

Example 5.2.3. Let’s finish the previous example gain, but using the other
possible counterintuitive step. That was the trick to multiply a and b by
something which would reduce; ideally it would reduce [a] ≡ [1].

• We were at 5x ≡ 3 (mod 11).

• Multiplying a = 5 and b = 3 by 9, which is coprime to 11, gives us

45x ≡ 27 (mod 11) .

• This reduces to x ≡ 5, and gives the same answer as before (provided we
remember to get all possible answers modulo 33).

These should have solutions; try completely solving one of these on your
own now, before moving on. The exercises provide other interesting practice.

• 7x ≡ 8 (mod 15)

• 6x ≡ 8 (mod 14)

Here are formal statements and proofs of the propositions we used.

Proposition 5.2.4 (Canceling, Part I). If d ̸= 0, then ad ≡ bd (mod nd)
precisely for the same a, b, n as when a ≡ b (mod n).

Proof. Like many such proofs, you basically follow your nose.

• We write ad ≡ bd (mod nd) as ad− bd | nd, or ad− bd = k(nd) for some
k ∈ Z We rewrite this as d(a− b) = d(kn).

• Since d ̸= 0,

d(a− b) = d(kn) is equivalent to saying a− b = kn ,

which is of course by definition saying that a ≡ b (mod n).

5.3. SYSTEMS OF LINEAR CONGRUENCES 51

• Since all steps were equivalences, both statements are equivalent.

Proposition 5.2.5 (Canceling, Part II). If d ̸= 0 and gcd(d, n) = 1, then
ad ≡ bd (mod n) precisely for the same a, b, n as when a ≡ b (mod n).

Proof. We’ll only sketch the proof; see Exercise 5.6.2.

• Use the definitions as above, starting with the ad situation.

• You should have that n divides some stuff, which is itself a product of d
and other stuff.

• We had a proposition about coprimeness and division; what remains
should yield us a ≡ b (mod n)

5.3 Systems of Linear Congruences
Here are three interesting problems which may seem totally unrelated at first:

• You have lots of volunteers at a huge campaign rally. Because you are
very efficient at moving them, and you want to gauge how to group them
when dispatching them to different size venues, you line them up in rows.
When you do it by fives (with one left over), by sixes (two left over), and
by sevens (with three left over). How many are there total?

• You’re an ancient sky watcher, and have discovered that three heavenly
bodies come to the region of the sky you care about with great regularity.
Comet 1 comes every five years, starting next year. Comet 2 comes every
six years, starting two years from now. Comet 3 comes every seven years,
starting three years from now. When will they all come in the same year?

• You like math a lot. You want to know what integers x simultaneously
solve the following three linear congruences:

◦ x ≡ 1 (mod 5)
◦ x ≡ 2 (mod 6)
◦ x ≡ 3 (mod 7)

Can you find an answer to these by trial and error?

5.3.1 Introducing the Chinese Remainder Theorem
In Section 5.2, we were able to solve any one linear congruence completely. It’s
a good feeling.

But we know that this is a pretty restricted result. If you’ve had a course
in linear algebra, you’ve tried to solve big systems over the reals or complex
numbers; sometimes in real-life operations research problems, there can be
hundreds of thousands of linear equations to solve simultaneously!

It turns out this is true for modular arithmetic too, especially in encryption
standards. Can we solve a system of linear congruences? Of course, one could
ask a computer to do it by simply checking all possibilities.

52 CHAPTER 5. LINEAR CONGRUENCES

@interact(layout =[[' a_1 ' , ' n_1 '],[' a_2 ' , ' n_2 '],[' a_3 ' , ' n_3 ']])
def _(a_1=(' \(a_1\) ' ,1), a_2=(' \(a_2\) ' ,2),

a_3=(' \(a_3\) ' ,3), n_1=(' \(n_1\) ' ,5),
n_2=(' \(n_2\) ' ,6), n_3=(' \(n_3\) ' ,7)):
try:

answer = []
for i in [1.. n_1*n_2*n_3]:

if (i%n_1 == a_1) and (i%n_2 == a_2) and
(i%n_3 == a_3):

answer.append(i)
string1 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_1 ,n_1)
string2 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_2 ,n_2)
string3 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_3 ,n_3)
pretty_print(html("The␣simultaneous␣solutions␣to␣

"))
pretty_print(html(string1+string2+string3))
if len(answer)==0:

pretty_print(html("are␣none"))
else:

pretty_print(html("all␣have␣the␣form␣"))
for ans in answer:

pretty_print(html("$%s$␣modulo␣
$%s$"%(ans ,n_1*n_2*n_3)))

except ValueError , e:
pretty_print(html("Make␣sure␣the␣moduli␣are␣

appropriate␣for␣solving!"))
pretty_print(html("Sage␣gives␣the␣error␣message:"))
pretty_print(html(e))

As one might expect, this is not the most promising solution strategy. If
you dig into the code a bit you’ll see that many cases aren’t even treated
properly, which could be very tedious to catch.

However, in considering systems of congruences, there is a famous theo-
rem. This kind of simultaneous solution was apparently first considered by the
Chinese mathematician Sun Tzu, about the same time as the late Greek math-
ematicians were coming up with what we now call Diophantine equations. A
very full solution (see Subsection 5.5.1) was given by Qin Jiushao in the 13th
century and rediscovered only in the 19th century in the West.

Theorem 5.3.1 (Chinese Remainder Theorem). Consider a general system
of k (linear) congruences:

• x ≡ a1 (mod n1)

• x ≡ a2 (mod n2)

• . . .

• x ≡ ak (mod nk)

where all the ni are mutually coprime. In this case, we have an algorithm
for solving the system.

Proof. This will be done in a completely constructive fashion in Subsection 5.4.1.

5.3. SYSTEMS OF LINEAR CONGRUENCES 53

The name comes from the provenance, and is often abbreviated crt. Whether
any actual Chinese rulers used it to decide how many troops they had by lin-
ing them up in threes, fours, fives, etc. is questionable. However, many of the
example problems in Qin’s text mention divination, alignment of different cal-
endars, and the like, so we can assume such problems were of practical interest
as well as theoretical, even at that time. Similar questions of astronomical/as-
trological importance pepper the history of mathematics.

Finally, note that one can also go much further and do linear algebra modulo
n, and this is a lot of what modern cryptography is about, not to mention the
modern hard-core computational number theory Sage was largely invented to
help do. We can’t do everything in this text, but you should be aware that
everything done in linear algebra has very interesting modulo n counterparts,
as part of the theme of number theory showing the unity of mathematics.

5.3.2 The inverse of a number
To do this justice, we need a very useful preliminary concept.

Definition 5.3.2 (The Inverse of a Number). The inverse of a number a
modulo n is the least nonnegative solution of the congruence

ax ≡ 1 (mod n)

.

Example 5.3.3. For example, the inverse of 26 modulo 31 is the least non-
negative solution of

26x ≡ 1 (mod 31) .

This is called the inverse because you can think of the solution as 26−1, or
1
26 , in the numbers modulo n = 31.

Note that there is not always an inverse! Here are some questions to ponder
regarding inverses.

Question 5.3.4.

• What connection do a and n need if we expect there to exist an inverse
of a modulo n?

• How many inverses modulo n should a have, assuming it has one at all?

As a first step, try to find inverses to all the number you can modulo 10.
Then do it again modulo 11.

The following Sage command computes the “inverse of 26 modulo 31”.

inverse_mod (26 ,31)

Sage note 5.3.5 (Getting interactive Sage help). You can look for more in-
formation on Sage commands (in a normal Sage session) by using question
marks; try inverse_mod? and inverse_mod?? in a Sage notebook, command line
interface, or SageMath Cloud. (This is not supported when embedded in a
web page as in your text.)

The point is that this is definitely something we can compute, using the
methods of last time of solving solitary linear congruences.

54 CHAPTER 5. LINEAR CONGRUENCES

5.4 Using the Chinese Remainder Theorem
We will here present a completely constructive proof of the crt (Theorem 5.3.1).
That is, we will not just prove it can be done, we will show how to get a solution
to a given system of linear congruences.

Keep in mind that this is a procedure that works. It may have a number of
steps, but its power is not to be underestimated. After some careful examples,
we’ll see some other uses.

5.4.1 Constructing simultaneous solutions
Remember that we are trying to solve the system of equations x ≡ ai (mod ni).
It is important to confirm that all ni are coprime in pairs. Then the following
steps will lead to a solution. You will find basically this proof in any text; I
use the notation in [C.1.1].

1. First, let’s call the product of the moduli n1n2 · · ·nk = N .

2. Take the quotient N/ni and call it ci. It’s sort of a “complement” to the
ith modulus within the big product N .

3. Now find the inverse of each ci modulo ni. That is, for each i, find a
solution di such that

cidi ≡ 1 (mod ni)

Notice that this is possible. You can’t find an inverse modulo any old
thing! But in this case, ci is the product of a bunch of numbers, all of
which are coprime to ni, so it is also coprime to ni, as required.

4. For each i, multiply the three numbers ai · ci · di.

5. Now we evaluate each of these products (indexed by i) modulo the various
nj . That looks bad, but most things cancel:

• By definition, each cj is divisible by ni (except for ci itself), so
modulo ni the product is

ajcjdj ≡ 0 (mod ni) .

• The product
aicidi ≡ ai · 1 ≡ ai (mod ni)

6. Now add all these products together to get our final answer,

x = a1c1d1 + a2c2d2 + · · ·+ akckdk .

For each ni, we can do the sum modulo ni too; the previous step shows
this sum is

x ≡ 0 + 0 + · · ·+ ai + · · ·+ 0 (mod ni) .

So this is definitely a solution.

7. Any other solution x′ has to still fulfill x′ ≡ ai ≡ x (mod ni), so ni | x′−x
for all moduli ni. Since all ni are relatively prime to each other, N | x′−x
too (if a | c and b | c and gcd(a, b) = 1, then ab | c). So x′ ≡ x (mod N),
which means x is the only solution modulo N !

Clearly this needs an example.

5.4. USING THE CHINESE REMAINDER THEOREM 55

Example 5.4.1 (A first CRT example). Let’s look at how to solve our original
system using this method.

• x ≡ 1 (mod 5)

• x ≡ 2 (mod 6)

• x ≡ 3 (mod 7)

We’ll follow along with each of the steps in Sage.
First, I’ll make sure I know all my initial constants.

n_1 , n_2 , n_3 = 5,6,7
a_1 , a_2 , a_3 = 1,2,3
N = n_1*n_2*n_3
print n_1 , n_2 , n_3
print a_1 , a_2 , a_3
print N

Next, I’ll write down all the ci, the complements to the moduli, so to speak.
Remember, ci = N/ni.

n_1 , n_2 , n_3 = 5,6,7
a_1 , a_2 , a_3 = 1,2,3
N = n_1*n_2*n_3
c_1 ,c_2 ,c_3 = N/n_1 ,N/n_2 ,N/n_3; c_1 ,c_2 ,c_3

Now we need to solve for the inverse of each ci modulo ni. One could do
this by hand. For instance,

42d1 ≡ 2d1 ≡ 1 (mod 5) yielding d1 = 3, since 2 · 3 = 6 ≡ 1 (mod 5) .

But that is best done on homework for careful practice; in the text, we might
as well use the power of Sage.

d_1=inverse_mod (42,5);
d_2=inverse_mod (35,6);d_3=inverse_mod (30,7)

d_1 ,d_2 ,d_3

Now I’ll create each of the big product numbers, as well as their sum.

n_1 , n_2 , n_3 = 5,6,7
a_1 , a_2 , a_3 = 1,2,3
N = n_1*n_2*n_3
d_1=inverse_mod (42,5); d_2=inverse_mod (35,6);

d_3=inverse_mod (30,7)
a_1*c_1*d_1 , a_2*c_2*d_2 ,a_3*c_3*d_3;

a_1*c_1*d_1+a_2*c_2*d_2+a_3*c_3*d_3

Of course, we don’t recognize 836 as our answer. But:

n_1 , n_2 , n_3 = 5,6,7
N = n_1*n_2*n_3
mod(836,N)

56 CHAPTER 5. LINEAR CONGRUENCES

Let’s try some more interesting moduli for an example to do on your own.
Can you follow the template?

• x ≡ 1 (mod 6)

• x ≡ 11 (mod 35)

• x ≡ 3 (mod 11)

Sage can also approach this in a similar way, as we saw earlier.

@interact(layout =[[' a_1 ' , ' n_1 '],[' a_2 ' , ' n_2 '],[' a_3 ' , ' n_3 ']])
def _(a_1=(' \(a_1\) ' ,1), a_2=(' \(a_2\) ' ,2),

a_3=(' \(a_3\) ' ,3), n_1=(' \(n_1\) ' ,5),
n_2=(' \(n_2\) ' ,6), n_3=(' \(n_3\) ' ,7)):
try:

answer = []
for i in [1.. n_1*n_2*n_3]:

if (i%n_1 == a_1) and (i%n_2 == a_2) and
(i%n_3 == a_3):

answer.append(i)
string1 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_1 ,n_1)
string2 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_2 ,n_2)
string3 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_3 ,n_3)
pretty_print(html("The␣simultaneous␣solutions␣to␣

"))
pretty_print(html(string1+string2+string3))
if len(answer)==0:

pretty_print(html("are␣none"))
else:

pretty_print(html("all␣have␣the␣form␣"))
for ans in answer:

pretty_print(html("$%s$␣modulo␣
$%s$"%(ans ,n_1*n_2*n_3)))

except ValueError , e:
pretty_print(html("Make␣sure␣the␣moduli␣are␣

appropriate␣for␣solving!"))
pretty_print(html("Sage␣gives␣the␣error␣message:"))
pretty_print(html(e))

5.4.2 A theoretical but highly important use of CRT
Now, there are many, many useful things we can do with the crt.

Proposition 5.4.2 (Converting to and from coprime moduli). Suppose that
X ≡ Y (mod N), and N =

∏
mi, where gcd(mi,mj) = 1 for all i ̸= j. Then

we have two directions of equivalence between a congruence and a system of
congruences.

• Certainly if N divides X − Y , so does a factor of N , so X ≡ Y (mod
mi) for each of the relatively prime factors of N . Thus, solutions to the
“big” congruence are also solutions to a system of many little ones.

5.5. MORE COMPLICATED CASES 57

• But the crt allows me to reverse this process. The moduli in question
are all coprime to each other, so if we are given a solution pair (Xi, Yi)
to each of the congruences

Xi ≡ Yi (mod mi)

then when combined they will give one (!) solution of

X ≡ Y (mod N)

That means that any question about congruences is really a question about
congruences modulo simple moduli (see Proposition 6.5.1 for a strong state-
ment of this). We will use this fact again and again in the remainder of the text,
and it is a huge reason why the Chinese Remainder Theorem is so intensely
powerful.

5.5 More Complicated Cases
Solving linear congruences is a completely solved problem (up to computer
power). Although one does not usually cover all extensions in an introductory
course, the following subsections will introduce some, without full detail.

5.5.1 Moduli which are not coprime
What happens if, in a system of congruences, we don’t have the enviable situ-
ation where all the ni are relatively prime? Let’s go back to the interact from
before one last time, with some moduli which are not pairwise coprime, and
see if we get anything.

@interact(layout =[[' a_1 ' , ' n_1 '],[' a_2 ' , ' n_2 '],[' a_3 ' , ' n_3 ']])
def _(a_1=(' \(a_1\) ' ,1), a_2=(' \(a_2\) ' ,2),

a_3=(' \(a_3\) ' ,3), n_1=(' \(n_1\) ' ,5),
n_2=(' \(n_2\) ' ,6), n_3=(' \(n_3\) ' ,7)):
try:

answer = []
for i in [1.. n_1*n_2*n_3]:

if (i%n_1 == a_1) and (i%n_2 == a_2) and
(i%n_3 == a_3):

answer.append(i)
string1 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_1 ,n_1)
string2 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_2 ,n_2)
string3 = "$x\equiv␣%s␣\\text{␣(mod␣

}%s)$"%(a_3 ,n_3)
pretty_print(html("The␣simultaneous␣solutions␣to␣

"))
pretty_print(html(string1+string2+string3))
if len(answer)==0:

pretty_print(html("are␣none"))
else:

pretty_print(html("all␣have␣the␣form␣"))
for ans in answer:

pretty_print(html("$%s$␣modulo␣
$%s$"%(ans ,n_1*n_2*n_3)))

except ValueError , e:

58 CHAPTER 5. LINEAR CONGRUENCES

pretty_print(html("Make␣sure␣the␣moduli␣are␣
appropriate␣for␣solving!"))

pretty_print(html("Sage␣gives␣the␣error␣message:"))
pretty_print(html(e))

As previously mentioned, Qin discovered a very general answer for getting
answers in this situation. An answer exists as long as gcd(ni, nj) divides ai−aj
for all i and j. Lebèsgue was the first to rediscover this in the modern era, in
1859.

5.5.2 The case of coefficients
Another case is that of congruences not of the form x ≡ a (mod n), but of
the form Ax ≡ B (mod n). What can we say when our linear system has
coefficients to the variable?

If you have simultaneous congruences with coefficients,

Aix ≡ Bi (mod Ni)

then first write their individual solutions in the form x ≡ ai (mod ni). Then
you can use the crt to get a solution of that system, which is also a solution
of the ‘big’ system.

For instance, try now to solve

• 2x ≡ 2 (mod 5)

• 5x ≡ 4 (mod 6)

• 3x ≡ 2 (mod 7)

Surprised? Don’t forget to get back to the original modulus!
See also Example 6.5.2 for combining these ideas with those of Proposi-

tion 5.4.2.

5.5.3 A practical application
Finally, there is a practical application. Suppose you are adding two very large
numbers – too big for your computer! How would you do it? The answer is
one can use the crt, in particular the ideas of Proposition 5.4.2.

• First, pick a few mutually coprime moduli smaller than the biggest you
can add on your computer.

• Then, reduce your two numbers x and y modulo those moduli and add
the two huge numbers in each of those moduli.

• Then the crt allows you to put x + y modulo each of the moduli back
together for a complete solution!

Needless to say, we won’t do an actual example of this.

5.6 Exercises
1. Why do the latter two strategies in Fact 5.2.1 need no additional proof?

2. Complete the outline of the proof of Proposition 5.2.5.

5.6. EXERCISES 59

3. We found solutions to ax ≡ b (mod n) as congruence classes modulo n.
But since gcd(a, n) = d is important here, it could be worth talking about how
many congruence classes modulo n/d we have. Well, how many do we get? (If
this sounds confusing, pick a specific problem and try it, then see if you get
the same answer in general.)

4. Write down two linear congruences which do not have solutions modulo 15,
but do have solutions modulo 16. (You do not have to solve them.)

5. We know that b ≡ c (mod n) implies ab ≡ ac (mod n) as well. Prove that
the converse is true if gcd(a, n) = 1, and give a counterexample where the
converse fails if gcd(a, n) ̸= 1.

6. For each of the following linear congruences, find all of its solutions.
(a) 18x ≡ 42 (mod 50)
(b) 15x ≡ 9 (mod 25)
(c) 6x ≡ 3 (mod 9)
(d) 980x ≡ 1540 (mod 1600)

7. Solve the simultaneous system below. ([C.1.1], Exercise 3.8)
• x ≡ 1 (mod 4)
• x ≡ 2 (mod 3)
• x ≡ 3 (mod 5)

8. Find an integer that leaves a remainder of 9 when it is divided by either 10
or 11, but that is divisible by 13.

9. When eggs in a basket are removed two, three, four, five, or six at a time,
there remain, respectively, one, two, three, four, or five eggs. When they are
taken out seven at a time, none are left over. Find the smallest number of eggs
that could have been contained in the basket. (Brahmagupta, 7th century AD)

10. Find a problem on the internet about pirates quarreling over treasure (or
monkeys over bananas) that could be solved using the crt, and solve it.

11. Solve the system 4x ≡ 2 (mod 6), 3x ≡ 5 (mod 7), 2x ≡ 4 (mod 11).

12. Solve the congruence 5x ≡ 22 (mod 84).

13. Solve the simultaneous system x ≡ 4 (mod 6), x ≡ 7 (mod 15). Note that
this doesn’t fit our pattern, but you should still be able to solve this, since
there are only two. (Hint: trial and error.)

60 CHAPTER 5. LINEAR CONGRUENCES

Chapter 6

Prime Time

Now it’s time to introduce maybe the most important concept in the whole
course. It’s one you are almost certainly already pretty familiar with. That is
the concept of prime numbers.

Although we’ll take a somewhat traditional route to introduce them, con-
sider what precedes this chapter. We attacked linear congruences as far as we
could via the concept of ‘relatively prime’/‘coprime’. But the thought should
be gnawing at us of whether there is something deeper than simply not shar-
ing factors other than one; what are the factors that are (or are not) shared in
the first place? As mathematicians, we always want to ask whether there is a
simpler notion available, or one that explains more.

We will see the fruit of this for linear congruences in Section 6.5, using the
most powerful tool in our arsenal, Theorem 6.3.2. But once we have unleashed
the power of primes, we will see and use them everywhere, such as in Chapters
22 and 12. Examining them more closely will lead to us some of the deepest
mathematics of the book in Chapters 21 and 25.

So let’s get started!

6.1 Introduction to Primes
6.1.1 Definitions and examples
Definition 6.1.1. A positive integer p greater than 1 is called prime if the
only positive divisors of p are 1 and p itself.

Definition 6.1.2. If an integer n > 1 is not prime, it is called composite.

The first few primes are 2, 3, 5, 7, 11, . . . That means 4, 6, 8, 9, 10, 12 . . . are
composite. But figuring out which numbers are prime is notoriously difficult.
Indeed, we will spend significant time later on this question, such as in Chap-
ter 12 and Chapter 21. So below, we introduce a few Sage functions for this.

Here are answers to questions you might have about primes that Sage could
answer.

• Is a given number prime?
is_prime (6) # Is my number a prime?

• Is it at least a power of a prime?
is_prime_power (25) # Is my number a prime power?

61

62 CHAPTER 6. PRIME TIME

• List some primes for me!

PR = prime_range (100) # What are all primes up to but
not including 100?

print PR

• List the first n primes …

PFN = primes_first_n (100) # What are the first 100
primes?

print PFN

• Give me prime factors.

What are the prime factors of a number?
factor(2 * 3 * (2*3+1) * (2*3*(2*3+1) +1) *

(2*3*(2*3+1) *(2*3*(2*3+1) +1)+1))

Sage note 6.1.3 (Making comments). As is typical in Python, comments on
them are given after # signs.

6.1.2 Prime fun
Here’s a little fun that starts us thinking along the lines of what’s to come.
Let’s see whether we can generate some primes with a simple polynomial.

f(x)=x^2+x+41
@interact
def _(n=(0 ,[0..39])):

pretty_print(html("Is␣$%s$␣for␣$x=%s$,␣which␣is␣$%s$,␣
a␣prime␣number?"%(f(x),n,f(n))))

print is_prime(f(n))

Of course, I’m cheating a little:

f(x)=x^2+x+41
f(40)

is_prime(f(40)),factor (1681)

In fact, we can prove that quite the opposite of what you might have thought
with this example is true.

Fact 6.1.4. There is no non-constant polynomial f(x) with integer coefficients
such that f(x) is prime for all integers x.

What is the reason no such polynomial can exist? It turns out to be directly
related to our previous work on congruences. Namely, if f(a) = p for some a,
then for any b ≡ a (mod p) we have f(b) ≡ f(a) (by well-definedness of addition
and subtraction) as well, so

f(b) ≡ f(a) ≡ p ≡ 0 (mod p), or that p | f(b) .

6.2. TO INFINITY AND BEYOND 63

But the problem is that if f(b) is also prime for all such b, then we have a poly-
nomial which returns to height f(x) = p periodically, and hence limx→∞ f(x) ̸=
±∞, which is only possible if f is a constant polynomial.

This could be a big surprise – limits and calculus can be used in number
theory! Even at this early stage, it is evident, but there will be more later,
such as in Chapters 24 and 20.

The fact is not true for multivariate polynomials (see e.g. Wikipedia).
Yikes!

A few more single-variable polynomials that do happen to generate a num-
ber of primes are below, though the second one takes a long time! Among
other sites, Mathworld has lots and lots more information.

g(x)=8*x^2 -488*x+7243
for n in [0..30]:

print g(n),is_prime(g(n))

h(x)=x^6+1091
for n in [0..3906]:

if is_prime(h(n)):
print (n,h(n))

6.2 To Infinity and Beyond
6.2.1 Infinite primes
At this point it’s a good idea to mention that the search for 100, or 1000, or
how every many prime numbers is not hopeless; that is the content of Euclid’s
famous theorem on the infinitude of the primes.

Strictly speaking, he proves that no matter what n is, there is always a big-
ger prime p > n, which isn’t exactly the same thing as a Cantoresque “infinite
set of primes”! But we still say there are infinitely many prime numbers.

As usual, Joyce’s web version of the original is a great resource. There are
many proofs of this theorem, some of which would be corollaries of theorems
later in this text. Most use some form of proof by contradiction, but there are
exceptions, such as Saidak’s proof from the American Math Monthly, which
we will mention again in Section 21.1. One notable proof by Furstenberg even
uses point-set topology, though this has been interpreted in a non-topological
way as well.

Here is a slightly modernized version of Euclid’s proof.

Theorem 6.2.1 (Infinitude of Primes). There is no upper bound on the size
of the collection of prime numbers.

Proof. Suppose that we have found exactly n > 0 prime numbers, p1, p2, . . . , pn.
Find the smallest positive integer N which is a multiple of all of these simul-
taneously (we know at least one such number exists, since you could multiply
them all together).

Then N + 1 is either prime, or it is not. (“� �� ΕΖ ���� ������ ����� � ��.”) If it is
prime, then it is certainly different from the others, so we have increased the
size of the set of primes.

If on the other hand it is not prime, then it has some prime divisor p. (This
actually does require proof, and is Euclid’s Book 7, Proposition 31. For us, it

http://en.wikipedia.org/wiki/Formula_for_primes#Formula_based_on_a_system_of_Diophantine_equations
http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html
https://primes.utm.edu/notes/proofs/infinite/Saidak.html
https://en.wikipedia.org/wiki/Furstenberg's_proof_of_the_infinitude_of_primes
http://www.idmercer.com/monthly355-356-mercer.pdf
http://www.idmercer.com/monthly355-356-mercer.pdf

64 CHAPTER 6. PRIME TIME

is easiest to have it follow immediately from Theorem 6.3.2.) We claim p is
not one of the pi already known.

If it were, then if p is a divisor of both N and N + 1, which means it is
a divisor of 1 (see Exercise 2.5.7). This is absurd (“������”). (Can you recall
why?)

So p is not one of the original list, and is prime, so we have found a larger
list than before.

There are two things worth pointing out about this proof. First, Joyce
points out that Euclid doesn’t bother to mention that N is in fact the prod-
uct of the primes in question. It’s not necessary to mention, but using this
characterization, the same proof would show the (weaker but also interesting)
conclusion that there is no upper bound on the size of a set of mutually co-
prime positive integers. Secondly, as is typical, Euclid only proves this with a
small n, rather than with some modern stand-in like ellipses; those interested
in math history will be interested in how Wallis used this to his advantage in
the Hobbes-Wallis controversy.

6.2.2 The sieve of Eratosthenes
Much later in the text we will talk some about efficient ways to tell if a number
is prime, or to get prime numbers (see Chapter 12, for example). For now, all
we will use is something usually known as the Sieve of Eratosthenes.

Algorithm 6.2.2 (Sieve of Eratosthenes). To check whether a number n > 1
is composite or prime, it suffices to divide by all primes p ≤

√
n. Anything

that isn’t divisible by these is prime.

Proof. If n is not prime (composite), we can write n = de for integers d and e
both strictly between 1 and n. If both d, e >

√
n, then

n = de >
(√

n
)2

= n ,

a contradiction.

This is indeed an algorithm, because it provides a specific procedure to
identify primes up to a specific limit.

Example 6.2.3. To get all prime numbers up through 100, it suffices to remove
any numbers divisible by 2, 3, 5, or 7, as

√
100 < 11.

Eratosthenes was a contemporary of Archimedes, and no slouch. He is best
known for estimating the size of the Earth fairly accurately, amazingly so for
the time. (Along the way, that puts the lie to those who would claim everyone
thought the earth was flat until Columbus.)

6.3 The Fundamental Theorem of Arithmetic
6.3.1 Preliminaries and statement
Our biggest goal for this chapter, and the motive for introducing primes at this
point, is the Fundamental Theorem of Arithmetic, or fta. It should probably
be called the Fundamental Theorem of Number Theory, but in older usage one
said “arithmetic”, and the name has stuck.

Definition 6.3.1. A factorization of an integer is a way of writing it as a
product of other integers. This nearly always refers to one of two things, which
are mentioned explicitly if there is danger of ambiguity:

http://www.maa.org/publications/maa-reviews/squaring-the-circle-the-war-between-hobbes-and-wallis

6.3. THE FUNDAMENTAL THEOREM OF ARITHMETIC 65

• A product into prime numbers, which can be called a prime factoriza-
tion;

• A product into positive powers of primes, which can be called a prime
power factorization.

Theorem 6.3.2 (Fundamental Theorem of Arithmetic). The following are
true:

• Every n > 1 has a prime factorization.

• Every such factorization of a given n is the same if you put the prime
factors in increasing order (uniqueness).

More formally, we can say the following. Any positive integer N > 1 may
be written as a product

N =
n∏

i=1

pi

of primes, and further, if we can write a different such product

N =
m∏
j=1

qm

then m = n and a reordering of the qj will make them the same as the pi.

Proof. We will prove this in Subsection 6.3.2.

Example 6.3.3. For instance:

• 30 = 2 · 3 · 5

• 24 = 2 · 3 · 2 · 2 = 2 · 2 · 2 · 3

Clearly (from normal experience, I mean) the only other possibilities are
putting the primes in a different order. Why doesn’t this work for N = 1?

Example 6.3.4. Usually we will implicitly assume the primes are in nonde-
creasing order, and write 32 instead of 3 · 3, so be ready for the notation

N =
n∏

i=1

peii

for this same result; we only use the first notation for convenience for the first
statement. (Sometimes when the context is clear, one can even write N =

∏
p

or N =
∏

pe.)
For instance:

• 30 = 21 · 31 · 51

• 24 = 23 · 31

Just to get this down, practice writing the following as a product of such
prime powers.

• N = 12100

• N = 1250

• N = 3072

66 CHAPTER 6. PRIME TIME

6.3.2 Proof of the FTA
This theorem is quite old, and of course Euclid has a nice proof of it, along
with various lemmata (the plural of lemma, though I’ll also use “lemmas” in
this text) he needs to get there. The key ingredients are:

• If a number is prime, that is the prime factorization.

• If a number is composite, then it is divisible by some prime. (Euclid used
this in his proof of the infinitude of primes, above.)

• This process can be continued and is finite.

• Any other way in which you can write the same number as a product of
primes is just a reordering of the one obtained in the previous step.

The last step requires this lemma, which is Euclid’s Book 7, Proposition
30.

Lemma 6.3.5. If a prime p divides a product ab, then p divides at least one
of a or b.

Proof. Left to reader in Exercise 6.6.3; this is very closely related to Proposi-
tion 2.4.6.

Corollary 6.3.6. If a prime p divides any finite product of primes, then p
divides at least one of them, i.e.

p |
ℓ∏

k=1

ak implies p | ak for at least one k

Proof. By induction, left to reader in Exercise 6.6.4.

Okay, now we need the details.
Let’s use induction on the size of N . So our base case is N = 2, which is

of course prime and has a unique factorization 21.
First, let’s suppose we have proved that all numbers up to N can be written

as a product of primes (uniquely or not). Then we look at N + 1 to continue
the induction.

• If N + 1 is prime, that is its prime factorization, as with 2.

• If not, then by induction we know it is composite, so N + 1 = ab, where
1 < a, b < N + 1. (Note why a, b are smaller! Recall the proof of the
Sieve 6.2.2.) In this case, a and b have prime decompositions

∏
pi and∏

qj , since they are less than N +1 but not 1, and so N +1 =
∏

pi
∏

qj .

By induction, this shows that a prime factorization exists.
It remains to be shown that such a factorization is unique. So first rewrite

it as
N + 1 =

∏
pi

and now suppose that (once again by induction) we have written all num-
bers up to N uniquely as a product of primes. So let’s look at another such
representation,

N + 1 =
∏

qj

At this point we need Corollary 6.3.6. By definition, p1 divides N + 1.
Hence p1 divides at least one of the qj . But the only positive divisors of a
prime are itself and 1, so p1 = qj .

http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX14.html
http://www.duden.de/rechtschreibung/Lemma
http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII30.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII30.html

6.4. FIRST CONSEQUENCES OF THE FTA 67

Cancel these from the product to get two different representations of (the
integer) N+1

p1
as a product of primes. By the induction hypothesis, these are

unique up to reordering, so multiplying both by p1 to get N +1 should also be
unique up to reordering.

By induction, we are done.
Two comments about this proof are in order. First (this is especially to

the instructor), this may seem like a different kind of induction proof, because
we do not simply assume N has a (unique) factorization, but that all n ≤ N
do. It is not; the statement we are proving is just different. Rather than
proving “N has a factorization” we are proving “all numbers less than N have
a factorization”. In particular, there is no pedagogical need for a separate
notion of ‘strong induction’, in my view.

Second, if you are familiar with other algebraic structures, it is very im-
portant to note this theorem is not true for every algebraic system! (Not even
for every such system that is like the integers in other ways.) Most interesting
examples of this are just beyond the level of this course. For those who must
know what this means now, try Exercise 6.6.25.

6.4 First consequences of the FTA
The impact of the fta is so great, I cannot overstate its significance. This
section collates a few examples, but you will see them throughout the text, as
well as in the next section, when we connect it back to congruences.

Most importantly, lots of theorems now have reasons, not just proofs. This
is an important point about mathematics! You will (re)prove a few things in
the Exercises to see this. This ability boils down to the fact that gcd(a, b) = 1
now means that a and b do not share any common prime factors. Here is a
first example to give the feel.

Example 6.4.1. If a | c, b | c, and gcd(a, b) = 1, then a =
∏

pi and b =
∏

qj
but none of the pi can be any of the qj (or the gcd would include that prime).

Since by the fta c =
∏

rekk where the rk are distinct, the pi must be some
of the rk and the qj must be different ones, so that

∏
piqj still divides c.

So if a | c, b | c, and gcd(a, b) = 1, then ab | c, which is part of Proposi-
tion 2.4.6.

As another example, the proofs from Section 3.7 become far simpler. We
can prove the first here, and save the second for Exercise 6.6.11.

Example 6.4.2. Let’s show that a2 | z2 implies a | z.
Solution. To begin, let’s write a =

∏
pe. Then

a2 =
∏

pe ·
∏

pe =
∏

pe+e =
∏

p2e

Similarly,
z =

∏
qf implies z2 =

∏
q2f

If these two numbers divide each other, then we can separate each prime out,
so that

p2e | q2f

where p = q. But this just means 2e < 2f , so e < f as well.
This is true for all the primes p dividing a, so pe | (p = q)f for all such p;

multiplying these together shows that

a =
∏

pe |
∏
p=q

qf |
∏

qf = z

68 CHAPTER 6. PRIME TIME

as desired.

The reader should note that for such proofs, the implicit use of Corol-
lary 6.3.6 is crucial along with the fta.

Nearly as important is that computing all kinds of things becomes easier.
If we let a =

∏n
i=1 p

ei
i and b =

∏n
i=1 p

fi
i , where it’s possible that ei or fi is zero

at times, then we can often get formulas for various combinations of a and b.

Definition 6.4.3. Given two numbers x ≤ y, we let the maximum and
minimum be defined by

max(x, y) = y and min(x, y) = x

with the clear extension to a min or max of a set consisting of more than two
numbers.

Then we have formulas of this kind.

•

ab =
n∏

i=1

pei+fi
i

•

gcd(a, b) =
n∏

i=1

p
min(ei,fi)
i

• Assuming b | a,

a/b =

n∏
i=1

p???i

(See Exercise 6.6.7.)

Another use of the fta is to help us do in a systematic way results that
were probably first obtained by extremely ad-hoc methods. As an example, it
is likely that you have seen a proof that

√
2 is irrational, and it probably used

mostly the concept of “evenness”. But we can prove that
√
m /∈ Q (for m not

a perfect square) in a very similar fashion.
Most deeply, it gives us a canonical way to describe every integer in terms

of simpler integers, and gives a measure of simplicity. We’ll exploit this some
much later, such as in Chapter 24.

Here are some ways to calculate these things in Sage. Simply replace the
numbers you are interested in.

prime_divisors (693)

factor (693)

Note that the first of these functions gives just a list of the prime divisors,
while the second one gives the full prime power factorization.

Finally, let’s note that depending on the context, the computational, proof,
or other tools won’t all be necessary. To demonstrate that, let’s introduce some
useful additional notation.

Definition 6.4.4. For p prime, we say that pk ∥ n precisely when pk |
n but pk+1 does not divide n.

6.5. APPLICATIONS TO CONGRUENCES 69

Definition 6.4.5. We write n! for the product of the integers from 1 to n,
called n factorial.

As an example, 52 ∥ 75. The prime factorization of a number clearly gives
you information about this.

factor(factorial (20))

Since 218 ∥ 20! and 54 ∥ 20!, we can conclude that 20! ends with exactly 4
zeros merely from the prime factorization, which we could certainly get without
multiplying it out (though in this case Sage does that first). We can check this:

factorial (20)

6.5 Applications to Congruences
6.5.1 Factoring the modulus
The reason the fundamental theorem is so useful for congruences is that prime
powers (for different primes) are automatically relatively prime to each other.
So in using the Chinese Remainder Theorem (Theorem 5.3.1) we don’t have a
spend time looking for coprime factors; we can just factor into prime powers
using the Fundamental Theorem of Arithmetic. So here is a useful repositioning
of Proposition 5.4.2.

Proposition 6.5.1 (Converting to and from prime powers). Suppose that
X ≡ Y (mod N), and N =

∏
peii . Then we have two directions of equivalence

between a congruence and a system of congruences.

• Certainly if N divides X − Y , so does a factor of N , so X ≡ Y (mod
peii) for each of prime power factors of N . (Once again, solutions to the
“big” congruence are also solutions to a system of many little ones.

• But by their nature, the prime powers in a factorization are all coprime
to each other, so if we are given a solution pair (Xi, Yi) to each of the
congruences

Xi ≡ Yi (mod peii)

then when combined they will give a solution of

X ≡ Y (mod N)

That means that any question about congruences is really a question about
congruences modulo prime powers. We will use this fact again and again in
the remainder of the text, and it is a huge reason why the crt is so intensely
powerful.

Similarly, referring to Subsection 5.5.2, what if one has one complicated
congruence with coefficients and a composite modulus N?

Ax ≡ B (mod N)

Just take N = pe11 · · · pekk and then solve all the congruences Ax ≡ B (mod peii)
first. Then use the crt to ‘patch’ them together for a final solution. This is a
little tedious, but certainly doable.

70 CHAPTER 6. PRIME TIME

Example 6.5.2. Let’s solve

21x ≡ 31 mod 180

this way.

• What are the individual congruences?

• Can we solve them?

• Can we then put them back together?

6.5.2 Moduli which are prime powers
When it comes to linear congruences, these consequences of the Chinese Re-
mainder Theorem and fta allow us to reconsider the prime power case with a
more subtle tool. Assume that in solving a bunch of congruences

x ≡ aj (mod nj)

we would like to start by solving congruences

x ≡ aj (mod pe)

where pe divides nj .
The general approach is then to first solve modulo p, in the hope that it

could lead to a solution modulo pe. Consider this extended example.

Example 6.5.3 (Prime Power Congruences). Let f(x) = 2x − 3. The only
solution of 2x ≡ 3 (mod 5) is clear; it is x = [4]. How might we get solutions
(mod 25) from this? Here are some steps.

• First, any solution of 2x ≡ 3 (mod 52) is also a solution of 2x ≡ 3 (mod
5). So x ≡ 4 + 5k (mod 25) for some k, since [4] = {4 + 5k|k ∈ Z}.

• Plugging 4 + 5k in the congruence yields

2x ≡ 2(4 + 5k) ≡ 2 · 4 + 2 · 5k ≡ 3 (mod 25),

or, rearranging (but keeping everything unmultiplied),

3− 2 · 4 ≡ 2 · 5k (mod 52) .

• Now, we know that 5 | 3 − 2 · 4, because we already know that 4 solved
our original congruence:

3 ≡ 2 · 4

So we can cancel out 5 from the entire congruence to get that

3− 2 · 4
5

≡ 2k (mod 5) .

This simplifies to −1 ≡ 2k (mod 5), which has solution k ≡ 2 (mod 5).

• Hence, using this k and plugging it back in to get a solution to 2x ≡ 3
(mod 52), we get

4 + 5k = 4 + 5 · 2 = 14 (mod 52)

as the solution. And indeed 2 · 14 = 28 ≡ 3 (mod 25).

6.6. EXERCISES 71

Example 6.5.4. Let’s do it all again, more tersely, to get a solution to 2x ≡ 3
modulo 53 = 125.

• I already know that [14] is the solution to 2x ≡ 3 (mod 52).

• That means that a solution to 2x ≡ 3 (mod 53) must look like 14 + 52k.

• Plugging this in gives me 2(14 + 52k) ≡ 3 (mod 53), which rearranges to

2 · 52k ≡ 3− 2 · 14 (mod 53) .

• Since we know that 14 solves 2x ≡ 3 (mod 52), that means (by definition
of congruence) that

52 | 3− 2 · 14 ,

so we can divide “all three sides” of the last congruence by 52.

• This yields
2k ≡ 3− 2 · 14

52
≡ −25

52
≡ −1 (mod 5) .

• Solving this yields, of course, k ≡ 2 (mod 5), so

x ≡ 14 + 52 · 2 ≡ 64 (mod 125) ,

and indeed 2 · 64 = 128 ≡ 3 (mod 125) works.

You can do this as often as you like, and (properly interpreted) it will yield
all solutions of your congruence modulo pe, one step at a time. We’ll see a
generalization of this in Section 7.2.

6.6 Exercises
1. A number such as 11, 111, 1111 is called a repunit. Clearly eleven is a
prime repunit. Find two more, and say how you did it.

2. Find the prime numbers less than 100 using the Sieve of Eratosthenes
(6.2.2). Make sure you actually draw it! Every math student should do this
once, and only once.

3. Prove Lemma 6.3.5; if a prime p divides a product ab, then p divides at
least one of a or b.

4. Prove Corollary 6.3.6; if a prime p divides any finite product of primes, then
p divides at least one of them.

5. Prove that if gcd(a, b) = 1 and a | bc then a | c as well, using the fta.

6. Prove using the fta that if gcd(a, b) = d then gcd
(
a
d ,

b
d

)
= 1.

7. Assuming b | a, find a formula to complete

a/b =

n∏
i=1

p???i

and prove it using the fta.

8. How would you describe a factorization of a rational number? Do you think
you could extend the Fundamental Theorem of Arithmetic to this case? If so,
how? If not, why would it not be appropriate?

72 CHAPTER 6. PRIME TIME

9. Show that if a and b are positive integers and a3 | b2, then a | b.

10. Show that if pa ∥ m and pb ∥ n, then pa+b ∥ mn.

11. Prove Proposition 3.7.2 using the fta; if gcd(m,n) = 1 and mn is a perfect
square, then so are m and n.

12. Is it possible for n! to end in exactly five zeros?

13. Show that log10(5) is irrational.

14. Show that 32/3 is irrational.

15. By hand, find the prime factorizations of 36, 756, and 1001. Use these to
find their pairwise gcds.

16. By hand, find the gcd of 22 · 35 · 72 · 13 · 37 and 23 · 34 · 11 · 312.

17. By any method you like, find the prime factorizations of 224−1 and 108−1,
as well as their gcd.

18. Prove that the only solutions of x2 ≡ x (mod p) are x = [0] and x = [1],
if p is a prime. (Refer to Question 4.6.7; this and the next exercise answer
Exercise 4.7.14.)

19. Try to decide for exactly which composite moduli n the previous question
is true. (Refer to the interact in Question 4.6.7; this and the previous exercise
answer Exercise 4.7.14.)

20. Find solutions to 3x − 4 ≡ 0 (mod 49) and (mod 343) using the method
in Subsection 6.5.2, starting with modulus seven.

21. Fill in the details of Example 6.5.2.

In the next few exercises, recall the definition of least common multiple (or
lcm) from Exercise 2.5.9.

Find the pairwise least common multiples (recall Exercise 2.5.9) in the
previous few exercises.

22.

Find a formula for the lcm using the fta:

lcm(a, b) =
n∏

i=1

p???i

23.

Prove that if a, b > 0 then gcd(a, b)lcm(a, b) = ab using the fta.24.

Let Z[
√
−5] be the set of all numbers of the form a+b

√
−5 for a, b ∈ Z.

Find two different factorizations of N = 6 in this set (known as a ring),
, all the factors of which are not ±1.

25.

Chapter 7

First Steps With General
Congruences

There is a lot more one can say about solving congruences. However, congru-
ences also play a crucial role in solving all manner of other number-theoretic
problems.

In this chapter, we collate a significant number of interesting results that the
congruence framework affords us. Among them are some of the most important
results we have access to at this early stage, including Fermat’s Little Theorem
and Lagrange’s Theorem on polynomials.

7.1 Exploring Patterns in Square Roots
Just as in high school algebra one moved from linear functions to quadratics
(and found there was a lot to say about them!), this is the next natural step in
number theory. We will focus on congruences. We haven’t abandoned integers!
But it turns out that questions about quadratic polynomials with integers are
much, much harder, and are better pursued after studying the relatively simple
(and computable) cases of quadratic congruences. Much later, we will return
to a full investigation of this.

You may recall that we looked at one particular quadratic congruence in
Question 4.6.7 and Exercise 4.7.14, and saw that the solution depended at
least partly on the modulus in Exercises 6.6.18 and 6.6.19. So we will examine
these slightly simpler-sounding questions keeping in mind the structure of the
modulus, not so much the actual answers.

Question 7.1.1. Consider the following questions.

• For what prime p does −1 have a square root?

• For what integers n does 1 have more square roots than just ±1?

These questions are exactly equivalent to the following quadratic congru-
ence questions.

• Is there a solution to

x2 ≡ −1 (mod p) or x2 + 1 ≡ 0 (mod p) ?

• Is there a solution to

x2 ≡ 1 (mod n) (or equivalently x2 − 1 ≡ 0 (mod n))?

73

74 CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES

Let’s look at each of these in turn. The interacts are merely an aid; it is
quite possible use pencil and paper to explore these as well.

• An interact for which primes −1 has a square root:

@interact
def _(p=(13, prime_range (10 ,100))):

pretty_print(html("Values␣of␣x^2+1␣mod␣%s"%(p,)))
pretty_print(html(""))
for m in [0..p-1]:

pretty_print(html("$%s^2+1\ equiv␣%s\\text{␣
(mod␣}%s)$"%(m,mod(m,p)^2+1,p)))

pretty_print(html(""))

• An interact for when 1 has more square roots than just ±1 – a rather
tricky question:

@interact
def _(n=(12 ,[10..100])):

pretty_print(html("Values␣of␣x^2-1␣mod␣%s"%(n,)))
pretty_print(html(""))
for m in [0..n]:

pretty_print(html("$%s^2-1\ equiv␣%s\\text{␣
(mod␣}%s)$"%(m,mod(m,n)^2-1,n)))

pretty_print(html(""))

What do you get? See Exercise 7.7.1; writing ideas in the margin of a
physical book or in a small text document on a computer are both awesome.

7.2 From Linear to General
In this section, we will take two ideas we already used with linear congruences,
and see how they can be modified to apply in any polynomial situation.

7.2.1 Combining solutions
One of the most important things we can do is study congruences with prime
(power) modulus, because we can combine their solutions to get solutions for
any congruences when we combine the Chinese Remainder Theorem and Fun-
damental Theorem of Arithmetic (recall Proposition 6.5.1). Even more inter-
estingly, we can combine the numbers of solutions.

Informally, if you want to get the total number of solutions of a polynomial
congruence, just write the modulus as a product of prime powers n =

∏k
i=1 p

ei
i ,

find out how many solutions the congruence has with each prime power mod-
ulus, then multiply those numbers for the total number of solutions.

Example 7.2.1. For instance, if f(x) ≡ 0 has 2 solutions modulo 3, 1 solution
modulo 5, and 3 solutions modulo 7, it would have 2 ·1 ·3 = 6 solutions modulo
105 = 3 · 5 · 7.

We will state this for the general case of a coprime factorization of n, though
again the prime power factorization is usually the most useful.

7.2. FROM LINEAR TO GENERAL 75

Fact 7.2.2. Let n1, n2, · · · , nk be a set of k moduli, all of which are relatively
prime to each other. Suppose that for some polynomial f(x) you know that
there are Ni (congruence classes of) solutions to

f(x) ≡ 0 (mod ni) .

Then the congruence

f(x) ≡ 0

(
mod

k∏
i=1

ni

)
has

k∏
i=1

Ni total solutions.

Proof. From among the Ni solutions to each congruence, choose a set a1, a2, · · · ak
of solutions of

f(x) ≡ 0 (mod ni)

for all i. This is a set of k numbers ai modulo ni. Now we can u se , which
means that we can use the Chinese Remainder Theorem (Theorem 5.3.1) to
get one number a such that a ≡ ai (mod ni) for all i.

Since modular arithmetic is well-defined, and since polynomials are ex-
clusively composed of addition and multiplication, f(a) must be equivalent
(modulo

∏k
i=1 ni) to the number which the crt gives from the system x ≡ 0

(mod ni). This is, of course, zero, so we obtain one solution to

f(x) ≡ 0

(
mod

k∏
i=1

ni

)
.

Do this for each combination of solutions to the individual congruences.
Clearly all such solutions must be different modulo

∏k
i=1 ni. How many are

there? Simply multiply how many there are for each ni to get the total number
of combinations of solutions. If there are Ni solutions modulo ni, we would
get

∏k
i=1 Ni. There aren’t any additional answers, because any answer to the

‘big’ congruence automatically also satisfies the ‘little’ ones; if
∏k

i=1 ni | f(a),
then certainly ni | f(a) as well.

7.2.2 Prime power congruences
We have already discussed prime power congruences in Subsection 6.5.2. Re-
call that in Examples 6.5.3 and 6.5.4 we took the (obvious) solution of 2x ≡
3 (mod 5) (namely, x = [4]), and from it relatively easily got solutions (mod
25) and even (mod 125).

But that is essentially the same as asking for solutions to 2x−3 ≡ 0, a linear
congruence. Let’s see if we can generalize this for more general polynomial
congruences.

The key was taking the already known fact 5 | 3− 2 · 4 and then cancelling
out 5 from the entire congruence to get that

3− 2 · 4
5

≡ 2k (mod 5) .

We were able to solve the resulting congruence −1 ≡ 2k (mod 5), which had
solution k ≡ 2 (mod 5). Finally, we plugged that back in to get a solution to
2x ≡ 3 (mod 52), which was

4 + 5k = 4 + 5 · 2 = 14 (mod 52)

as the solution.

76 CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES

But can we use this to get solutions to more advanced congruences as well,
like the simple quadratics we’ve started exploring in this chapter? The answer
is yes, with a minor caveat. The preceding discussion was just a basic form of
the following.

Theorem 7.2.3 (Hensel’s Lemma). For p prime, suppose you already know a
solution equivalence class xe−1 (mod pe−1) of the (polynomial) congruence

f(x) ≡ 0 (mod pe−1)

Assume the technical condition that gcd(p, f ′(xe−1)) = 1. Then there is a
solution to

f(x) ≡ 0 (mod pe)

of the form
xe = xe−1 + kpe−1

where k satisfies

f(xe−1)

pe−1
+ k · f ′(xe−1) ≡ 0 (mod p) .

Proof. If p and f ′(xe−1)) are relatively prime, then any linear congruence of
the form kf ′(xe−1) ≡ a (mod p) can be solved. Since xe−1 is a known zero
of f(x) for modulus pe−1, we know that as an integer (not modulo anything)
pe−1 | f(xe−1).

This means that if we set a = − f(xe−1)
pe−1 , there will indeed be a solution k to

the congruence to be solved in the statement. Then the only question becomes
why xe = xe−1 + kpe−1 is actually a solution to f(x) ≡ 0 (mod pe).

To see this, think of f as a polynomial with terms of the form cix
i; then

f(xe−1 + kpe−1) can be expanded out term-by-term. Each term will look like

ci(xe−1 + kpe−1)i = cix
i
e−1 + ci(x

i−1
e−1 · kpe−1) · i+ terms with at least p2(e−1)

Since e ≥ 2 in this context, all those extra terms will be divisible by at least
pe and hence irrelevant in that modulus, so we have terms like

cix
i
e−1 + ci · ixi−1

e−1 · kpe−1 (mod pe)

(Most treatments are similar to this, e.g. [C.1.1], with a binomial theorem-
esque treatment, but one could also think of it as Taylor expansion, such as in
[C.1.13].)

We’re nearly done. Recall Proposition 5.2.4 where we are allowed to cancel a
nonzero divisor from “all three sides” of a congruence. That motivates dividing
each term and the modulus by pe−1 to get

cix
i
e−1

pe−1
+ ci · ixi−1

e−1 · k (mod p)

Now add up the terms for all i and it should be pretty clear from the form
that we have

f(xe−1)

pe−1
+ f ′(xe−1) · k

Since we just showed this is divisible by p, we multiply everything by pe−1

(this time actually using Proposition 5.2.4) and get f(xe) ≡ 0 (mod pe) as
desired.

7.3. CONGRUENCES AS SOLUTIONS TO CONGRUENCES 77

Example 7.2.4. Let’s use this to take solutions to x2 + 1 ≡ 0 (mod 5) and
get solutions modulo 25 and 125.

First, by inspection the solutions modulo 5 are [2], [3] (or [±2]). So solutions
modulo 25 will look like 3+ k · 5 or 2+ k · 5. Further, f ′(x) = 2x, so for either
solution modulo 5 the technical derivative condition is met.

Let x1 = 3. Then the condition for k is

f(x1)

5
+ k · (2x1) ≡ 0 (mod 5)

which simplifies to 2 + 6k ≡ 0, which solves to k ≡ −2 ≡ 3. Then our solution
to the congruence modulo 25 would be

x2 = x1 + 3 · 5 ≡ 18 (mod 25)

And indeed 182+1 = 325 is divisible by twenty-five. Try the same procedure
with x1 = 2 to get the solution x2 ≡ 7. (See also Example 16.1.4.)

Example 7.2.5. The same process with e = 3 and x2 ≡ 7 yields, as a condition
for k,

72 + 1

25
+ 14k ≡ 0 (mod 5)

This gives k = 2, and indeed

x3 = x2 + 2 · 52 = 57

yields
572 + 1 = 3250 ≡ 0 (mod 125)

This is a very powerful technique. What is most interesting is that this is
even interpretable as Newton’s method in calculus. How? Note that the result
above can be rearranged as

xe = xe−1 −
f(xe−1)

f ′(xe−1)

since pe−1 | f(xe−1) and the technical condition is tantamount to saying
f ′(xe−1) has an inverse. (Unlike in the Newton case, it is also possible for
there to be solutions here if gcd(p, f ′(xe−1)) ̸= 1, but only if f(xe−1)

pe−1 itself is
also divisible by p; we omit details of this case.)

If you didn’t notice this, don’t feel bad! In the linear case, where f(x) =
2x − 3, the derivative was just f ′(x) = 2 and it was not at all obvious that
anything more than a trick was involved. Still, it’s another fascinating place
where ideas from calculus can invade the world of number theory.

7.3 Congruences as Solutions to Congruences
We need to start applying these ideas more. In Section 7.1 we explored the
number of solutions to x2 − 1 ≡ 0 (mod n) for arbitrary n. It should be clear
we expect at least two solutions, but why are there sometimes more? Could
we ever get a solution that is comprehensible?

@interact
def _(n=(12 ,[10..110])):

counter = 0
pretty_print(html("Values␣of␣x^2-1␣mod␣%s"%(n,)))
pretty_print(html(""))

78 CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES

for m in [0..n]:
pretty_print(html("$%s^2-1\ equiv␣%s\\text{␣

(mod␣}%s)$"%(m,mod(m,n)^2-1,n)))
if mod(m,n)^2 -1==0:

counter += 1
pretty_print(html(""))
pretty_print(html("There␣are␣$%s$␣solutions␣to␣

$x^2-1\ equiv␣0$␣(mod␣$%s$)."%(counter ,n)))

Since x2−1 is a polynomial, our knowledge of Fact 7.2.2 suggests we should
try to answer this by looking at different prime power moduli first, then mul-
tiply the answers.

The key idea we will use is this:

• We know that (for a prime p) p | x2 − 1 = (x− 1)(x+ 1) implies x ≡ ±1
(mod p).

• More generally, pe | (x− 1)(x+ 1) implies p divides x− 1 or x+ 1.

So we should just look at various pe.
If p is odd (and hence greater than two), the two possibilities p | x− 1 and

p | x+1 are mutually exclusive, so all the factors of p in pe need to divide the
same one. So pe | (x + 1) or pe | (x − 1) are the only possibilities (x ≡ [±1])
and there are two solutions.

However, if p = 2 then 2 | x− 1 and 2 | x+1 is definitely possible, so there
could be more solutions.

• We know that ±1 are still the only solutions for 22 and 21; in the latter
case +1 ≡ −1, so there is actually only one solution in this case.

• However, for 23 it’s possible that 2 | (x + 1) and 22 | (x − 1), or vice
versa, so that 22 ± 1 = 3, 5 are also solutions to the congruence.

• For higher powers of 2 this sort of thing can happen, too. For instance,
one could have 2 | (x + 1) and 24 | (x − 1). However, it’s not possible
that 22 | (x+ 1) and 23 | (x− 1) because numbers two apart can’t both
be divisible by four. So the only other possibility is that 2 | (x+ 1) and
2e−1 | (x− 1), or vice versa, which is a total of four solutions.

That means we get a very intriguing answer.

Fact 7.3.1. Let k be the number of odd primes that divide n. Consider the
congruence x2 − 1 (mod n). Then:

• There are 2k solutions if n is odd.

• There are 1 · 2k solutions if n is divisible by 2 but not by 4.

• There are 2 · 2k = 2k+1 solutions if n is divisible by 4 but not by 8.

• There are 4 · 2k = 2k+2 solutions if n is divisible by 8.

Proof. Use Fact 7.2.2 and the argument above.

What does this have to do with the title of this section? Let’s recast the
result.

• There are 2k solutions if n ≡ 1 (mod 2), or n ≡ 1, 3, 5, 7 (mod 8).

7.4. POLYNOMIALS AND LAGRANGE’S THEOREM 79

• There are 2k solutions if n ≡ 2 (mod 4), or n ≡ 2, 6 (mod 8).

• There are 2 · 2k = 2k+1 solutions if n ≡ 4 (mod 8).

• There are 4 · 2k = 2k+2 solutions if n ≡ 0 (mod 8).

This is only the first of many such results.

7.4 Polynomials and Lagrange’s Theorem
We’ve seen several times in this chapter that although one can have theorems
of various kinds for congruences, polynomials seems to behave very nicely –
even to the point of allowing us to prove statements about the integer output
of polynomials!

At the same time, it’s clear that for good behavior, there is no substitute
for prime moduli; the results in the previous sections really confirm this. So
how can we combine polynomials and prime modulus?

Theorem 7.4.1 (Lagrange’s Theorem for Polynomials). If p is prime and
f(x) is a non-trivial polynomial with integer coefficients of degree d, then there
are at most d congruence classes of solutions modulo p.

Proof. This proof is fairly detailed, so feel free to try it out with specific num-
bers. It proceeds via induction on the degree d of the polynomial.

First, consider the case where there are no solutions to f(x) ≡ 0 (mod p).
Then there is nothing further to prove, since 0 ≤ d for any polynomial. This
actually proves a base case, for if the degree is d = 0 then f(x) = c for c ̸= 0.
(If c = 0 we have the trivial polynomial, which is not a covered case.)

For another base case, suppose that the degree d = 1. Then we have
ax + b ≡ 0 (mod p), which is the same as ax ≡ −b (mod p). In this case
gcd(a, p) = 1 and there is exactly one solution by Proposition 5.1.2 (if ax + b
is actually going to have a linear term, otherwise p | a).

Now we’ll use some induction. Let’s assume that all polynomials with
degree e less than d have at most e solutions modulo p.

• So assume that f has degree d, i.e.

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0

We already dealt with the case where f has no solutions, so assume that
f(b) ≡ 0 (mod p) for at least one congruence class [b].

• Remember the factorization(
xk − bk

)
= (x− b)

(
xk−1 + · · ·+ bk−1

)
(We could have used this to prove Fact 4.2.3.) Now let’s apply that to

f(x)− f(b) ≡ f(x) ≡(
adx

d + ad−1x
d−1 + · · ·+ a1x+ a0

)
−
(
adb

d + ad−1b
d−1 + · · ·+ a1b+ a0

)
=

ad
(
xd − bd

)
+ ad−1

(
xd−1 − bd−1

)
+ · · ·+ a1(x− b)

to get

(x− b) · (A bunch of stuff, but factored out and hence of lower degree) .

80 CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES

• Now consider the condition that f(x) ≡ 0. Based on this, it can be
written in two ways, recalling that f(b) ≡ 0:

◦ f(x) ≡ 0

◦ f(x) ≡ f(x)− f(b) ≡ (x− b) · Stuff(x)

Therefore
f(x) ≡ (x− b) · Stuff(x) ≡ 0 (mod p)

implies that p divides the product of x− b and the stuff.

• The “Stuff” function must be a polynomial of degree less than d, so we
can assume there are at most d−1 solutions to it modulo p. There is only
one extra way to divide x− b, so there are at most d solutions available
for f(x), including x ≡ b.

• But f(x) was an arbitrary polynomial of degree d, so it works for all
polynomials of degree d.

So by induction, it works for any polynomial.

We just saw this result isn’t true for general moduli. In Section 7.3 we got
as many as 2k+2 solutions to x2−1 ≡ 0 for moduli that looked like 8p1p2 · · · pk.
We would expect only two with Lagrange’s Theorem.

But whatever the solution to the x2±1 problems are modulo a prime, there
cannot be more than 2 solutions to them! If we find two solutions, we have all
of them. This proves to be quite useful to keep things from going crazy when
we are trying to investigate congruences; if we keep the modulus prime, we will
be okay.

Of course, we also might not even get all the solutions possible in theory.
We might not even get two in some instances of a quadratic polynomial, since
x2 + 1 ≡ 0 doesn’t have a solution modulo three (just try all three options).
The following interact investigates this a bit more.

@interact
def _(n=(13, prime_range (100))):

counter = 0
pretty_print(html("Zero␣values␣of␣x^2+1␣mod␣

%s"%(n,)))
pretty_print(html(""))
for m in [0..n-1]:

if mod(m,n)^2+1==0:
pretty_print(html("$%s^2+1\ equiv␣%s\\text{␣

(mod␣}%s)$"%(m,mod(m,n)^2+1,n)))
counter += 1

pretty_print(html(""))
pretty_print(html("There␣are␣$%s$␣solutions␣to␣

$x^2+1\ equiv␣0$␣(mod␣$%s$)."%(counter ,n)))

Maybe that’s not so surprising, since we don’t have zeros of x2+1 over the
real numbers either. Could there be connections or parallels?

7.5 Wilson’s Theorem and Fermat’s Theorem
Polynomials aren’t the only types of formulas we will see. Here, we introduce
two famous theorems about other types of congruences modulo p (a prime)
that will come in very handy in the future.

7.5. WILSON’S THEOREM AND FERMAT’S THEOREM 81

7.5.1 Wilson’s Theorem
Theorem 7.5.1 (Wilson’s Theorem). If p is a prime, then

(p− 1)! ≡ −1 (mod p) .

Proof. If p = 2 this is very, very easy to check. So assume p ̸= 2, hence p− 1
is even.

Now we will think of all the numbers from 1 to p− 1, which will be multi-
plied.

For each n such that 1 < n < p − 1, we know that n has a unique inverse
modulo p. Pair up all the numbers between (not including) 1 and p− 1 in this
manner.

• For instance, if p = 11, pair up (2, 6), (3, 4), (5, 9), and (7, 8).

Then multiplying out (p− 1) factorial, we can reorder the terms thus, and
notice the cancellation:

(p− 1)! ≡ 1 · 2 · 3 · · · (p− 2) · (p− 1) ≡ 1 · a · a−1 · b · b−1 · · · (p− 1)

≡ 1 · 1 · 1 · · · 1 · (p− 1) ≡ (p− 1) ≡ −1 (mod p)

• For instance, if p = 11, we pair up

10! ≡ 1 · 2 · · · 9 · 10 ≡ 1 · (2 · 6) · (3 · 4) · (5 · 9) · (7 · 8) · 10

which simplifies to

10! ≡ 1 · 1 · 1 · 1 · −1 (mod p)

Beautiful! The only loose end is that perhaps some number pairs up with
itself, which would mess up that all the numbers pair off nicely.

• However, in that case, a2 ≡ 1 (mod p), so by definition p | (a− 1)(a+1).

• Since p is prime, it must divide one or the other of these factors, and in
either case a ≡ 1 or a ≡ p− 1.

• But we were not pairing off 1 or p− 1, so this can’t happen.

One exercise below is to show that Wilson’s theorem fails for p = 10. That
is, that (10− 1)! ̸≡ −1 (mod 10). So does it work or not for other moduli?

@interact
def _(n=range_slider (2,100,1,(3,9))):

for modulus in [n[0]..n[1]]:
pretty_print(html("$(%s-1)!\equiv␣%s$␣(mod␣

$%s$)"%(modulus ,
mod(factorial(modulus -1),modulus), modulus)))

82 CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES

7.5.2 Fermat’s Little Theorem
If one explores a little with powers of numbers modulo p a prime, one usually
notices some pattern of those powers. This is the best-known, and soon we’ll
reinterpret it in a powerful way.

Theorem 7.5.2 (Fermat’s Little Theorem). If gcd(a, p) = 1 for p a prime,
then

ap−1 ≡ 1 (mod p) .

Proof. Sketch of proof (to fill in, see Exercise 7.7.8):

• If gcd(a, p) = 1 and p is prime, show that {a, 2a, 3a, . . . , (p − 1)a, pa} is
a complete residue system (mod p).

◦ That is, show that the set {[a], [2a], [3a], . . . , [pa]} is the same as the
complete set of residues {[0], [1], [2], . . . , [p−1]}, though of course in
a different order.

• If p is prime and p does not divide a, then

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) (mod p) .

• Now use Wilson’s Theorem.

There are other ways to prove it as well. There is a beautiful approach
in terms of counting necklaces or strings of pearls which requires essentially
no number theory, but rather basic ideas from combinatorics, the discipline
of counting well. We’ll see a more abstract approach after we introduce the
concept of groups in Chapter 8; see Exercise 9.6.1. So despite the innocuous
appearance of this result as a corollary of another theorem, do not be fooled.
It is incredibly powerful.

7.6 Epilogue: Why Congruences Matter
Although we will spend some significant time working on solving congruences,
I haven’t forgotten deeper questions. To see how congruences can impact this,
recall the search in Section 7.1 for primes p such that

x2 ≡ −1 (mod p)

has a solution. Take a look at this table and see if you can find something.

@interact
def _(n=20):

yeslist =[]
nolist =[]
for p in prime_range (3,n):

res = 0
for res in [0..p]:

if mod(res ,p)^2+1 == 0:
yeslist.append(p)
break

else:
nolist.append(p)

7.6. EPILOGUE: WHY CONGRUENCES MATTER 83

t = [[' exist ' , ' do␣not␣exist ']] + [[a,b] for (a,b) in
map(None ,yeslist ,nolist)]

for item in t:
for i in range(len(item)):

if item[i] is None:
item[i]= ' '

pretty_print(html("Solutions␣to␣$x^2\ equiv␣-1$␣(mod␣
p)␣for␣$2\le␣p␣\le␣%s$:"%n))

pretty_print(html(table(t, header_row = True , frame =
True)))

Question 7.6.1. Do you see a pattern related to some kind of congruence?
(This one should be more apparent than in Section 7.3; see also Exercise 7.7.10.)

The reason I point this kind of thing out is not just because I can, but
because it shows simple congruence patterns can have a big result. We will
prove a result about integers, assuming something about congruences.

Recall our search through Mordell/Bachet curves, and let’s look at the
particular case y2 = x3 + 7.

f(x,y)=y^2-x^3-7
@interact
def _(viewsize=slider (3,40,1)):

p = implicit_plot(f, (x,-viewsize ,viewsize),
(y,-2*viewsize ,2* viewsize), plot_points = 200)

lattice_pts = [[i,j] for i in [-viewsize .. viewsize]
for j in [-2* viewsize ..2* viewsize]]

plot_lattice_pts =
points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)

curve_pts = [coords for coords in lattice_pts if
f(coords [0], coords [1]) ==0]

if len(curve_pts)==0:
show(p+plot_lattice_pts , figsize = [5,5])

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1),pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5,5])
pretty_print(html("Solutions␣of␣$x^3+7=y^2$␣in␣this␣

viewing␣window"))

It’s amazing how the curve slips between every integer lattice point… So it
seems that a perfect square can’t ever be exactly seven more than a perfect
cube. Is this true? Here’s where congruences come into play.

Proposition 7.6.2 (Showing a Mordell curve has no integer point). There is
no integer x such that y2 = x3+7, so there are no integer points on this curve.

Proof. First let’s consider the case where x is even. Then 2 | x, so 8 | x3. That
means y2 ≡ 7 (mod 8).

[i^2 for i in Integers (8)]

Unfortunately, the only perfect squares mod (8) seem to be 0, 1, and 4. So
this is not possible.

What about if x is odd? Then y must be even, since x3 and 7 are odd. So
let’s examine whether x ≡ 1 (mod 4) or x ≡ 3 (mod 4), the next two options.

84 CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES

• If x ≡ 3 (mod 4), then x3 ≡ 27 ≡ 3 (mod 4), so x3 + 7 ≡ 10 ≡ 2 (mod
4). But we already know from earlier that perfect squares are only 0 or
1 modulo 4, so that’s not possible.

• So it must be the case that x ≡ 1 (mod 4).

Now we do a trick like that of completing the square:

y2 = x3 + 7 ⇒ y2 + 1 = x3 + 8 ⇒ y2 + 1 = (x+ 2)(x2 − 2x+ 4)

Let’s analyze this carefully in the following argument.

• If x ≡ 1 (mod 4), then x+ 2 ≡ 3 (mod 4).

• So not only is x + 2 an odd number, but also it must be divisible by a
prime q of the form 4n+3. (Otherwise all its primes look like 4n+1 ≡ 1,
the product of which would also be ≡ 1 (mod 4).)

• If q divides x+2, it (naturally) divides (x+2)(x2 − 2x+4) as well. But
if it divides (x+2)(x2− 2x+4), it must then divide y2+1, since they’re
equal.

• However, our exploration said that a prime of the form 4n+3 can’t divide
y2 + 1! So, assuming this is true, x ≡ 1 (mod 4) doesn’t work either.

As a note, we will eventually prove the result of exploration in Fact 13.3.2,
but you may want to try to find an “elementary” proof in Exercise 7.7.10.

Enough said; congruences are amazingly powerful.

7.7 Exercises
1. Pick one, and really do some exploration and write about it. See Section 7.1
for more information.

• Do exploration to try to find a criterion for which primes p there are
square roots of −1. You will have to examine primes less than 10 by hand
to make sure you are right!

• Do exploration to find out anything you can about how many square roots
of 1 there are for a given n.

2. Figure out how many solutions x2 ≡ x (mod n) has for n = 5, 6, 7, and then
compute how many solutions there are modulo 210.

3. Find solutions to x2 + 8 ≡ 0 (mod 121) using the method above in Theo-
rem 7.2.3.

4. Solve f(x) = x3 − x2 + 2x+ 1 ≡ 0 (mod 5e) for e = 1, 2, 3.

5. Show that Wilson’s Theorem fails for p = 10 and check that it works for
p = 11 by computing 11! and then reducing.

6. In the same setup as in Wilson’s Theorem, what is the value of (j − 2)!,
depending upon the modulus?

7. Use Fermat’s Little Theorem to help you calculate each of the following
very quickly:

• 512372 (mod 13)
• 34443233 (mod 17)

7.7. EXERCISES 85

• 123456 (mod 23)

8. Prove Fermat’s Little Theorem using the steps in Theorem 7.5.2, or any
way you would like.

9. Prove that Wilson’s Theorem always fails if the modulus is not prime. Hint:
use the fact that the modulus n then has factors m other than 1 or n.

10. Prove that it is impossible for p | x2 + 1 if a prime p has p ≡ 3 (mod 4) –
that is, if p is of the form 4n+ 3. (Hard.)

11. Prove that x2 + y2 = p has no (integer) solutions for prime p with that
same form.

12. Show that y2 = x3 + 999 has no (integer) solutions.

86 CHAPTER 7. FIRST STEPS WITH GENERAL CONGRUENCES

Chapter 8

The Group of Integers
Modulo n

This chapter does not do any number theory, per se. Yet it is at the heart of
the text. We introduce two powerful methods to deal with integers modulo n
– visualizing them graphically, and the language of group theory.

There is no prerequisite in either case; do not feel worried if you have not
encountered algebraic structures like groups before. We will only take and
introduce what we need, and refer back to fundamental properties often.

8.1 The Integers Modulo n

8.1.1 Definition
It is time for us to finally define what we have been working with for quite a
while now.

Definition 8.1.1 (Integers Modulo n). For a positive integer n, the set of
equivalence classes of integers modulo n is called the integers modulo n. We
denote it Zn . That is,

Zn = {[0], [1], [2], · · · , [n− 2], [n− 1]} .

In the case where n = p is a prime, we usually write Zp. (For those who have
had an abstract algebra course, this may be different notation than you have
used, but we will be consistent with this usage.)

This friendly number system will become a good acquaintance, if not friend,
throughout the rest of the course. We’ll explore it soon, but first let’s see some
of the basic properties.

As it turns out, Zn has several very interesting properties. Like all of our
number systems in this class, you can add and multiply elements of Zn (we
call something like that a ring). This is true because of our earlier proof of
well-definedness for addition and multiplication in Proposition 4.3.2.

As a first step in visualizing, we can make an addition table. This is not
very interesting. But in some sense, it is interesting that it isn’t interesting.
Does that make any sense?

@interact
def addition_table_(n=(11 ,[2..50])):

P=[[mod(a,n)+mod(b,n) for a in [0..n-1]] for b in
[0..n-1]]

87

88 CHAPTER 8. THE GROUP OF INTEGERS MODULO N

pretty_print(html("The␣addition␣table␣for␣modulus␣
$%s$"%(n,)))

pretty_print(html(table(P, header_row = True , frame =
True)))

The top row and left column may be considered as a list of a and b. Any
ideas about patterns here?

It’s also possible to make a multiplication table. This makes things a little
more interesting.

@interact
def _(n=(11 ,[2..50])):

P=[[mod(a,n)*mod(b,n) for a in [0..n-1]] for b in
[0..n-1]]

pretty_print(html("The␣multiplication␣table␣for␣
modulus␣$%s$"%(n,)))

pretty_print(html(table(P, frame=True)))

Again, notice that the columns and rows are both from 0 to n − 1; this is
standard. For now we’ll usually just use the set of least nonnegative residues
to represent Zn; recall that this is {[0], [1], [2], . . . , [n− 2], [n− 1]}.

Are there any patterns you notice here?
There is at least one observation that is curious. For some moduli, the only

zeros are where we expect them, in the top row and left column. For others,
they are in other spots.

8.1.2 Visualization
What’s even better is to see this visually! I still can’t get over how easy it is
for me to do this in Sage (and other math programs); it is so cool that even
my non-mathematician wife says, “What’s that – it’s neat!”

@interact
def multiplication_table_plot(n=(7 ,[2..50])):

P=matrix_plot(matrix(n,[mod(a,n)*mod(b,n) for a in
srange(n) for b in srange(n)]),cmap= ' jet ')

show(P,figsize =7)

How does one interpret this? The a row and b column give the color corre-
sponding to a · b (mod p) . That means the first (0th) column is the color for
a · 0 = 0 and the second (1st) column gives the colors of each element a · 1 = a
of Zn. Since zero times anything is zero, that gives us a lot of that color along
two edges.

Can you see the difference between prime and composite moduli better
now?

8.1.3 Inverses
Let’s focus on the tables/graphs for when n = p a prime. There’s at least one
interesting observation we can make about them. Every row and every column
(other than the ones corresponding to 0) has the entry 1 in it. (That’s the
deepest nonzero blue in the default coloring.) You can’t necessarily say this
about other numbers. Let’s translate this into notation.

Fact 8.1.2. Every nonzero element of Zn has an inverse.

8.2. POWERS 89

Proof. If gcd(a, n) = 1, then ax ≡ b (mod n) has a unique solution in Zn. So
if n = p is prime, then gcd(a, p) = 1 always, except for a ≡ 0.

Now we let b = 1, and finding x becomes the same as finding an inverse
element of a. So for prime moduli, every non-zero element has a unique inverse
in Zp.

(In algebraic nomenclature, this means Zp is a field, yet another example
of bizarre but fun math terminology.)

What was the command again to get an inverse?

inverse_mod (26 ,31)

It turns out there is an even easier way to get at this in Sage than the one
I used last time! In retrospect, it makes sense.

c = mod (26 ,31)
c^-1

c = mod (26 ,31)
c*c^-1

Go back to the graphics or tables. Can you “see” that there is (exactly
one) inverse for every non-zero element of Zp?

8.2 Powers
Let’s continue to restrict ourselves to looking at Zp, the integers modulo some
prime p, for a bit longer. This will enable us to get a little more detailed in our
exploration. We eventually want to explore solutions to congruences modulo
primes and prime powers.

Let’s begin by exploring powers. Powers are particularly important, since
polynomials are constructed from them. The following interact allows explo-
ration of powers an modulo p for various primes p and bases a. Notice I have
not yet brought in the colors.

@interact(layout =[[' p ' , ' a ']])
def _(p=(7, prime_range (50)),a=(3 ,[0..50])):

b=mod(a,p)
top=ceil (2*p/10) *10
pretty_print(html("If␣we␣look␣at␣some␣of␣the␣powers␣of␣

$%s$"%(a,)))
pretty_print(html("modulo␣the␣prime␣$%s$,␣we␣

get:"%(p,)))
pretty_print(html(""))
for m in [0.. top]:

pretty_print(html("$%s^{%s}\equiv␣%s\\text{␣
(mod␣}%s)$"%(a,m,b^m,p)))

pretty_print(html(""))

Do you see any patterns? It’s probably a little early to try to come up with
potential theorems, but there should be at least some patterns you see. Do
you maybe even see any theorems we have already proved in here?

90 CHAPTER 8. THE GROUP OF INTEGERS MODULO N

One of the biggest patterns is hard to see in this format, but is the simplest.
Given a prime p, you should get get the same answers for a ≡ a′ (mod p). (This
is the essence of the earlier proof about a polynomial not having only prime
output, Fact 6.1.4.) So we should really just restrict ourselves to looking at
0 ≤ a < p.

8.2.1 Returning to visualizing
Still, this is a lot of data to assimilate. Is there some way to think about it
differently?

This next interact is super-cool, because it combines the short, color-coded
format with the much less familiar material of powers.

@interact
def power_table_plot(p=(7, prime_range (50))):

P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in
range(1,p) for b in srange(p)]),cmap= ' jet ')

show(P,figsize =6)

The default coloring needs some explanation, as they are not the same as in
the previous example. The a row and b column gives the color corresponding
to (a+ 1)b (mod p). That means the first (0th) column is the color for a0 = 1
and the second (1th) column gives the colors of each element a1 = a of Zp. For
instance, (2, 4) corresponds to 34 ≡ 4 (mod 7) in the initial example. Notice
this color corresponds to the row 3, because of the numbering.

(As far as I know, this representation first appears in Wagon and Bressoud’s
excellent computational number theory text [C.3.7]. The PascGalois project
has related visualizations.)

Sage note 8.2.1 (Colorful options). If you don’t like the colors, you can
change the word in the quotes after the word 'cmap'; if you get rid of that, it
will be a grayscale plot, which is most appropriate for vision-impaired users.
Some others you could try are 'Oranges' or 'hsv' or … Well, see the next Sage
cell if you really want to know all of them!

for c in colormaps:
print c

What color patterns can you see here? To say it another way, what potential
theorems do you see? (Again, do you see any that we already have discussed?)

In a classroom or self-study situation, I strongly recommend thinking about
this until coming up with some nice potential theorem regarding whether there
are any patterns in ab (mod p) that hold for all p or all a or all b, or something.

8.3 Essential Group Facts for Number Theory
Many of the bookkeeping issues which arise in number theory can be made
much easier by changing our language and introducing a small amount of ab-
straction. That abstraction is the concept of ‘group’. These notes will introduce
this concept in the most basic way possible, with only the minimum needed to
translate many difficult arguments into simpler language.

http://www.pascgalois.org/

8.3. ESSENTIAL GROUP FACTS FOR NUMBER THEORY 91

8.3.1 Step-by-step notions to the definition
We will take an approach that starts with the familiar and adds properties
until we reach our goal.

8.3.1.1 Sets

Sets are just what you think. They are collections of (mathematical) stuff.
In our uses of groups, we will exclusively be concerned with sets that are

collections of numbers, like P , the set of primes, and Z, the set of integers,
or Zn, the set of equivalence classes of integers modulo n. But it’s helpful to
think more generally.

8.3.1.2 Binary operations

A binary operation is a set with a multiplication table on it. That’s it.
Usually books call it ∗ or something like that, and then define a binary

operation on the set S to be a function from S × S to S.

• Usually this would be (say) normal addition or multiplication on num-
bers, though it could also be subtraction.

• On the other hand, if S is the set of continuous functions on R, the
operation could be composition of functions, f ◦ g.

Notice that if our set is Q and our operation is division, we don’t have a
full table. The essential thing is that it’s a set with a table or rule for the
operation.

8.3.1.3 Closed operations

A binary operation is called closed if you don’t get anything outside the set
with your operation. This is important because it’s easy to break this.

• If you are adding two positive numbers, for instance, you always get a
new positive number.

• Is this still true if you subtract two positive numbers from each other?

• This also can happen with division, right? You have to look at Q, and
then you have to be careful because of the previous point.

• For a more complicated example, let S be the set of 2x2 matrices with
determinant 1; if you add two of them, your determinant might change
a lot.

• On the other hand, if you multiply two such matrices, you’re golden; the
determinant will still be 1.

8.3.1.4 Associative operations

An operation is associative if it doesn’t matter how you put parentheses in.
This is not an algebra course, so I won’t harp on this – everything we do

will satisfy it in obvious ways. But it’s worth noting that exponentiation is not
associative, so it’s not a trivial condition.

Example 8.3.1.

2(2
3) = 28 = 256 but (22)3 = 43 = 64 .

92 CHAPTER 8. THE GROUP OF INTEGERS MODULO N

8.3.1.5 Identity

Much more important is whether your operation has an identity element.
You have seen this many times before in addition and multiplication.

a+ 0 = a = 0 + a and a · 1 = a = 1 · a .

When we turn this into abstract math, we say that an identity for a general
operation ∗ on a set S is an element, conveniently called e, which has the very
nice property that if you ∗ by it, you get the same thing back.

• That is, e ∗ a = a = a ∗ e for any a ∈ S.

• The identity matrix under matrix multiplication is another example.

• By the way, if there is an identity, there’s only one, which is sometimes
useful to know.

Example 8.3.2. Here is a more interesting example. Let your set be the
set of all rotations of a square which leave it facing the same way. That is,
rotation by 90 degrees to the left, 180 degrees right, etc. (Think of a child’s
block sorter.)

• The binary operation would be to do one rotation, and then the other
one.

• Then an identity element e of this is just to leave the block alone!

This is sort of weird at first, but an extremely important example.

8.3.1.6 Inverses

Almost there! Let’s keep thinking about that last example. Say I turn the
block 90 degrees to the right, then I realize I made a horrible mistake and
want to get back to the original position. Is there anything I can do, short of
buying a new square block?

Of course there is! Just turn it back 90 degrees to the left. So if I call the
first move 90R and the second one 90L, I can say that 90R ∗ 90L = e, since
the net effect is the same.

Generalizing this, if a is an element of your set S and there is another
element a′ such that

a ∗ a′ = e = a′ ∗ a ,

then we call a′ an inverse of a.

• The absolute prototype of this is negative numbers. That is, for any
number n, if you add −n, then you get zero!

• The same thing happens a lot; for matrix multiplication, the inverse
matrix would be the operation inverse.

• For rational numbers, the reciprocal would be the inverse.

But notice that in both of these cases not every mathematical object has an
inverse with respect to every operation! A matrix with determinant zero does
not have an inverse matrix. In Q under multiplication, zero has no inverse.

8.3. ESSENTIAL GROUP FACTS FOR NUMBER THEORY 93

8.3.2 What is a group?
Definition 8.3.3 (Group). If a set and binary operation on that set is closed
an associative with identity and inverses for every element, we call that set a
group.

Example 8.3.4. The most excellent examples of this are the following:

• R,Q,Z under addition with zero as identity

• The sets R,Q except zero (written as Q \ {0}) under multiplication with
1 as identity

• Zn under addition with [0] as identity. For example, in Z3, every element
has an inverse; [0]′ = [0], [1]′ = [2], and [2]′ = [1], because [0] + [0] =
[0] = [1] + [2].

Remark 8.3.5. If we are talking about any old group, we just call it G.
Also, after a while, it gets boring to always type ∗, and instead we just use

normal multiplication notation, writing x ∗ y = xy.

Example 8.3.6 (A preview of what’s to come). A final example is just a
preview of what’s to come.

• We noted that Q \ {0} is a group under multiplication, with 1 as the
identity.

• Is there something analogous for Zn? Indeed there is, and we will see it
soon. But notice that things will be more complicated.

• For instance, in Z3, both [1] and [2] have multiplicative inverses (in fact,
themselves), so Z3 \ {[0]} works, just like Q \ {0} does.

• But in Z4, [2] also does not have a multiplicative inverse, so it would not
make sense to say that Z4 \ {[0]} is a group.

• That extra complication is one reason we need to think hard about these
things!

8.3.3 Properties of groups we will need
The reason for introducing groups in a course which does not presume previous
exposure to algebra is that is just makes things simpler. We will start here
with familiar facts in a new guise, and then work our way to some facts which
will prove invaluable.

8.3.3.1 Solutions to equations

Since a group has inverses, we can solve very simple ‘linear’ equations in them.
This is stated as

a ∗ x = b is solved by x = a′ ∗ b(= a−1 ∗ b) .

For instance, over R, a+ x = b always has a solution for any real numbers
a, b. We just take x = b+(−a), where −a is the inverse for the group operation
of a (as mentioned above).

94 CHAPTER 8. THE GROUP OF INTEGERS MODULO N

More important to us is the fact that in Zn, there are solutions. The
operation is still +, so we have a + x ≡ b mod(n) solved by x ≡ (b + (−a))
mod(n).

This doesn’t seem much more interesting, but you will see soon why this
concept is so important.

8.3.3.2 Finite groups

A group can have finitely many or infinitely many elements. Most of our
normal ones, such as Z,Q,R, matrix groups, are infinite.

But the ones we’ll use in this text will mostly have finitely many elements.
This is because we are counting each equivalence class, like [0], [1], [2] in (mod
3) arithmetic, as just one element.

A group with finitely many elements is called, unimaginatively, a finite
group.

8.3.3.3 Order of a group

Definition 8.3.7. The number of elements of a finite group is called the order
of the group.

For any old group G, we use |G| as notation for its order.

Example 8.3.8. So if we are talking about Z3, it has 3 elements, so it has
order 3 (unsurprisingly) and we write |Z3| = 3.

8.3.3.4 Order of an element

This is a tougher concept. Suppose you have some element, such as [1] ∈ Z3. If
you just keep adding [1] to itself, eventually you get back to zero, right? After
all,

[1] + [1] + [1] ≡ [0] (mod 3).

Take a finite group G with order |G| = n. We will bring the concept of
order to elements, not just groups.

First, list all elements of the group:

{e = x1, x2, . . . , xn}

Now let’s take an element x, and start operating on it by itself. What I mean
by this is listing x, x∗x = x2, x3, (Don’t be confused by the power notation
alternating with addition notation; Zn has two operations, so we keep + there,
but in a general group we use multiplicative notation.)

Here is the key. There are only finitely many elements in the group, so by
xn+1 at the latest, at least two of these ‘powers’ will be equal. (This argument,
that if you fit n+ 1 objects into n slots then there must be a repeat, is called
the pigeonhole principle, among other names.)

To be concrete, let’s say xs = xt, with s < t. Now we can do a very curious
thing. Take the inverse of x, written x−1. If we multiply it together s times,
we get (x−1)s which we can write x−s. Then multiply xs = xt by x−s;

x−sxs = x−sxt, or e = xt−s .

We are almost there! This means there is a positive integer k such that
xk = e. By the Well-Ordering Principle (Axiom 1.2.1), there is a least such
integer. This integer, associated to a specific element of the group, is what we
have been aiming for.

8.3. ESSENTIAL GROUP FACTS FOR NUMBER THEORY 95

Definition 8.3.9. For a group element x ∈ G, the least integer k such that
xk = e is called the order of the element x. We write it |x| , by analogy with
the order of a group.

Example 8.3.10. For example, in Z6, look at the element [4].

[4] + [4] + [4] + [4] + [4] + [4] ≡ [0] mod(6), but [4] + [4] + [4] ≡ [0] mod(6) too.

So 6 is a possible order, but clearly 3 is the smallest number of times that will
yield [0], so |[4]| = 3.

8.3.3.5 The connection

Here comes the coolest part, where we connect the two concepts of order. We
will definitely use Theorem 8.3.11 in proving various theorems.

Take a look at any old element x ∈ G. If x has order m, then there are (at
least) m distinct elements of G,

{x, x2, x3, . . . , xm−1, e} .

Now take any other element not in this subset, y, and look at the set

{xy, x2y, x3y, . . . , xm−1y, ey = y} ;

Note that these are also all distinct elements of the group. Are any of them
also included in the first set (powers of x)?

Suppose that some xsy is the same as some xt. That would mean xsy = xt,
so multiplying by x−t we get

xs−ty = e

That would mean y = xt−s, a contradiction since we said y isn’t a power of x.
Hence the new elements form a disjoint set from the previous set.

Now find an element z not in either set, and do the same thing. Then the
set

{xz, x2z, x3z, . . . , xm−1z, ez = z}

will be disjoint from the other sets, and all its elements will still be distinct.
Since G is finite, eventually doing this process again and again will fill out G
completely.

Theorem 8.3.11 (Lagrange’s Theorem on Group Order). The order of any
element x of G divides the order of the group itself. We can write this as

|x| | |G|

Proof. Examine the above argument. We have a number of subsets of G, all of
size m, which exactly fill out G, which has size n. This forces that m divides
n as integers.

Example 8.3.12. For example, above we saw that [4] ∈ Z6 has order 3, and
of course Z6 itself has order 6. You can check for yourself that 3 divides 6, so
that |[4]| | |Z6|.

(We already had a theorem by this name, but that doesn’t usually stop
whoever names theorems from giving them names. Lagrange was one of the
most important mathematicians of the eighteenth century, among other posts
as Euler’s successor in Berlin at the court of Frederick the Great.)

96 CHAPTER 8. THE GROUP OF INTEGERS MODULO N

8.3.3.6 Cyclic groups

There is another, simpler concept to keep in mind.

• If G has order |G| = n and there is some element x ∈ G such that x
has order |x| = n as well, then it must go through all the possible other
elements of G before hitting xn = e.

• This element, whose powers run through all n elements of G, is called a
generator of the group.

• Any group that has a generator (again, an element whose powers hit all
elements of the group) is called a cyclic group.

It is pretty clear, I hope, that Zn is a cyclic group with generator [1], for
any n. But not every group is cyclic! See Exercises 8.4.8 and 8.4.9.

There can be more than one generator; going back to Z6, note that

[1] + [1] + [1] + [1] + [1] + [1] ≡ [0] and [5] + [5] + [5] + [5] + [5] + [5] ≡ [0] .

Other elements are in between (e.g. [2] ≡ [1] + [1] ≡ [5] + [5] + [5] + [5]).

8.3.3.7 Abelian groups

This won’t come up too much, but it is important to note that most of the
groups we will encounter in this course have one additional special property.

Namely, it doesn’t matter what order you do the operation in. (Such an
operation is called commutative.)

• For instance, clearly (in any Zn) it is true that [1] + [2] = [2] + [1], or
really for any elements at all.

• Not all groups have this property; you may recall that multiplying ma-
trices in two different orders may yield two different answers.

Any group which has this property, that a ∗ b = b ∗ a for all a, b ∈ G, is
called an Abelian group. Just keep it in mind!

8.4 Exercises
1. Write out the addition table for Z11 completely, by hand.

2. Write out the multiplication table for Z11 completely, by hand.

3. Find some conjecture/pattern to state about multiplication tables, based
on any of the interacts in this chapter.

4. Find some conjecture/pattern to state about values of an (mod p), for p
prime and 0 ≤ n < p you discovered using the interact in Subsection 8.2.1.
This could be anything profounder than

a0 ≡ 1 (mod p) or 1n ≡ 1 (mod p)

for all prime p and for all n, but should at least be some pattern you tested
for a number of values.

5. Give an example of a non-closed binary operation.

8.4. EXERCISES 97

6. In Example 8.3.2, what is the order of the group element which is rotation
by ninety degrees to the left? What is the order of rotation by 180 degrees?

7. Consider a similar setup to Example 8.3.2, but with a regular hexagon. If
R is rotation of the hexagon by sixty degrees to the right, verbally describe
R−1. How would you describe R3 verbally? What is the order of R?

8. Give an informal argument that Q is not cyclic.

9. Give an example of a cyclic group which is not finite.

10. (Only if you have some experience with matrices.) Find two 2×2 matrices
A and B which have non-zero determinant such that A ·B ̸= B ·A. Conclude
that the group of 2× 2 matrices with non-zero determinant is not Abelian. (It
is a group, because all such matrices have an inverse matrix.)

98 CHAPTER 8. THE GROUP OF INTEGERS MODULO N

Chapter 9

The Group of Units and
Euler’s Function

9.1 Groups and Number Systems
There is a lot that the integers modulo n can teach us. We can approach new
horizons by rethinking the problems we have just studied.

9.1.1 Solving linear equations – again
What is a group, again? As we saw in Section 8.3, a group is any ‘number
system’ where we can solve linear equations.

Example 9.1.1. Here are some familiar group examples.

• The integers modulo n, Zn, is a group under addition. As an example,
3 + x ≡ 2 (mod 4) has a solution.

◦ Namely, we use the (group) inverse, −3 ≡ 1, to solve it, so that

x ≡ 2 + (−3) ≡ 2 + 1 ≡ 3 (mod 4)

is the solution.

• Similarly, we can solve equations like 2
3 ·x = 5 over the rational numbers.

Why? Because 2
3 has a (group) inverse in the group Q \ {0} (under

multiplication), namely
(
2
3

)−1
= 3

2 , and

x = 5 · 3
2

does indeed solve this equation.

Let us use this idea to help us with solving congruences modulo n. Using
the above framework, I should be able to solve

43x ≡ 2 (mod 997)

by using something like a = 43−1, the notation we saw before.
That would get us

x ≡ 2a ≡ 2 · 43−1 (mod 997) .

Let’s try this in Sage.

99

100 CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION

a=mod (43 ,997)
x=2*a^-1
a^-1
pretty_print(html("a␣is␣$%s$"%a))
pretty_print(html("a^{-1}␣is␣$%s$"%a^-1))
pretty_print(html("$2a^{-1}$␣is␣$%s$"%x))

This checks out, of course:

mod (43*742 ,997)

We can similarly try to solve with a composite modulus:

53y ≡ 29 (mod 100)

using b = 53−1, so that

y ≡ 29 · b ≡ 29 · 53−1 (mod 100) .

y=29* mod (53 ,100)^-1
pretty_print(html("y␣is␣$%s$"%y))

y=29* mod (53 ,100)^-1
53*y

9.1.2 A new group
9.1.2.1 The group of units

So solving this should often be possible. But it can’t always work, otherwise I
could use it to solve something like

52y ≡ 29 (mod 100)

and we already know this does not have a solution. We can’t just use this idea
willy-nilly, indeed, there isn’t a 52−1 in this case.

Hence we introduce a new group – and it’s even a simple set to define.

Definition 9.1.2. We let Un, the group of units modulo n, be the set of
equivalence classes [a] modulo n such that gcd(a, n) = 1.

This will be the set where we are allowed to do inverses, and hence to solve
things easily. Before going on, figure out for yourself the elements of U5 and
U8.

Now, naming something doesn’t guarantee it’s useful, or that it performs
as claimed! So we need to check some things from Definition 8.3.3.

Proposition 9.1.3. The group of units is really a group.

Proof. First, this is certainly a set. Since we earlier proved that any two
elements of a residue class have the same gcd with a modulus, the definition
makes sense, and we know how to check if something is in it.

9.1. GROUPS AND NUMBER SYSTEMS 101

Next, the set is associative with respect to multiplication, because it’s really
the same as multiplication over Z. The identity element [1] is likewise inherited
from Z.

Finally, we do need to check whether the multiplication is closed on this
set. After all, it’s not obvious that if ax ≡ 1 and bx ≡ 1 have solutions, then
so does (ab)x ≡ 1! But if gcd(a, n) and gcd(b, n) are both 1, then ab will also
be coprime to n, which is all that is needed. All in all, that means Un really
and truly is a group.

We can even give a formula of sorts for the inverse (this should work in any
group).

Fact 9.1.4. The inverse of ab is b−1a−1.

Proof. First, b−1 and a−1 exist, so (b−1)(a−1) exists. Next, if ab · x ≡ 1, then

(b−1a−1)(ab)x ≡ (b−1a−1) · 1

so
(b−1 · 1 · b)x ≡ b−1a−1, which gives x ≡ b−1a−1

9.1.2.2 More facts and examples

The terminology units makes sense too. If you are in a number system with
addition and multiplication, then a unit is an element that has a multiplicative
inverse.

Example 9.1.5. Here are some examples of units.

• In the integers, ±1 are the units.

• More unusual is the set of complex numbers (!), which all are units except
0. (In fact, the inverse of r (cos(θ) + i sin(θ)) is 1

r (cos(−θ) + i sin(−θ)).).

• And Un is the set of all the integers modulo n that have multiplicative
inverses. By our previous investigations, we know this is when ax ≡ 1
(mod n) has a solution. Since multiplication is the operation, there are
inverses!

Naturally, it can take a while to list all these guys, but it’s worth doing.
Try it for n = 10, n = 11, and n = 12 by hand.

Sage has commands to list the group of units and give the order of the
group.

@interact
def _(n=22):

pretty_print(html("The␣units␣of␣$\\ mathbb{Z}_{%s}$␣
are"%n))

pretty_print(html(
Integers(n).list_of_elements_of_multiplicative_group ())
)

pretty_print(html("There␣are␣$%s$␣of␣
them."%Integers(n).unit_group_order ()))

102 CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION

Sage note 9.1.6 (Reminder to try things out). Remember, you can use these
yourself by using these commands, or by cutting and pasting them in a Sage
notebook, SageMath Cloud, or command line interface. They are tedious to
type, though!

Integers (50).list_of_elements_of_multiplicative_group ()

Integers (50).unit_group_order ()

9.2 The Euler Phi Function
We give the size of the group of units (mod n) a special name.

Definition 9.2.1. We give the order of Un the name ϕ(n). That is, by defi-
nition,

ϕ(n) = |Un| .

This is the so-called Euler ϕ function. It can also be written phi, it is
pronounced ‘fee’, and it’s occasionally notated φ just for fun.

One of the most fun things to do with basic number theory is to explore
new concepts with pencil and paper – because it really is tractable.

Question 9.2.2. Do you see any patterns on the value of ϕ(n)?

9.2.1 Euler’s theorem
So far this is a relatively abstract concept. What follows is not abstract at all,
but very, very useful! Let’s follow the following argument to see what we can
find out about ϕ(n).

Recall the notion of the order of an element (Definition 8.3.9). So any
random element [a] ∈ Un (for some n) has an order. For instance, the order of
[2] in U7 is 3, because [2]1 and [2]2 are not 1, but [2]3 ≡ 8 ≡ 1 (mod 7).

This means we can apply the things we learned about orders, in particular
Theorem 8.3.11 of Lagrange. It stated that the order of any element of a finite
group divides the order of the group itself.

Think about what this implies for orders in |Un|. First, |a| divides |Un|.
(For instance, in the example above, 3 divides 6.) That can be rewritten as

|a| | ϕ(n), or ϕ(n) = k|a|

for some positive integer k.
Finally, let’s apply this fact to powers of a.

aϕ(n) = ak|a| = (a|a|)k ≡ 1k ≡ 1 (mod n)

This is very interesting; without it, all we would know is that a|a| ≡ 1 because
that’s the definition of what ‘order’ means. With it, we have proved one of the
many celebrated theorems of Leonhard Euler:

Theorem 9.2.3 (Euler’s Theorem). If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Proof. See the preceding paragraphs.

Try verifying Euler’s Theorem for n = 12 and n = 11 for some simple a
such as a = 3 or a = 5. Can you see how to recover Fermat’s Little Theorem
from Euler’s Theorem, as a special case? (See Exercise 9.6.1.)

9.3. USING EULER’S THEOREM 103

9.3 Using Euler’s Theorem
Euler’s Theorem has many uses. We will begin with its use in computation.

9.3.1 Inverses
Use it to compute inverses mod (n), with just a little cleverness. If

aϕ(n) ≡ 1 (mod n) ,

then certainly multiplying both sides by a−1 yields

aϕ(n)−1 ≡ a−1 (mod n) .

We can check this using Sage.

@interact
def _(a=3,n=10):

a=mod(a,n)
try:

b = a^-1
pretty_print(html("$%s^{-1}$␣is␣$%s$␣and␣

$%s^{\phi(%s) -1}=%s^{%s-1}$␣is␣also␣$%s$"%(a,
b, a, n, a, euler_phi(n), a^(euler_phi(n) -1))))

except:
pretty_print(html("Don ' t␣forget␣to␣pick␣an␣a␣

that␣actually␣has␣an␣inverse␣modulo␣n!"))

Example 9.3.1. Let’s pick a congruence we wanted to solve earlier, like

53y ≡ 29 (mod 100)

and try to solve it this way. Instead of all the stuff we did before, we could
just multiply both sides by the inverse of 53 in this form.

53y ≡ 29 (mod 100)

53ϕ(100)−1 · 53y ≡ 53ϕ(100)−1 · 29 (mod 100)

Now using Theorem 9.2.3, we get

1 · y ≡ 29 · 53ϕ(100)−1 (mod 100) .

One could conceivably do this power by hand using our tricks for powers;
using a computer, it would look like the following in Sage.

mod (29*53^(euler_phi (100) -1) ,100)

This answer jells with our previous calculation. Better, I didn’t have to
solve a different linear congruence in order to solve my original one; I just had
to have a way to do multiplication mod (n).

Sage note 9.3.2 (Euler phi in Sage). Notice that Sage has a command to get
the Euler phi function, namely euler_phi(n). This doesn’t have the direct con-
nection to the group, but is easier to use than Integers(n).unit_group_order().

104 CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION

9.3.2 Using Euler’s theorem with the CRT
We can use this to do Chinese Remainder Theorem systems much more easily,
as long as we have access to ϕ.

Remember the algorithm for the crt, where we tried to solve systems like
this:

• x ≡ a1 (mod n1)

• x ≡ a2 (mod n2)

• · · ·

There, we had to calculate many solutions to congruences of the form

N

ni
x ≡ 1 (mod ni) .

(This was to get the di numbers.) Our new information means that this inverse
is just (

N

ni

)−1

≡
(
N

ni

)ϕ(ni)−1

,

since we are looking at a congruence modulo ni.
So the things in the final solution which looked like

ai ·
N

ni
·
(
N

ni

)−1

can be thought of as

ai ·
N

ni
·
(
N

ni

)ϕ(ni)−1

= ai

(
N

ni

)ϕ(ni)

,

which is much cooler and simpler! So the answer to the general system is just

x ≡
k∑

i=1

ai

(N
ni

)ϕ(ni)

(mod N) .

a_1 ,a_2 ,a_3 = 1,2,3
n_1 ,n_2 ,n_3 = 5,6,7
N=n_1*n_2*n_3;N

mod(a_1*(N/n_1)^(euler_phi(n_1)) +
a_2*(N/n_2)^(euler_phi(n_2)) +
a_3*(N/n_3)^(euler_phi(n_3)),N)

Sage note 9.3.3 (More complex list comprehension). It’s possible to do the
previous work more concisely, no matter how many congruences you have, if
you know a little Python and a little something called a ‘list comprehension’
(recall Sage note 4.6.2.

sum([mod(a*(N/n)^(euler_phi(n)),N) for (a,n) in
[(a_1 ,n_1),(a_2 ,n_2) ,(a_3 ,n_3)]])

But that’s not necessary for our purposes.

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

9.3. USING EULER’S THEOREM 105

Example 9.3.4. We can do this one step even better. Take a huge system
like

• 3x ≡ 7 (mod 10)

• 2x ≡ 5 (mod 9)

• 4x ≡ 1 (mod 7)

Can we find solutions for this using the same mechanism? Yes, and without
too much difficulty now.

Since one can solve bx ≡ c (mod n) with

x ≡ bϕ(n)−1 · c ,

any likely system of congruences with coprime moduli

bix ≡ ci (mod ni)

where N is the product of the moduli could be solved by

x ≡
k∑

i=1

(
b
ϕ(ni)−1
i ci

)(N

ni

)ϕ(ni)

(mod N) .

Let’s use this to solve this system.

c_1 ,c_2 ,c_3 = 7,5,1
m_1 ,m_2 ,m_3 = 10,9,7
M=m_1*m_2*m_3
b_1 ,b_2 ,b_3 = mod(3,M),mod(2,M),mod(4,M)
d_1 ,d_2 ,d_3 = mod(M/m_1 ,M),mod(M/m_2 ,M),mod(M/m_3 ,M)
b_1^(euler_phi(m_1) -1)*c_1*d_1^(euler_phi(m_1)) +

b_2^(euler_phi(m_2) -1)*c_2*d_2^(euler_phi(m_2)) +
b_3^(euler_phi(m_3) -1)*c_3*d_3^(euler_phi(m_3))

Notice that we make as much stuff modulo M to begin with as possible.
Even for bigger numbers, asking Sage to first make things modular is a big
help – it takes essentially no time!

Example 9.3.5. We can demonstrate this with a much larger example, picking
essentially random large primes to compute with. (It’s worth trying to time
this – recall that we can use %time for this in notebooks, see Sage note 4.2.1.)

c_1 ,c_2 ,c_3 = 7,5,1
m_1 ,m_2 ,m_3 = random_prime (10000) , random_prime (20000) ,

random_prime (30000)
M=m_1*m_2*m_3
b_1 ,b_2 ,b_3 = mod(3,M),mod(2,M),mod(4,M)
d_1 ,d_2 ,d_3 = mod(M/m_1 ,M),mod(M/m_2 ,M),mod(M/m_3 ,M)
pretty_print(html("Our␣primes␣are␣$%s$,␣$%s$,␣and␣

$%s$"%(m_1 ,m_2 ,m_3)))
b_1^(euler_phi(m_1) -1)*c_1*d_1^(euler_phi(m_1)) +

b_2^(euler_phi(m_2) -1)*c_2*d_2^(euler_phi(m_2)) +
b_3^(euler_phi(m_3) -1)*c_3*d_3^(euler_phi(m_3))

106 CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION

c_1 ,c_2 ,c_3 = 7,5,1
m_1 ,m_2 ,m_3 = random_prime (10^8) , random_prime (2*10^8) ,

random_prime (3*10^8)
M=m_1*m_2*m_3
b_1 ,b_2 ,b_3 = mod(3,M),mod(2,M),mod(4,M)
d_1 ,d_2 ,d_3 = mod(M/m_1 ,M),mod(M/m_2 ,M),mod(M/m_3 ,M)
pretty_print(html("Our␣primes␣are␣$%s$,␣$%s$,␣and␣

$%s$"%(m_1 ,m_2 ,m_3)))
b_1^(euler_phi(m_1) -1)*c_1*d_1^(euler_phi(m_1)) +

b_2^(euler_phi(m_2) -1)*c_2*d_2^(euler_phi(m_2)) +
b_3^(euler_phi(m_3) -1)*c_3*d_3^(euler_phi(m_3))

9.4 Exploring Euler’s Function
One of the neatest things about ϕ(n), beyond it being quite useful for things we
are familiar with (congruences), is that it is a prototype for the many functions
there are in number theory. So we will look at it in a bit more depth.

Let’s get some more conjectures about values of ϕ(n). Finding patterns is
fun!

One pattern we saw is Theorem 9.2.3, that if gcd(a, n) = 1, then aϕ(n) ≡ 1
(mod n).

But there are some other places one might look for patterns, now that one
has done some number theory. These are questions the Fundamental Theorem
of Arithmetic just begs us to ask, regarding a possible formula.

Question 9.4.1.
• Given a prime p, is there a formula for ϕ(pe)?

• If m and n are coprime, is there a relation between ϕ(mn) and ϕ(m) and
ϕ(n)?

What happens in the latter case for n = 15 and m = 16? Can you do it by
hand?

There are a lot of other interesting questions one can ask about this function
which aren’t directly related to a formula.

Question 9.4.2. For instance, one can ask:

• When does ϕ(n) | n?

• When (if ever) does ϕ(m) | ϕ(n)? (See Exercise 9.6.15.)

• Given m, for how many integers n it is true that ϕ(n) = m?

• Are there infinitely many n for which ϕ(n) ends in zero? (See Exer-
cise 9.6.14.)

One can also ask questions about new, related functions. For instance, let
f(n) = ϕ(n)/n. Can you find a formula? Where is this function equal to
certain values, such as f(n) = 1/2? (See Exercise Group 9.6.11–9.6.13.)

Quite surprisingly, there is an additive result as well – try adding up∑
d|n

ϕ(d)

for small values of n to seek a pattern!

9.5. PROOFS AND REASONS 107

@interact
def _(n=range_slider (2,150,1,(2,20))):

top = n[1]
bottom = n[0]
cols = ((top -bottom)//10)+1
T = [cols*[' n ' , ' $\phi(n)$ ']]
list = [[i,euler_phi(i)] for i in range(n[0],n[1])]
list.extend ((10-(len(list)%10))*[' ' , ' '])
for k in range (10):

t = [item for j in range(cols) for item in
list[k+10*j]]

T.append(t)
pretty_print(html(table(T,header_row = True , frame =

True)))

Remark 9.4.3. Before moving on to some proofs in the next section, we highly
encourage all readers to explore a lot of this – perhaps using the interact above.
It’s simply not the same to just prove, and even less so to read a someone else’s
proof. To really understand these (or other) things in mathematics, one must
get a feel for them.

9.5 Proofs and Reasons
In this text, we try to strike a balance between exploration and proof. The
point is that number theory is both of these things. Exploration is wonderful,
but we will see a number of times where we really do need the proof to avoid
error. Nonetheless, do not start this section before really trying things!

In a good proof, the techniques will not just prove that things are true, but
lend insight into why they are true. The proofs here have this trait.

9.5.1 Computing prime powers
With some effort above, you should have seen a pattern for ϕ(pe). Let’s prove
this.

Fact 9.5.1.
ϕ(pe) = pe − pe−1 =

[
1− 1

p

]
pe

Proof. What we want is the number of positive numbers (!) coprime to pe and
less than pe.

The most important point is that any number which is not coprime to
pe must share a prime factor with it, which must be p. Likewise, any number
divisible by p is not coprime to pe, so this is a necessary and sufficient condition.

Now we just need to count these numbers. But all the numbers less than
or equal to pe which have a factor of p are just the multiples of p, which occur
every pth element. Since pe itself is the pe−1th such multiple, there are exactly
pe−1 such integers not coprime to pe.

Subtract; there are
pe − pe−1

element which are coprime.

108 CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION

9.5.2 Multiplicativity
The most interesting proof is that of this fact about ϕ applied to certain prod-
ucts. Later (Definition 18.1.3) we will see this has proved that ϕ is multi-
plicative.
Fact 9.5.2.

ϕ(mn) = ϕ(m) · ϕ(n) IF gcd(m,n) = 1

Proof. Take the integers from 1 to mn and arrange them in an array like so –
n rows, m columns:

1 2 3 . . . m

m+ 1 m+ 2 m+ 3 . . . 2m
...

...
...

(n− 1)m+ 1 (n− 1)m+ 2 (n− 1)m+ 3 . . . nm

Now notice that only some of the columns correspond to elements of Um.
Namely, the columns with km+ ℓ where gcd(ℓ,m) = 1 correspond. The others
cannot have elements coprime to m. Thus there are ϕ(m) columns like this
where all elements are coprime to m; we focus on these.

Now we look at the other direction, rows. Within each such column, there
are all possible classes in Zn. Why?

• Suppose that two elements of the ℓ column are the same equivalence
class.

• Then km+ ℓ ≡ k′m+ ℓ (mod n).

• And then km ≡ k′m and we can cancel m, since we already know it is
coprime to n.

• That leads to k ≡ k′, so they are in the same row as well as the same
column (hence, the same element).

That means that each relevant column has exactly ϕ(n) elements in it which
are coprime to n, so that we get ϕ(m)ϕ(n) in total!

Example 9.5.3. It can be easier to see with an example, say n = 15.
@interact
def _(m=(5 ,[2..10]) ,n=(3 ,[2..10])):

T = [[' $[%s]$ ' %i for i in [1..m]]]
for k in range(n):

t = []
for i in [1+k*m..m+k*m]:

if gcd(i,m*n)==1:
t.append(' $%s$␣! ' %i)

else:
t.append(' $%s$ ' %i)

T.append(t)
pretty_print(html(table(T, header_row=True ,

frame=True)))

In the interact, the actual units modulo mn are marked with exclamation
points. If you pick an m and n which aren’t coprime, you’ll see how the
exclamation points don’t come in the right amounts.

Again, since there are ϕ(m) columns with ϕ(n) elements in them, all co-
prime to both m and n, that means there are ϕ(m)ϕ(n) elements coprime to
mn, which proves what we wanted.

9.5. PROOFS AND REASONS 109

9.5.3 Addition Formula
If you were diligent in your exploration, you will have discovered that∑

d|n

ϕ(d) = n .

We will prove this carefully, using subsets. We will gain insight of a combina-
torial nature – that there are two ways to count n, one of which is precisely
about finding numbers coprime to divisors of n.

To really understand this proof, it is best to follow along with n = 15.

Fact 9.5.4. ∑
d|n

ϕ(d) = n

Proof. In order to show this, we will take {1, 2, 3, . . . , n} and divide it up into
subsets with different gcd with n. This will total up to n different possibilities,
and there will be ϕ(d) different possibilities for each possibly gcd.

Indeed, the only possibilities for greatest common divisor with n are the
various divisors d of n, which we will call {d | n}, so each subset corresponds
to one of these. So our sets look like

{a | gcd(a, n) = 1 = d0}, {a | gcd(a, n) = d1}, . . . , {a | gcd(a, n) = n = dk} .

Let’s look at these sets more carefully.

• Each one consists of numbers sharing divisor di with n. So, if we wanted
to, we could divide all the numbers in the ith set by di.

• That new set will be the set of numbers 1 ≤ b ≤ n
di

coprime to n
di

.

• So the size of the set of numbers with gcd di with n is the same as the
number of things coprime to n

di
.

More precisely, if we look at all the sets in question, they are the same in
size as these sets:

{b | gcd(b, n/1) = 1}, {b | gcd(b, n/d1) = 1}, . . . , {b | gcd(b, 1) = 1} .

The old sets were all disjoint, so even though these new sets themselves are
different, their sizes (or cardinalities) are the same as before. So

n = ϕ(n) + ϕ(n/d1) + ϕ(n/d2) + · · ·+ ϕ(1) .

But the set of numbers n
di

for all divisors di of n is also the set of all divisors
of n! So we can rewrite the sum as desired,

n =
∑
d|n

ϕ(d)

Some readers will want to know this will be revisited in a far more sophis-
ticated way in Example 23.2.3.

9.5.4 Even more questions
There are lots of other interesting questions to tackle. Go back to the beginning
of Section 9.4 and look at some of the questions you didn’t yet explore. You
now have the tools you need to tackle such questions, and even to prove things
about them. The structure of ϕ is very regular!

110 CHAPTER 9. THE GROUP OF UNITS AND EULER’S FUNCTION

9.6 Exercises
1. Prove Theorem 7.5.2 as a corollary of Theorem 9.2.3.

2. Prove that if p is prime, then ap ≡ a (mod p) for every integer a.

3. Formally prove that ϕ(p) = p − 1 for prime p, by deciding which [a] ∈
{[0], [1], [2], . . . , [p− 2], [p− 1]} have gcd(a, p) = 1.

4. Verify Euler’s Theorem by hand for n = 15 (note that ϕ(15) = 8, and
remember that a8 = ((a2)2)2 so we can use modulo reduction at each squaring).

5. Get the inverse of 29 modulo 31, 33, and 34 using Euler’s Theorem.

6. Evaluate without a calculator 1149 (mod 15) and 139112 (mod 27).

7. Solve the congruence 33x ≡ 29 (mod 127) and (mod 128).

8. Solve as many of the systems of congruences we already did Exercises 5.6
using the Chinese Remainder Theorem and Euler’s Theorem as you need in
order to understand how it works. Follow the models closely if necessary.

9. Use the facts from Section 9.5 to create a general formula for ϕ(N) where
N =

∏k
i=1 p

ei
i . Then prove it by induction.

10. Compute the ϕ function evaluated at 1492, 1776, and 2001.
Let f(n) = ϕ(n)/n.

Show that f(pk) = f(p) if p is prime.11.
Find the smallest n such that f(n) < 1/5.12.
Find all n such that f(n) = 1/2.13.

14. Prove whether there are infinitely many values of ϕ that end in zero.

15. Conjecture whether there are any relations between m and n that might
lead ϕ(m) to divide ϕ(n).

16. Look up the Carmichael conjecture about ϕ. What does it say, and what
is the current status of this conjecture?

17. Use the ideas that proved ϕ was multiplicative (Subsection 9.5.2) to see
whether you can finally solve A First Problem. Especially think of making a
table.

Chapter 10

Primitive Roots

There is deeper structure in the group of units than one might at first suspect.
This chapter explores that structure.

To start off, remember our search for patterns in the powers of a (mod n)?
That is, we looked for patterns in ab mod(n). One of the things we discovered
was Fermat’s Little Theorem, which was that the first and last columns of the
following graphic were the same color (representing one).

There is lots left to discover, though. Can you find more?

@interact
def power_table_plot(p=(7, range (2,50))):

P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in
range(1,p) for b in
srange(euler_phi(p)+1)]),cmap= ' jet ')

show(P,figsize =6)

Sage note 10.0.1 (Reminder for colormaps). Remember, to get a gray-scale
plot, just remove the part with cmap='jet' etc.

Have you made the observation that sometimes we get all colors in a single
row? This means that (at least sometimes) ab (mod n) goes through every
single number when we do enough powers ab.

It turns out that this concept has a name, and is the last of the big concepts
of basic congruence number theory.

10.1 Primitive Roots
10.1.1 Definition
Definition 10.1.1. We say that a ∈ Un is a primitive root of n when ab

runs through all elements of Un for 1 ≤ b ≤ ϕ(n).

Or, you can say it hits all the possible colors in the interact! For composite
n, this won’t mean all colors per se, just all colors that represent units. So for
such moduli, we shrink the number of rows down for this final interact. This
has rows that are the elements of Un, but certainly not labeled correctly.

@interact
def _(modulus =(7,range (2,50))):

111

112 CHAPTER 10. PRIMITIVE ROOTS

show(matrix_plot(matrix(euler_phi(modulus),
[mod(a,modulus)^b for a in range(1,modulus) for b
in srange(euler_phi(modulus)+1) if
gcd(a,modulus)==1]),cmap= ' jet ' ,figsize =6))

Sage note 10.1.2 (Filtering list comprehensions). We are only looking at
units here. The syntax [x for y in range(1,mod)if func(x)] takes list compre-
hensions to another level, by ‘filtering’. This allows us to remove from the list
anything which doesn’t fit what we want. In this case, we removed non-units;
gcd(a,mod)==1 was required.

10.1.2 Two characterizations
Proposition 10.1.3. There are two equivalent ways to characterize/define a
primitive root of n among numbers such that gcd(a, n) = 1.

• We say that a is a primitive root of n if ab yields every element of Un.

• We say that a is a primitive root of n if the order of a is ϕ(n).

Proof. Why are these true? Recalling the terminology from Section 8.3, the
first one means that Un is a cyclic group (one all of whose elements are powers
of a specific element), and that a is a generator of that group. This is the
more advanced point of view.

The second point of view also uses the group idea of the order of an element.
Remember, this is the smallest number of times you can multiply something
by itself and get 1 as a result. What would this idea mean without using the
terminology of groups? With that viewpoint, k is the order of a if ak ≡ 1 (mod
n) and ab ̸≡ 1 for 1 ≤ b < k.

10.1.3 Finding primitive roots
As a first exercise, the gentle reader should figure out the orders of some
elements of some small groups of units. For n ∈ {5, 7, 8, 9, 10, 12, 14, 15}, try
exploring Un. There should be at least some primitive roots.

• Were all elements primitive roots?

• Did all of these groups have them?

• Is it particularly fun to look?

It’s useful to try looking for primitive roots by hand. However, it’s better
to know whether one should bother to look, and hence to try to prove things
about orders in general.

10.2 A Better Way to Primitive Roots
10.2.1 A useful lemma
In order to find primitive roots, we might want a better approach than simply
trying every single power of a for every a until we find one.

10.2. A BETTER WAY TO PRIMITIVE ROOTS 113

Example 10.2.1 (A motivating example). Let’s walk through an example to
motivate a new approach, using a small modulus.

Take some number n with a ϕ(n) with a few factors. Say, n = 11 and
ϕ(11) = 10. Okay, we know that every element a ∈ U11 will have

a10 ≡ 1 (mod 11) ,

but which elements don’t reach the unit before the tenth power?
Well, we know that the order of an element has to divide ϕ(11) = 10, so

we could try a2 and a5; no other ak could yield 1. In fact, if those aren’t ≡ 1,
there aren’t any other possible orders out there, so that a would work as a
primitive root.

• Let’s try this with a = 2.

22 ≡ 4 ̸≡ 1 (mod 11) and 25 = 32 ≡ −1 ̸≡ 1 (mod 11) ,

so 2 must be a primitive root.

• What about with a = 3?

35 = 9 · 9 · 3 ≡ (−2)2 · 3 ≡ 12 ≡ 1 (mod 11)

so 3 is not a primitive root modulo eleven.

The moral is that we didn’t have to check all ten possible powers to decide
whether a was a primitive root modulo eleven.

Now we formalize this, and in fact rephrase it in a slightly more efficient
way.

Sage note 10.2.2 (How Sage does primitive roots). As far as I understand
the code, this is how even Sage tests for finding primitive roots.

Lemma 10.2.3 (Testing for Primitive Roots). An element a ∈ Un is a prim-
itive root if and only if

aϕ(n)/q ̸≡ 1 in Un for each prime q | ϕ(n) .

Proof. If a is in fact a primitive root, then ϕ(n) is the smallest number k such
that ak ≡ 1, so certainly for numbers smaller than ϕ(n), like ϕ(n)/q, those
powers shouldn’t be ≡ 1.

On the other hand, if a isn’t a primitive root, then its order k must be a
proper divisor of ϕ(n).

Now look at the prime divisors q of ϕ(n)/k.

• For such a divisor,
q | ϕ(n)/k

• So qkℓ = ϕ(n) for some ℓ.

• That means kℓ = ϕ(n)/q.

• But then ϕ(n)/q is a multiple of k.

So since ak ≡ 1, then certainly

akℓ = aϕ(n)/q ≡ 1 (mod n)

as well, which completes the proof.

114 CHAPTER 10. PRIMITIVE ROOTS

This proof is a little terse, so let’s unpack this test. Essentially, we change
two things from the initial idea of trying all divisors of ϕ(n):

• Instead of trying powers which are divisors of ϕ(n), we try powers which
are ϕ(n) divided by divisors. So 25 becomes 210/2 and 32 becomes 310/5.
That seems like it’s not doing anything other than rewriting, but at least
it organizes things differently.

• Then, instead of having to try all ϕ(n)/d, we use a trick to just need
prime divisors d. (See the proof.)

Doing some examples slowly will help it make sense.
@interact
def _(n=(19 ,[2..100]) ,a=3):

phi=euler_phi(n)
pds=prime_divisors(phi)
if gcd(a,n)!=1:

pretty_print(pretty_print(html("Make␣sure␣a␣and␣
n␣are␣relatively␣prime!")))

else:
a = mod(a,n)
pretty_print(pretty_print(html("Is␣$%s$␣a␣

primitive␣root␣of␣$%s$?"%(a,n))))
pretty_print(pretty_print(html("The␣prime␣divisors␣

of␣$\phi(%s)$␣are␣$%s$"%(n, ' , ' .join([str(pd)
for pd in pds])))))

pretty_print(pretty_print(html("The␣powers␣are␣"+ ' ␣
and␣ ' .join([' $%s^{%s/%s}\equiv␣
%s$ ' %(a,phi ,pd,a^(phi/pd)) for pd in pds]))))

pretty_print(pretty_print(html("And␣the␣order␣of␣
a=$%s$␣is␣a.multiplicative_order ()=$%s$"%(a ,
a.multiplicative_order ()))))

10.2.2 Using the test lemma
If you try various n and various attempts at primitive roots a, you will see
that this really works. Make sure you are trying a that are actually coprime
to n, though! As it turns out, there aren’t very many things to try, since ϕ(n)
in general doesn’t have a lot of prime divisors, even if n is a fairly large prime.

Why not try it by hand for n = 17? There is only one prime divisor of
ϕ(17), which makes things easier. Fill in this table, where PR means primitive
root.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PR? No No

This lemma also makes easy some statements that would otherwise be quite
hard. For instance, you should (Exercise 10.6.2) see how to use the test lemma
to prove that if a is a primitive root of n, then so is a−1 (modulo n).

Here’s something harder, to show the power of this approach.

Proposition 10.2.4. If a is a primitive root of n, then so is n− a if 4 | ϕ(n).

Proof. Let’s think in terms of powers. If aϕ(n)/q ̸≡ 1, then

(n− a)ϕ(n)/q ≡ (−a)ϕ(n)/q ≡ (−1)ϕ(n)/qaϕ(n)/q .

10.3. WHEN DOES A PRIMITIVE ROOT EXIST? 115

So, as long as ϕ(n)/q is even for all prime divisors of ϕ(n), the two powers
(the one of a and the one of n− a are the same.

Since ϕ(n) is already even, the only possible odd ϕ(n)/q comes from q =
2.

10.3 When Does a Primitive Root Exist?
Recall your experimentation in Subsection 10.1.3. You should have discovered
that there is not always a primitive root.
Fact 10.3.1. There is no primitive root for n = 12.
Proof.

This is also the case for n = 8 (Exercise 10.6.3).So, when do we have
primitive roots?

10.3.1 Primitive roots of powers of two
We’ll start this investigation by proving that most powers of 2 do not have
primitive roots. The following should give you an error.

power =25
primitive_root (2^ power)

Proposition 10.3.2. For k > 2, there are no elements of U2k that have order
ϕ(2k) = 2k−1, because the highest order they can have 2k−2.
Proof. Assume n = 2k for k > 2. (For n = 2 and n = 4, there are primitive
roots – check this if you haven’t already). In Exercise 10.6.3 we show that
n = 8 does not have a primitive root. In particular, each element of U8 has
order 23−2 = 2, so that a2 ≡ 1 (mod 8) for all a ∈ U8. Think of this as a base
case for induction on k.

Now assume by induction that for n = 2k it is true that no element has
order higher than 2k−2. I.e.,

a2
k−2

≡ 1 (mod 2k) .

By definition of divisibility, that means for any odd number a, we have that

a2
k−2

= 1 + 2k ·m

for some integer m.
Next, let’s look at what happens to everything in modulus 2k+1. We want

that
a2

(k+1)−2

= a2
k−1

≡ 1 (mod 2k+1) .

While it’s easy to get 2k+1 from 2k, the only way to easily get a2k−1 from a2
k−2

is by squaring. (Recall Fact 4.5.2 where we found powers quickly by using
(a2

e

)2 = a2
e+1 .)

So we write a2
k−1 as a square, substitute the above, and look at the re-

mainders.

a2
k−1

=
(
a2

k−2
)2

= (1 + 2km)2 = 1 + 2k+1m+ 22km2

= 1 + 2k+1(m+ 2k−1m2) ≡ 1 mod 2k+1

By induction we are done; because the highest possible order of an element
is less than ϕ, there are no primitive roots modulo 2k for k > 2.

116 CHAPTER 10. PRIMITIVE ROOTS

Fact 10.3.3. It turns out that ±5 have order 2k−2 in U2k .

Proof. We won’t prove this, but it is easy if you use just a little group theory,
and one can demonstrate it for a given example.

@interact
def _(power =5):

a = mod(5,2^ power)
pretty_print(html("Powers␣of␣5␣modulo␣$2^{%s}$␣

are"%power))
print [a^i for i in [1..2^(power -1)]]

10.3.2 Two important lemmas
There follow two important lemmas1 for working with primitive roots, whose
proofs are valuable exercises.

10.3.2.1 How the lemmas work

Lemma 10.3.4. Suppose p is prime and the order of a modulo p is d. If b
and d are coprime, then ab also has order d modulo p.

Proof. See Exercise 10.6.5.

Lemma 10.3.5. Suppose p is prime and d divides p−1 (and hence is a possible
order of an element of Up). There are at most ϕ(d) incongruent integers modulo
p which have order d modulo p.

Proof. See Exercise 10.6.6.

Before using them a lot, we should unpack these results a little bit. Here
is a first taste.

Fact 10.3.6. If there is one primitive root of n, then there are actually ϕ(ϕ(n))
of them.

Proof. We will only deal with the case of n = p prime.
In Lemma 10.3.4, let the order of a be p − 1. Then a is a primitive root

modulo p, and so is ab for every b coprime to p − 1. Since there are ϕ(p − 1)
of these, it satisfies the claim.

It works; let’s check this out.

@interact
def _(p=(41, prime_range (100))):

a=mod(primitive_root(p),p)
pretty_print(html("$%s$␣is␣a␣primitive␣root␣of␣$%s$,␣

with␣order␣$%s$"%(a,p,p-1)))
L=[(i,a^i,(a^i).multiplicative_order ()) for i in

range(2,p-1) if gcd(i,p-1) ==1]
for item in L:

pretty_print(html("$%s^{%s}\equiv␣%s$␣also␣has␣
order␣$%s$␣(and␣$\gcd(%s,%s)=1$)"%(a, item[0],
item[1], item[2], item[0], p-1)))

1Or lemmata, but who’s counting?

10.4. PRIME NUMBERS HAVE PRIMITIVE ROOTS 117

10.3.2.2 How the lemmas (don’t) fail

To continue, let’s pick a non-prime number we know something about to see
how many numbers we have with a given order.

We saw in Proposition 10.3.2 that powers of 2 don’t have cyclic groups of
units, but they do have lots of elements with the next smallest possible order.
So, for example, for n = 32 we can look at whether powers b coprime to that
order of such an element are in fact also elements with the same order.

@interact
def _(n=5):

pretty_print(html("Modulo␣$2^%s"%n))
a=mod(5,2^n)
L=[(i,a^i,(a^i).multiplicative_order ()) for i in

range(1,a.multiplicative_order ()) if
gcd(i,a.multiplicative_order ())==1]

for item in L:
pretty_print(html("$%s^{%s}\equiv␣%s$␣has␣order␣

$%s$␣(and␣$\gcd(%s,%s)=1$)"%(a, item[0],
item[1], item[2], item[0],
a.multiplicative_order ())))

The interact confirms that it works; indeed, Lemma 10.3.4 should be true
whether p is prime or not, though I won’t ask you to prove it.

Lemma 10.3.5 also seems to be working; there are exactly ϕ(8) = 4 powers
here, which have order eight.

The problem in deciding if there are primitive roots, though, is that there
might be some element of the same order as the ones above which is not actually
one of them! This code finds them.

@interact
def _(n=5):

pretty_print(html("Modulo␣$2^%s"%n))
a=mod(-5,2^n)
L=[(i,a^i,(a^i).multiplicative_order ()) for i in

range(1,a.multiplicative_order ()) if
gcd(i,a.multiplicative_order ())==1]

for item in L:
pretty_print(html("$%s^{%s}\equiv␣%s$␣has␣order␣

$%s$␣(and␣$\gcd(%s,%s)=1$)"%(a, item[0],
item[1], item[2], item[0],
a.multiplicative_order ())))

In some sense there are ‘extra’ elements with order 8 when n = 32. If you
have eight elements of order eight, and obviously at least one element of order
1, in U32, then it is impossible to have the required eight elements of order
sixteen one would need for there to be a primitive root modulo 32. (Why?
Because 8 + 1 + 8 > 16 = |U32|.) In essence, the fact that this can’t happen
for a prime modulus is why primitive roots do exist in that case.

10.4 Prime Numbers Have Primitive Roots
We use many of the same techniques and ideas in by proving that every prime
number p has a primitive root. Let’s check that this claim is true for at least
some primes.

118 CHAPTER 10. PRIMITIVE ROOTS

L=[(p,primitive_root(p)) for p in prime_range (100)]
for item in L:

pretty_print(html("A␣primitive␣root␣of␣$%s$␣is␣
$%s$"%(item[0],item [1])))

So at least we get a primitive root for the first 25 primes.

Theorem 10.4.1. Every prime has a primitive root. In other words, the order
p− 1 group Up is always cyclic.

Proof. The key to the proof is to try to write ϕ(p) = p − 1 in two different
ways:

1. p− 1 = ϕ(p) =
∑

d|p−1 ϕ(d)

2. p− 1 =
∑

d|p−1 | {a ∈ Up | a has order d} |

Note that the first fact is simply Fact 9.5.4 for n = p− 1.
The second equation makes sense too. We already proved (in Theorem 8.3.11)

Lagrange’s result that the order of any element of a group divides the order of
the group, so the only possible orders of elements in Up are positive divisors
of p− 1. Since every element of Up has some order, the p− 1 elements thereof
are divided up into (disjoint) sets of these different orders.

To finish the proof, we then just need to prove that the only possibility is
the number of elements of Up of order d is ϕ(d). Proving this is Claim 10.4.2.
Then there will certainly be at least one element of maximal order.

Before we finish the proof by examining the claim, we need some discussion.
First, let’s see what these sets look like for two examples – one where we know
we have a primitive root, and one where we know we don’t.

Here is the list of sets of different order elements for n = 41:

for d in divisors (40):
L=[]
for a in range (1,41):

if mod(a,41).multiplicative_order ()==d:
L.append(a)

pretty_print(html("There␣are␣$%s=\phi(%s)$␣elements␣of␣
order␣$%s$␣-␣"%(len(L),d,d)+str(L)))

But here is the list of sets for n = 32; there aren’t any for the highest
possible order, and all the other sets have orders exact multiples of ϕ(d).

for d in divisors(euler_phi (32)):
L=[]
for a in range (1,32):

if mod(a,2)==1 and
mod(a,32).multiplicative_order ()==d:
L.append(a)

if len(L)== euler_phi(d):
pretty_print(html("There␣are␣$%s=\phi(%s)$␣

elements␣of␣order␣$%s$␣-␣"%(len(L),d,d)+str(L)))
else:

pretty_print(html("There␣are␣$%s\\neq\phi(%s)$␣
elements␣of␣order␣$%s$␣-␣"%(len(L),d,d)+str(L)))

10.4. PRIME NUMBERS HAVE PRIMITIVE ROOTS 119

For another set of ideas, recall that if g is a primitive root of p, by definition
gp−1 ≡ 1 but no previous positive power is. Assuming p is an odd prime, then
p− 1 is even, and we could try to separate out the odd and even powers

g, g3, g5, . . . and g2, g4, g6, . . .

and compare them or their products.

• Can you see why the inverse of an even power of a primitive root is also
an even power?

• Do you think an odd power (greater than one) of a primitive root g
could be a different primitive root g′? Why or why not? What about
even powers of a given primitive root – could they be primitive roots, at
least in principle?

Now let’s prove our claim.

Claim 10.4.2. If p is prime, the number of elements of Up of order d is ϕ(d).

Proof. Assume that p is prime. For any of the divisors d of p − 1 (not just
p− 1 itself), the size of the set

|{a ∈ Up | a has order d}|

certainly can’t be bigger than ϕ(d), by Lemma 10.3.5. On the other hand,
every element of Up has some order! And by Lemma 10.3.4, once we find one
a with order d, then all the powers of a coprime to d also have that order, so
there are ϕ(d) of them.

So the entire proof boils down to finding at least one element a with order
d for each potential order d.

Suppose that any of the sets for d (such as the set of primitive roots for
d = p − 1) is empty. Then the elements which ‘would have’ had order d in
our group of units have to be ‘distributed’ among the other sets. That’s ϕ(d)
elements.

But we know that none of the sets corresponding to a divisor d is bigger
than ϕ(d), and ∑

d|p−1,d<p−1

ϕ(d) < p− 1 ;

yet all of the p−1 elements in Up must be in one of the sets. This doesn’t make
sense unless there is at least one element in each of the sets of elements with
order d, so in particular there is at least one of each potential order, which
means there are the maximal number with each order.

The proof above makes it evident that the real place primality is used is in
the crucial lemmas 10.3.5 and 10.3.4. If you are still curious to see how this
works, you can explore more below.

@interact
def _(n=(25 ,[0..100])):

for d in divisors(euler_phi(n)):
L=[]
for a in range(1,n):

if gcd(a,n)==1 and
mod(a,n).multiplicative_order ()==d:
L.append(a)

if len(L)== euler_phi(d):

120 CHAPTER 10. PRIMITIVE ROOTS

pretty_print(html("There␣are␣$%s=\phi(%s)$␣
elements␣of␣order␣$%s$␣-␣
"%(len(L),d,d)+str(L)))

else:
pretty_print(html("There␣are␣$%s\\neq\phi(%s)$␣

elements␣of␣order␣$%s$␣-␣
"%(len(L),d,d)+str(L)))

10.5 A Practical Use of Primitive Roots
We will soon begin talking about cryptography and related matters. Before
we do so, we will preview our computational needs by using primitive roots to
solve some congruences in a cool way.

Suppose you want to solve a more mysterious congruence than the basic
ones we have tackled thus far. Here are two examples:

• x4 ≡ 13 (mod 19)

• 7x ≡ 6 (mod 17)

You can think of the first one as finding a higher root modulo n, and the
second one as finding a logarithm modulo n.

10.5.1 Finding a higher root
Here’s one way to solve the first congruence. First, find a primitive root modulo
19. Obviously we could just ask Sage, or use Lemma 10.2.3 with trial and error.
In the not too distant past, the back of every number theory text had a table
of primitive roots!

primitive_root (19)

Now what we will do is try to represent both sides of

x4 ≡ 13 (mod 19)

as powers of that primitive root.
The easy part is representing x4; we just say that x ≡ 2i for some (as yet

unknown) i, so
x4 ≡

(
2i
)4 ≡ 24i .

The harder part is figuring out what power of 2 gives 13. Again, there is no
shortcut, though books in the past had huge tables of them and powers (for
easy reference). In practice, one would have all powers of a given primitive
root available for use ahead of time.

a=mod(2,19)
L=[(i,a^i) for i in range (2,19)]
for item in L:

if item [1]!=13:
pretty_print(html("$%s^{%s}\equiv␣%s\\not\equiv␣

13$"%(a,item[0],item [1])))
else:

pretty_print(html("$%s^{%s}\equiv␣%s$␣-␣
hooray!"%(a,item[0],item [1])))

break

10.5. A PRACTICAL USE OF PRIMITIVE ROOTS 121

By substituting the primitive roots in for x4 and 13, we can say that

x4 ≡ 13 (mod 19)

becomes
24i ≡ 25 (mod 19) .

This is a much more familiar type of problem. How would we have solved
this in high school? You would solve it this way, with equations (not congru-
ences):

24i = 25 ⇒ 4i = 5 ⇒ i = 5/4 .

We will try to do something very similar here.
What is very important is that this congruence is, in some sense, really no

longer a congruence in Z19. To be precise, everything in sight is really in U19,
a cyclic group of order ϕ(19) = 18. But a cyclic group of order 18 would just
the same as thinking modulo eighteen! So we can take out the exponents, just
like in precalculus, but do things (mod 18):

4i ≡ 5 (mod 18) .

(See Exercise 10.6.12.)
Sadly, this does not have a solution. But we figured it out without taking

every fourth power out there! Indeed, doing that confirms our result:

[mod(i,19)^4 for i in range (2,19)]

Example 10.5.1. Let’s try the same congruence modulo 17 instead – that is,
can we solve

x4 ≡ 13 (mod 17) ?

Here, a primitive root is 3, and it turns out that 34 ≡ 13, so we can try. This
gives

34i ≡ 34 (mod 17) ⇒ 4i ≡ 4 (mod 16) ,

which definitely does have solutions.
In fact, there are four solutions (1, 5, 9, 13) to the reduced congruence

i ≡ 1 (mod 4)

so there are four solutions (31, 35, 39, 313) to the original congruence. Let’s
check this:

a = mod (3,17)
[(a^b)^4 for b in [1,5,9,13]]

You can even see it at work for more complicated things.

Example 10.5.2. If we try solving x6 ≡ 8 (mod 49), we’ll need a primitive
root of 49; 3 works. I can find out what power 3i of 3 yields 8:

a = mod (3,17)
x=mod(primitive_root (49) ,49)
L=[(i,x^i) for i in range(2,euler_phi (49))]
for item in L:

if item [1]!=8:

122 CHAPTER 10. PRIMITIVE ROOTS

pretty_print(html("$%s^{%s}\equiv␣%s\\not\equiv␣
8$"%(a,item[0],item [1])))

else:
pretty_print(html("$%s^{%s}\equiv␣%s$␣-␣

hooray!"%(a,item[0],item [1])))
break

So we write x = 3i for some as yet unknown i, and get

36i ≡ 336 (mod 49) ,

which gives us
6i ≡ 36 (mod ϕ(49) = 42)

and this reduces to
i ≡ 6 (mod 7) .

So i = 6, 13, 20, 27, 34, 41 all work, which means that x = 3i ≡ 43, 10, 16, 6, 39, 33
all should work.

[mod(d,49)^6 for d in [43 ,10 ,16 ,6 ,39 ,33]]

10.5.2 Discrete logarithms
Similarly, we can try to solve logarithmic examples like

7x ≡ 6 (mod 17) .

Indeed, solving this problem is an example of what is called a discrete loga-
rithm problem. Such problems are apparently very, very hard to solve quickly,
but (!) no one has every actually proved this.
Example 10.5.3. A primitive root modulo 17 is 3, and we can check that
7 ≡ 311 (mod 17) and 6 ≡ 315 (mod 17). Then, replacing these, we see that

311x ≡ 315 (mod 17)

yields
11x ≡ 15 (mod 16) ;

since 3 · 11 = 33 = 32 + 1, we see that 3 and 11 are inverses modulo 16, so
x ≡ 3 · 15 ≡ 45 ≡ 13 (mod 16). And indeed, it checks out with Sage.

mod(7,17) ^13==6

Sage note 10.5.4 (Reminder on equality). To check whether two things are
equal, remember that you can just use == with the two expressions and see if
you get True or False.
Example 10.5.5. Let’s try to solve 16x ≡ 13 (mod 19).

Recall that 2 is a primitive root of 19, and obviously 16 = 24. It might look
harder to represent 13; of course we could do it with the computer, but note
that 13 + 19 = 32 = 25. Sometimes we really can do them by hand!

Thus our congruence becomes

24x ≡ 25 (mod 19)

which yields
4x ≡ 5 (mod 18) .

We already saw in Subsection 10.5.1 that this has no solutions, so neither does
the original congruence.

10.6. EXERCISES 123

10.6 Exercises
1. Find primitive roots of 18, 23, and 27 using Lemma 10.2.3 to test various
numbers.

2. If a is a primitive root of n, prove that a−1 is also a primitive root of n.

3. Show that there is no primitive root for n = 8.

4. Find two primitive roots of 81 using the Euler ϕ criterion Lemma 10.2.3
(that is, by hand).

5. Suppose p is prime and the order of a modulo p is d. Prove that if b and
d are coprime, then ab also has order d modulo p. (Hint: actually write down
the powers of ab, and figure out which ones could actually be 1.)

6. Suppose p is prime and d divides p− 1 (and hence is a possible order of an
element of Up). Prove that at most ϕ(d) incongruent integers modulo p have
order d modulo p. Hint: Lagrange’s (polynomial) Theorem 7.4.1.

7. Find the orders of all elements of U13, including of course the primitive
roots, if they exist. Then verify Claim 10.4.2.

8. Challenge: assuming p is prime, prove that there are exactly ϕ(p−1) prim-
itive roots of p if there is at least one. (Don’t use Claim 10.4.2.)

9. Challenge: Assume that a is an odd primitive root modulo pe, where p is
an odd prime (that is, both a and p are odd). Prove that a is also a primitive
root modulo 2pe.

10. Solve x6 ≡ 4 (mod 23).

11. Solve x4 ≡ 4 (mod 99) by writing this as the combination of two congru-
ences which can be solved with primitive roots, and then using Subsection 5.4.1
to put them back together.

12. If x ≡ y (mod ϕ(n)), show that ax ≡ ay (mod n). Hint: Theorem 9.2.3.

13. Find all solutions to the following. Making a little table of powers of a
primitive root modulo 23 first would be a good idea.

• 3x5 ≡ 1 (mod 23)
• 3x14 ≡ 2 (mod 23)
• 3x ≡ 2 (mod 23)
• 13x ≡ 5 (mod 23)

14. For which positive integers a is the congruence ax4 ≡ 2 (mod 13) solvable?

15. Conjecture what the product of all primitive roots modulo p (for an odd
prime p) is, modulo p. Prove it! (Hint: one of the results in Subsection 10.3.2
and thinking in terms of the computational exercises might help.)

124 CHAPTER 10. PRIMITIVE ROOTS

Chapter 11

An Introduction to
Cryptography

We are now ready for some applications. This chapter introduces cryptogra-
phy, as well as the prototype for a cool mathematical encryption system and
other similar topics. In Chapter 12, we will also discuss practical issues in im-
plementing these – namely, finding huge primes and factoring huge composite
numbers.

By ‘huge’ I mean something substantially bigger than this.
print next_prime(randrange (2^99))
print next_prime(randrange (2^300))

Those are peanuts by today’s standards. But with the tools we’ve developed
up to this point, we are ready for them.

11.1 What is Cryptography?
Cryptography is not just the science of making (and breaking) codes, as a
dictionary might have it. It is the mathematical analysis of the tools of secrecy,
from both the perspective of someone keeping a secret and that of the person
trying to figure it out. Sometimes it is also called cryptology, while sometimes
that term is reserved for a wider meaning.

There are two kinds of codes.

• There are codes which disguise information and are intended to remain
secret! (Especially for those needing private communication.)

• There are codes encapsulating information in a convenient format, not
needing secrecy. (Especially to allow for error checking.)

Mathematicians use the word code to indicate information is being stored,
reserving the term cipher to talk about a way to protect that information.
So, what we do when learning about this is some of each, though mostly about
ciphers.

11.1.1 Encoding and decoding
There are many ways to encode a message. The easiest one for us (though
not used in practice in exactly this way) will be to simply represent each letter

125

126 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

of the English alphabet by an integer from 1 to 26. It is also easy to represent
both upper- and lowercase letters from 1 to 52.

We’ll use the following embedded cell to turn messages into numbers and
vice versa. You encode a plaintext message (no spaces, in quotes, for our
examples) and decode a positive integer.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

Let’s try to encode the letter “q”.
encode(' q ')

Sage note 11.1.1 (Always evaluate your definitions). If the previous cell
doesn’t work, then you may need to evaluate the first one in this section again.
If anything in this chapter ever gives a NameError about a global name encode,
you probably need to reevaluate some previous cell. Most likely, the one with
def encode!

The process of decoding (or to decode) is similar.
decode (17)

This should be straightforward. Too straightforward, perhaps. What are
some issues here?

• First, notice that I didn’t bother separating lower and uppercase letters.

• Also, no matter how complicated you get, with just a one-to-one corre-
spondence, there are only a few possibilities for each letter. So if you
know the human language in question, you can just start guessing which
encrypted number stands for its most common letter.

• Can you think of other drawbacks?

That means that, in practice, we need to do a few other things. One thing
that is commonly done is to make longer blocks of letters, and then turn those
into numbers. After all, presumably there are a lot more three-letter (or longer)
possible blocks of letters in English than would make it too easy to decrypt
them. (Can you think of exceptions, though?)

For pairs, we will represent the first letter as a number from 1 to 26, and the
second letter as 26 times the letter number (think of it as base 26). Remember
that A=1, B=2, etc.

11.2. ENCRYPTION 127

Now compare the following two encodings of “The best day of the year”
and see which one might be easier to decipher.

[encode(letter) for letter in ' Thebestdayofthisyear ']

encode(' cb ');decode (3+26*2)

[encode(pair) for pair in
[' th ' , ' eb ' , ' es ' , ' td ' , ' ay ' , ' of ' , ' th ' , ' is ' , ' ye ' , ' ar ']]

Whereas there are many 5s in the first encoding, which you could guess were
Es, the second one has only one repeat (though knowing English, one might
guess it was ‘Th’). For this reason, it’s important to point out we haven’t made
anything secret yet, we’ve just encoded.

With three letter blocks, there are then already 263 = 17576 possibilities.

encode(' zab ');decode (26+1*26+2*26^2)

One could use this to encode the famous phrase INT HEB EGI NNI GWA
STH EWO RDX. In this case, we use an extra X to fill out the space from a
famous quote.

To be fair, when filler of this type is used, it would more often be used in
the middle to confuse things. In addition, one might recombine the message
in various ways. We will, however, usually keep our whole message together as
one item, since we want to understand the mathematical aspects most, rather
then real cryptography.

11.2 Encryption
We will spend most of our time talking about enciphering, or encrypting,
messages. Such encryption is the difficult part, after all, the details of which
we want to keep secret.

What is cool about modern ciphers is that we actually expect that any eaves-
dropper will know how we do the encryption; they just don’t know the key,
which is the specific numbers we use to perform our mathematical encryption.

Reversing this process (hopefully only done by the person you want to re-
ceive your message!) is called decryption. Sometimes you need a different set
of numbers to decrypt, in which case we distinguish between the encryption
key and the decryption key.

Sage note 11.2.1 (Reminder to evaluate definitions). Don’t forget to evaluate
this so we can use words as messages instead of just numbers.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:

128 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

11.2.1 Simple ciphers
In the past, one would usually assume that both the sender and the receiver
keep their keys secret (seems reasonable!), which is called symmetric key
cryptography. The symmetry is that both people need to keep it secret. One
early example of this supposedly goes back to C. Julius Caesar. To encrypt
a message, first convert it to numbers, and then add three to each number
(‘wrapping around’ as in modular arithmetic if needed), and convert back to
letters.

message= ' MathIsCool '
secret =[encode(letter) for letter in message]
secret

It’s pretty clear that 1=A here, for instance. Now let’s add three to each.
The second letter should get to 4=D, for instance.

code =[(x+3)%26 for x in secret]
print code
print ' ' .join([decode(n) for n in code])

What did I do here? Again, this is just modular arithmetic, modulo 26, so
I added 3 mod (26).

11.2.2 Decryption and inverses
How will I decrypt it, if I get this mysterious message? Here is the main point
about mathematical ciphers; they need to come from operations that have
inverses! So in number theoretic ciphers, they’ll need to come from (somehow)
invertible operations.

In this case, the operation is modular addition, which certainly has inverses.
If your encoded numerical message is x, your key is a, and you are working
modulo (n), then your encrypted message m is

m ≡ x+ a mod(n)

To get x back, you just use the additive inverse to a modulo n, which is −a.
Since −3 is the inverse of 3, this one is easy to decipher.

' ' .join([decode ((x-3) %26) for x in code])

We could list the key here as a pair (a, n), with a = 3 and n = 26.
As noted above, one can do something similar with bigger numbers, in

blocks of two. In the next Sage cell, the code requires a message with an even
number of letters; can you make it more flexible?

11.2. ENCRYPTION 129

message= ' Mathiscool '
secret =[encode(message [2*i:2*i+2]) for i in

range(len(message)/2)]
secret

11.2.3 Getting more sophisticated
Let’s do something a little more interesting to encrypt our ‘secret’ about how
cool math is. What else has inverses?

Well, sometimes multiplication mod (n) does! We could make a cipher that
gets m by performing

m ≡ ax+ b (mod n) .

Here, let’s choose a = 5 and b = 18; we’ll use n = 677, the next prime after
262, since we have blocks of two letters each.

code =[(5*x+18)%(next_prime (26^2)) for x in secret]
print code
print ' ' .join([decode(n) for n in code])

Now the key is listed as a triple, (a, b, n) = (5, 18, 677). How do we invert
this?

To get from ax + b back to x, ordinarily we would subtract b and then
divide by a. Now we are working over Zn, so is that possible? We’ll need our
first ‘extra’ condition.

Fact 11.2.2. To make modular encryption by a linear function workable, we
need gcd(a, n) = 1. In that case there is a number a′ such that

a(a′) ≡ 1 (mod n) ,

so we can decode via

m 7−→ a′(m− b) ≡ x (mod n) .

To decode this particular example, then, we need to first subtract 18, then
multiply by an inverse to 5 (mod 677) (which turns out to be 271):

' ' .join([decode (271*(x-18) %677) for x in code])

You should get ‘MathIsCool’ or whatever message you originally used.
The proof of the pudding is in the eating. There’s no way I get the original

message back unless this works!

11.2.4 Linear algebra and encryption
There is another way of using blocks of size two or more, which we won’t pursue
very far, but which is a big piece of how standard encryption works (see here
and here). Let’s look at our message again.

message= ' Mathiscool '
secret =[encode(letter) for letter in message]
secret

http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

130 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

Now, in blocks of two, I will change my numbers by turning the first one
into the sum of the numbers modulo 26 and leaving the second one alone. So
for the second block (20, 8), I will change that block to (28, 8), which modulo
26 becomes (2, 8).

[(secret[i]+ secret[i+1]) %26 if i%2==0 else secret[i] for i
in range(len(secret))]

This turns out to be the same thing as multiplying the corresponding list
of vectors of length two by a matrix!(

1 1

0 1

)
To invert this cipher, we would need an inverse to this matrix modulo 26.
(People don’t do something quite so naive, as there aren’t too many inverses
modulo 26, but for our purposes this suffices.)

In any case, this is another connection to the rest of mathematics! And
it is a huge reason why linear algebra over finite algebraic structures is very
important in security.

11.2.5 Asymmetric key cryptography
Finally there is another type of encryption, which is rather different. There
exists the possibility that everybody knows the key to encrypt, while only the
legitimate person knows how to decrypt. This is called asymmetric key
cryptography.

This idea may seem odd. But in practice today, people really do just post
their encryption keys on the Internet! In the live book, this links the public
key of a fairly well-known open-source software advocate, for example.

In theory, anyone who wants to send Person XYZ a secure message could
use this key, but only Person XYZ can decrypt it – convenient! Such an
implementation of an asymmetric system is called public-key cryptography,
although of course it’s only the encryption key that is actually public.

In this chapter, we will see examples of both symmetric and asymmetric
systems, but the main point is to lead up to the mathematics of basic public
key systems.

11.3 A Modular Exponentiation Cipher
To prepare for discussion of a famous public-key system, we will first discuss a
(symmetric) system that leads to it. This system needs yet another invertible
number theory procedure, one that we finally should be comfortable with.

That procedure is modular exponentiation as cipher. Recall that we have
methods to solve modular exponentials (such as primitive roots). That means
we have the tools to tackle these subtle techniques.

Sage note 11.3.1 (Another reminder to evaluate definitions). Don’t forget
to evaluate this so we can use words as messages instead of just numbers.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

http://www.catb.org/esr/gpg-public-key.asc

11.3. A MODULAR EXPONENTIATION CIPHER 131

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

11.3.1 The Diffie-Hellman method
In the cell below, we will pick a few numbers relevant to this method. To use
it, we will need a prime number p, and some legitimate exponent e that won’t
mess things up too badly. (Also, suppose our secret is still that math is cool.)

What do I mean by ‘won’t mess things up too badly?’ Recall that when
we solved

x3 ≡ 5 mod(17) as 33i ≡ 35 mod(17)

we ended up in the world of ϕ(17) = 16 and solved

3i ≡ 5 mod(16) .

This required a solution i to exist, which wouldn’t happen for all possible
numbers!

In order to keep using these ideas easily, we will pick an exponent coprime
to ϕ(p).

Now, here is the algorithm (see also Algorithm 11.3.3). I just take my
message (as a number) and raise it to the e power modulo p. It’s as simple as
that!

In the cell below, we pick a convenient e and p.

p=29 # a prime number
e=9 # a number coprime to euler_phi(p)=p-1=28
message= ' MathIsCool '
secret =[encode(letter) for letter in message]
code=[mod(x,p)^e for x in secret]
print code
print ' ' .join([decode(n) for n in code])

Here I picked p = 29 since it’s close to 26, and more or less arbitrarily
picked an exponent e = 9.

Note the steps. I first had to encode “MathIsCool” to numbers. Then I
exponentiated each number in the coded version, modulo 29. To be precise, I
sent each number

a → a9 (mod 29) .

Remark 11.3.2. Notice that decoding the secret message code is not so useful
anymore! (What would we do with the number 28 as an output, for instance?)
So we usually just stick with the numbers.

Leaving aside for the moment that the letter A will now have the unfor-
tunate property that it always stays 1, and hence basically unencrypted (this

132 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

is because we are doing a toy example), how on earth would we ever decrypt
this? Do we have a way to invert

a9 (mod 29)

in any way?
Naturally, we do! We will use exponentiation again to do so. We just need

something that solves (
a9
)f ≡ a (mod 29) ,

or more concisely
a9f ≡ a1 (mod 29) .

(We can think of f as a power that inverts the original power 9.).
From our earlier discussion, this is just a solution to

9f ≡ 1 (mod 28)

and we know we can find this. In the cell below, we do it computationally, but
you could do this one ‘by hand’.

f=mod(e,p-1)^-1 # the multiplicative inverse mod p-1 (!)
to our encryption power

print f
print ' ' .join([decode(x^f) for x in code])

This method of encryption is known as the Diffie-Hellman, or D-H, method
(named after its originators, who proposed it in the mid-70’s).

11.3.2 A bigger example
Now we will do a more real example of this. Notice how important it was that
we chose an initial exponent e that was coprime to ϕ(p) = p− 1.

message= ' heymathiscooleverybody '
secret=encode(message)
secret

For convenience, I’ll just take the next prime bigger than my message.
p=next_prime(secret)
print p
print factor(p-1)

Next, I pick an exponent. Not every exponent will work! Beforehand I
factored p− 1 so I could find something coprime to it.

e=10103 # a number coprime to p-1
code=mod(secret ,p)^e
code

The encrypted message is now just one number. Now we need the decryp-
tion key. Luckily, that’s just as easy as taking an inverse modulo p− 1:

f=mod(e,p-1)^-1
print f
print ' ' .join(decode(code^f))

11.3. A MODULAR EXPONENTIATION CIPHER 133

Here is one more extended Sage example. Here, the interesting point is
that I allow Sage to pick a prime for me using next_prime().

message= ' mathisreallycoolanditshouldntbeasecret '
secret=encode(message)
p=next_prime ((secret)^5)
e=677 # hopefully coprime to p-1
code=mod(secret ,p)^e
f=mod(e,p-1)^-1
pretty_print(html("My␣encoded␣message␣is␣$%s$"%secret))
pretty_print(html("A␣big␣prime␣bigger␣than␣that␣is␣

$%s$"%p))
pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html("The␣encrypted␣message␣is␣$%s$"%code))
pretty_print(html("The␣inverse␣of␣$%s$␣is␣$%s$"%(e,f)))
pretty_print(html("And␣the␣decrypted␣message␣turns␣out␣to␣

be:"))
print ' ' .join(decode(code^f))

11.3.3 Recap
Here is the formal explanation of our first awesome encryption scheme.

Algorithm 11.3.3 (Diffie-Hellman Encryption). To encrypt using this method,
do the following.

• Turn your message into a number x.

• Pick a prime p (presumably greater than x).

• Pick an exponent e such that gcd(e, p− 1) = 1.

• Encrypt to a secret message by taking

m = xe (mod p) .

Here are the steps for decryption.

• Find an inverse modulo p− 1 to e, and call it f .

• Decrypt (if you want) by taking

mf ≡ (mod p)

• Celebrate in your opponent’s destruction.

Proof. Why does this work? First, note that our condition on f is equivalent
to

ef ≡ 1 (mod p− 1)

. Then we can simply compute that

mf ≡ (xe)
f ≡ xef ≡ x1 ≡ x (mod p)

which verifies that we get the original message back.

134 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

Feel free to use the following Sage cells to see what happens with your own
short messages.

@interact
def _(message= ' mathiscool ' ,e=677):

secret=encode(message)
p=next_prime (100*(secret))
if gcd(e,p-1) != 1:

pretty_print(html("Looks␣like␣$%s$␣isn ' t␣coprime␣
to␣the␣prime!␣Try␣another␣one."%e))

else:
code=mod(secret ,p)^e
try:

f=mod(e,p-1)^-1
except:

pretty_print(html("Looks␣like␣$%s$␣is␣not␣
coprime␣to␣the␣prime␣we␣chose ,␣$%s$"%(e,p)))

pretty_print(html("My␣encoded␣message␣is␣
$%s$"%secret))

pretty_print(html("A␣big␣prime␣bigger␣than␣that␣is␣
$%s$"%p))

pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html("The␣encrypted␣message␣is␣

$%s$"%code))
pretty_print(html("The␣inverse␣of␣$%s$␣is␣

$%s$"%(e,f)))
pretty_print(html("And␣the␣decrypted␣message␣turns␣

out␣to␣be:"))
print ' ' .join(decode(code^f))

Or you can choose a prime on your own.

@interact
def _(message= ' hi ' ,p=991,e=677):

secret=encode(message)
if is_prime(p) and gcd(p,e)==1 and p>secret:

e=677 # hopefully coprime to p-1
code=mod(secret ,p)^e
try:

f=mod(e,p-1)^-1
except:

pretty_print(html("Looks␣like␣$%s$␣is␣not␣
coprime␣to␣the␣prime␣we␣chose ,␣$%s$"%(e,p)))

pretty_print(html("My␣encoded␣message␣is␣
$%s$"%secret))

pretty_print(html("A␣big␣prime␣bigger␣than␣that␣is␣
$%s$"%p))

pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html("The␣encrypted␣message␣is␣

$%s$"%code))
pretty_print(html("The␣inverse␣of␣$%s$␣is␣

$%s$"%(e,f)))
pretty_print(html("And␣the␣decrypted␣message␣turns␣

out␣to␣be:"))
print ' ' .join(decode(code^f))

elif not is_prime(p):
pretty_print(html("Pick␣a␣prime␣p!"))

elif p <= secret:

11.4. AN INTERESTING APPLICATION: KEY EXCHANGE 135

pretty_print(html("Make␣sure␣your␣prime␣is␣bigger␣
than␣your␣secret ,␣$%s$"%secret))

else:
pretty_print(html("Make␣sure␣that␣$gcd(p,e)=1$!"))

Sage note 11.3.4 (Compute what you need). Remember, you can always
compute anything you need. For instance, if you for some reason didn’t pick a
big enough prime, you can use the following command to find one.

next_prime (11058)

Remark 11.3.5. In 2015, Whitfield Diffie and Martin Hellman won the Turing
Award for their contribution, the highest award in computer science.

11.3.4 A brief warning
Remember, the key that makes it all work (thanks to Fermat’s Little The-
orem/Euler’s Theorem) is that exponents of congruences mod n live in the
world of congruences mod ϕ(n), as long as they are numbers coprime to ϕ(n).
That’s why gcd(e, p− 1) = 1 is important.

Here’s an example of how not choosing your exponent wisely can go wrong.

message= ' hi ' # needs to be in quotes
secret=encode(message)
p=991 # needs to be bigger than secret
e=2 # NOT coprime to p-1
code=mod(secret ,p)^e
code

Sage note 11.3.6 (Change values right in the code). You don’t have to have
a Sage cell with little boxes for interacting to change the values! Try changing
them above to encode your own secret.

Assuming you followed along, so far, so good; it got encrypted. But what
happens when we try to decrypt?

f=mod(e,p-1)^-1
message ,secret ,code ,decode(code^f) # prints all the steps

You should have gotten an error (in fact, a ZeroDivisionError, which should
sound relevant). It turns out not even to be possible to go backwards. Be
warned that you must know the mathematics to use cryptography wisely.

11.4 An Interesting Application: Key Exchange
There is a quite useful application of D-H called key exchange. Here is the
basic concept.

Two people trying to pass information (universally called Alice and Bob)
want to decide on a secret key for using some encryption routine. Since all we
really care about are the numbers, once we’ve encoded, we should just assume
the key is a number.

136 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

Unfortunately, Alice and Bob know that someone may be listening in on
their decision. Instead of trying to send a secret key only one of them has
chosen, they try to create a secret key together using (essentially) public means.
Here’s how it works.
Algorithm 11.4.1 (Diffie-Hellman key exchange). Here are the steps.

• First, Alice and Bob jointly pick a big prime p and a base for exponenti-
ation g, presumably with 1 < g < p. This doesn’t need to be secret.

• Now, they each secretly choose an exponent; maybe Alice chooses m and
Bob chooses n.

• The key step: Each of them exponentiates g to their secret power, modulo
p.

• Then they pass off these numbers to each other, and once again expo-
nentiate the other person’s number to their own secret power, modulo
p.

The resulting numbers are the same and give the secret key.
Proof. The two numbers are (gm)n = gmn and (gn)m = gnm, which are the
same, and certainly are so modulo p.

Example 11.4.2. Alice and Bob pick p = 991 and g = 55, and then (sepa-
rately) pick m = 130 and n = 123. Then they compute the powers gm and gn

modulo p.
p=991
g=mod(55,p)
m=130
n=123
Alice_does=g^m
Bob_does=g^n
Alice_does ,Bob_does

Alice and Bob have different numbers now, but after doing their powers
after the exchange, the numbers should be the same.

Bob_does^m,Alice_does^n

Note the code takes one power to the m and the other power to the n.
Thus, now they have a secret key (gmn = gnm) they can easily compute but

which a spy in the middle cannot. Feel free to try this with your own numbers
you pick!

@interact
def _(p=(991, prime_range (1000)),g=55,m=130,n=123):

g=mod(g,p)
pretty_print(html("If␣you␣jointly␣picked␣$p=%s$␣and␣

base␣$g=%s$"%(p,g)))
pretty_print(html("Then␣separately␣picked␣secret␣

powers␣$m=%s$␣and␣$n=%s$"%(m,n)))
pretty_print(html("Your␣publicly␣traded␣info␣would␣be␣

$%s^{%s}\equiv␣%s$␣and␣$%s^{%s}\equiv␣
%s$"%(g,m,g^m,g,n,g^n)))

pretty_print(html("But␣the␣secret␣joint␣key␣would␣be␣
$%s^{%s\cdot␣%s}\equiv␣%s$"%(g,m,n,g^(m*n))))

11.5. RSA PUBLIC KEY 137

This gives an encryption key useful to both Alice and Bob, to protect from
any potential Eve who might be listening in. (That’s Eve for eavesdropping,
believe it or not – also a universal person in these stories.)

On the down side, if Eve not only is listening, but actually has access to
Alice and Bob’s transmissions and can change them, she can actually add her
own exponent ℓ to the game, so that she pretends to have secret key gmℓ

with Alice and secret key gnℓ with Bob. Both of their keys’ security is now
compromised. Such a situation is known as a “Man in the Middle” attack.
There is no obvious way to stop such an attack with this algorithm, if Eve has
that much power. (See Exercise 11.8.5.)

11.5 RSA Public Key
Sage note 11.5.1 (We keep reminding you). Remember, this cell contains
the commands used to make numbers from letters, so always evaluate it before
doing any en/decoding.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

In order to deal with some of the issues of symmetric systems, we will now
introduce the most famous public-key system. Recall that this means we have
an encryption key that is easy for anybody at all to use, but is very difficult
to undo unless you know the secret. (Sometimes this is called a trapdoor
system, because it’s easy to fall in but it’s hard to get back out unless you
know where the secret passageway is!)

The formal name for the system in this section is “Rivest, Shamir, Adle-
man” or RSA, for the three folks who developed it in the late 1970s. The
acronym continues to be the name of the security company they cofounded,
owned by EMC when this was written.

11.5.1 The background
The idea behind RSA is to make Diffie-Hellman, which relies only upon The-
orem 7.5.2 and primes, into a system which involves Euler’s Theorem (9.2.3).
We want to do so, but not so heavily as to make the computation too ex-
pensive. (With the advent of mobile devices, it turns out that this has once
again become a big issue, so much so that even RSA or similar methods are
being replaced with more sophisticated ones involving things like the Mordell
equation, known as elliptic curves.)

http://www.emc.com/domains/rsa/index.htm

138 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

It turns out that the easiest way to keep computation easy while sticking
with exponentiation is to choose as a modulus a large integer n with only two
prime factors, instead of one large prime p as we did before. For instance:

p=89
q=97
n=p*q
pretty_print(html("Multiply␣the␣primes␣$%s$␣and␣$%s$␣to␣

get␣our␣modulus␣$%s$"%(p,q,n)))

Exponents here live in the world of ϕ(n). We can easily compute this using
Fact 9.5.2 (so that ϕ(n) = (p − 1)(q − 1)). So the computations are going to
be easy for us, assuming we know p and q.

But they will not be so easy to compute without that knowledge, for which
we need to have the prime decomposition of n. In particular, for reasonably
large n, that means ϕ(n) is essentially secret to anyone who isn’t tough enough
to factor n.

Remark 11.5.2. At least that’s what people currently believe; if it isn’t true,
we are in deep trouble security-wise, as we will see later.

As an example, in the early 1600s, Fermat believed 232 + 1 was prime. It
took until 1732 and the genius of Euler to factor 232+1 as follows, which shows
the one hundred sixteenth prime is the smaller of two factors.

2^32+1 , factor (2^32+1) ,nth_prime (116)

Hence n = 232+1 wouldn’t have been a bad n to choose in the early 1700s,
since it would take a lot of trial and error to get to the one hundred sixteenth
prime!

11.5.2 The practice of RSA
That’s the preliminaries. From now on, we do exactly the same thing as before,
choosing an e coprime to ϕ(n), etc. This time, though, instead of keeping e
secret, we let anybody know it (along with n, which we have to let people know
anyway).

Example 11.5.3. With the same primes, let’s choose e = 71, because that is
coprime to ϕ(89 · 97) = ϕ(89)ϕ(97) = 88 · 96 = 8448.

p=89
q=97
n=p*q
phi=euler_phi(n)
e=71
pretty_print(html("Multiply␣the␣primes␣$%s$␣and␣$%s$␣to␣

get␣our␣modulus␣$%s$"%(p,q,n)))
pretty_print(html("Are␣$e=%s$␣and␣$\phi(%s)=%s$␣

coprime?"%(e,n,phi)))
gcd(e,phi)==1

We compute an inverse mod ϕ(n) just as before, which will be (as before)
our decryption key. Since we are able to compute ϕ(n), it isn’t hard to get an
inverse for e; if you only knew n, though, it would be very hard to do this (for
reasonably large n).

11.5. RSA PUBLIC KEY 139

f=mod(e,phi)^-1;f

Now, just like with D-H, I raise my message (number) to the power e to
encrypt, and raise to the power f to decrypt an encrypted message. Here are
all the steps together!

@interact
def _(message= ' hi ' ,p=89,q=97,e=71):

secret=encode(message)
n = p*q
phi = (p-1)*(q-1)
if gcd(n,e)==1 and n>secret:

code=mod(secret ,n)^e
try:

f=mod(e,phi)^-1
pretty_print(html("My␣encoded␣message␣is␣

$%s$"%secret))
pretty_print(html("A␣big␣product␣of␣primes␣

bigger␣than␣that␣is␣
$pq=%s\cdot%s=%s$"%(p,q,n)))

pretty_print(html("(which␣means␣my␣secret␣
$\phi(n)=\phi(%s\cdot␣%s)=(%s-1)(%s-1)$␣is␣
$%s$)"%(p,q,p,q,phi)))

pretty_print(html("And␣I␣chose␣exponent␣
$%s$"%e))

pretty_print(html("The␣encrypted␣message␣is␣
$%s^{%s}\equiv%s$"%(secret ,e,code)))

pretty_print(html("The␣inverse␣of␣$%s$␣modulo␣
$%s$␣is␣$%s$"%(e,phi ,f)))

pretty_print(html("And␣the␣decrypted␣message␣
turns␣out␣to␣be:"))

print ' ' .join(decode(code^f))
except:

pretty_print(html("Looks␣like␣$%s$␣is␣not␣
coprime␣to␣$\phi(%s)=%s$"%(e,n,phi)))

elif gcd(phi ,e)!=1:
pretty_print(html("Make␣sure␣that␣

$gcd(\phi(n),e)=1$!"))
elif n <= secret:

pretty_print(html("My␣encoded␣message␣is␣
$%s$"%secret))

pretty_print(html("Make␣sure␣that␣$pq=%s\cdot␣
%s=%s$␣is␣bigger␣than␣your␣secret"%(p,q,n)))

11.5.3 Why RSA works
Now we have an encryption method where anyone can encrypt. The modulus
n (not written as pq) and e are both published, and anyone who wants to send
a message of length n or less just exponentiates. You just have to be sure that
ϕ(n) and e are coprime for it to be defined properly.

Algorithm 11.5.4 (RSA encryption algorithm). In order to encrypt a mes-
sage x via RSA with public key (n, e), you do

xe (mod n) .

140 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

In order for the owner of the key to decrypt a message m, they do

me−1

= mf (mod n)

for any f solving ef ≡ 1 (mod ϕ(n)).

Proof. Since
ef ≡ 1 (mod ϕ(n))

we have ef = kϕ(n) + 1 for some integer k. Hence

(xe)f = xef = xkϕ(n)+1 = (xϕ(n))kx1 ≡ 1kx ≡ x (mod n)

and it all works out, we recover the original message.

And if someone nefarious were to try to decrypt this, they would need access
to f somehow, or something equivalent to it mathematically. That would mean
solving

ef ≡ 1 (mod ϕ(n))

for f without actually knowing what ϕ(n) is!
Naturally, that is pretty easy to compute in the cases above. But in real

life?

p=next_prime(randrange (2^50))
q=next_prime(randrange (2^50))
n=p*q # needs to be bigger than secret
pretty_print(html("The␣first␣part␣of␣my␣key ,␣$%s$,␣is␣the␣

product␣of␣my␣secret␣primes"%n))

The n in the cell above is the product of two primes – but would you like
to try to compute ϕ(n) by hand? Without knowing the actual primes, it could
be very difficult to figure out ϕ(n), which you probably need to get f .

Realistic examples have much larger primes than this, say 100 digits. But
let’s see what would happen next in a ‘real’ example.

message= ' mathiscool ' # needs to be in quotes
secret=encode(message) # needs to be less than n
pretty_print(html("My␣message␣is␣$%s$␣numerically"%secret))

Hopefully the randomness of the p and q I picked didn’t keep n from being
greater than the numerical value of the message.

Now we pick the other piece of our key, e. Believe it or not, it doesn’t really
seem to matter (though no one has proved this) what e is; documentation for
a widely used RSA implementation says this:

The modulus size will be num bits, and the public exponent will
be e. Key sizes with num < 1024 should be considered insecure.
The exponent is an odd number, typically 3, 17 or 65537.

Well, I figure 17 is easier to use than 65537 but less obvious than 3. Let’s
check that it’s coprime to the modulus of the key.

phi=euler_phi(n)
e=17 # needs to be coprime to phi
pretty_print(html("And␣I␣can␣check␣whether␣$e=17$␣is␣

coprime␣to␣$\phi(%s)$"%n))
gcd(phi ,e)==1

http://www.openssl.org/

11.6. RSA AND (LACK OF) SECURITY 141

If you get False above (I did once in a while during testing), then just pick
a different e. (Only evaluate this cell if you have to!)

e=65537 # needs to be coprime to phi
pretty_print(html("Second␣try␣-␣is␣$e =65537$␣coprime␣to␣

$\phi(%s)$?"%n))
gcd(phi ,e)==1

Once we have our key, away we go!
code=mod(secret ,n)^e
pretty_print(html("My␣encoded␣message␣is␣$%s$"%secret))
pretty_print(html("A␣big␣product␣of␣primes␣bigger␣than␣

that␣is␣$n=%s$"%n))
pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html("The␣encrypted␣message␣is␣$%s^{%s}\equiv␣

%s$"%(secret ,e,code)))

Crack that! Who knows what ϕ(n) is?
But if I know it, I can calculate the inverse of e:
f=mod(e,phi)^-1
pretty_print(html("My␣original␣primes␣were␣$%s$␣and␣

$%s$"%(p,q)))
pretty_print(html("So␣

$\phi(n)=(%s-1)(%s-1)=%s$"%(p,q,phi)))
pretty_print(html("Which␣makes␣$f=%s$"%f))
pretty_print(html("And␣the␣decrypted␣message␣turns␣out␣to␣

be:"))
print ' ' .join(decode(code^f))

11.6 RSA and (Lack Of) Security
There are some elementary security issues we can now discuss with RSA. Re-
member, we aren’t learning to be security experts here, and there are far more
powerful techniques available! But these are some underlying fundamentals.
Sage note 11.6.1 (A final reminder to evaluate definitions). Don’t forget to
evaluate this so we can use words as messages instead of just numbers.

def encode(s): # Input must be in quotes!
s = str(s).upper()
return sum((ord(s[i]) -64)*26^i for i in range(len(s)))

def decode(n):
n = Integer(n)
list = []
while n != 0:

if n%26==0:
list.append(chr (64+26))
n -= 1

else:
list.append(chr(n%26+64))

n //=26
return ' ' .join(list)

142 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

11.6.1 Beating the man in the middle
First, remember one problem with Diffie-Hellman key exchange (Section 11.4).
Someone who can control your messages can actually fake them. This can’t
happen with public-key systems (at least not as easily). Here’s why.

Suppose I want to let someone verify I am who I say I am. In a public-key
system, I never need to let f get known, so I encode my signature with f itself
as the exponent!

First, I just turn my signature into a number.
signature= ' Crisman '
code=encode(signature)

Then I raise it to the power of the secret key f , the inverse of the public
key e.

p=89
q=97
n=p*q
phi=euler_phi(n)
e=71
f=mod(e,phi)^-1
secret=mod(code ,n)^f
secret

Now anyone in the world can check my signature by raising this version of
the signature to the public power e modulo n.

secret^e; decode(secret^e)

The reason this works is because

ef ≡ 1 (mod ϕ(n))

and ef = fe in a commutative setting:(
Namef

)e
= (Name)

ef ≡ Name1 ≡ Name (mod n)

Naturally, implementing this is somewhat more complex in real life (e.g. padding
is used), but it is one major digital signing method implemented on many se-
cure systems.

Interestingly, this concept also can be used in the opposite way. Suppose
that someone sends a message using their public signature as above – a message
which later turns out to implicate him or her in illegal activity, a scandal,
offensive behavior, etc. The author may wish to repudiate this message, but
(at least in principle) the digital signature cannot be repudiated in the same
way as other types of messages. (Of course, one can always say that one’s
private key was stolen, so it’s not foolproof!) I am indebted to my colleague,
Russ Tuck, for this observation.

11.6.2 A cautionary tale
Lest you think we are now completely secure, let me warn you about one
possible problem. Remember how we said above that it seems not to matter
too much what e is? Well, that is sort of true, and sort of untrue.

Suppose we chose to send a message using the following primes and ran-
domly (?) chosen exponent e. (Notice that if gcd(e, ϕ(pq)) ̸= 1, this code
wouldn’t have worked at all.)

11.6. RSA AND (LACK OF) SECURITY 143

message= ' hiphop '
secret=encode(message)
p=197108347
q=591324977
e=52665067560570823
n=p*q
phi=(p-1)*(q-1)
code=mod(secret ,n)^e
f=mod(e,phi)^-1
pretty_print(html("My␣encoded␣message␣is␣$%s$"%secret))
pretty_print(html("A␣big␣product␣of␣primes␣bigger␣than␣

that␣is␣$pq=%s\cdot%s=%s$"%(p,q,n)))
pretty_print(html("(which␣means␣my␣secret␣

$\phi(n)=\phi(%s\cdot␣%s)=(%s-1)(%s-1)$␣is␣
$%s$)"%(p,q,p,q,phi)))

pretty_print(html("And␣I␣chose␣exponent␣$%s$"%e))
pretty_print(html("The␣encrypted␣message␣is␣

$%s^{%s}\ equiv%s$"%(secret ,e,code)))
pretty_print(html("The␣inverse␣of␣$%s$␣modulo␣$%s$␣is␣

$%s$"%(e,phi ,f)))
pretty_print(html("And␣the␣decrypted␣message␣turns␣out␣to␣

be:"))
print ' ' .join(decode(code^f))

The above cell just does the RSA algorithm for a particular case, verifying
it works.

Now suppose Alice has sent Bob this message using Bob’s impressive RSA
key (above) of

(n, e) = (116555088756283019, 52665067560570823) .

Let me impersonate Eve, trying to snoop. On a hunch (or, as [C.1.3] puts it,
after attending a seminar at a decryption conference), I figure I don’t have
much to lose by just trying random arithmetic, so I decide to just keep taking
eth powers of the encrypted text (which was already raised to the eth power
once).

trial_decrypt=code
for i in [1..25]:

trial_decrypt=trial_decrypt^e
print ' ' .join(decode(trial_decrypt))

What’s this? You should see a meaningful message appear. Eve would
barely have to do anything to decrypt this!

11.6.3 The explanation
This circumstance may seem mysterious, but it really is related to mathematics
we already used a number of times before. Remember that we could find an
inverse for a modulo n by just taking powers of a, because

a−1 ≡ aϕ(n)−1 (mod n)

Similarly, for any possible message m and public key e, there will always be
some power k of e such

mek ≡ m1 (mod n)

144 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

which is the same as
ek ≡ 1 (mod ϕ(n))

For this to happen, we would have to coincidentally have that not only
gcd(e, n) = 1 (which we always pick), but also that gcd(e, ϕ(n)) = 1. Then
Euler’s Theorem 9.2.3 says that the order of e modulo ϕ(n) is a divisor of ϕ(n),
so we will sometimes find e where that order is a small divisor of ϕ(n).

Of course, in real life this would only happen randomly, so you could just
protect against it by checking the order of e modulo ϕ(n). Here’s how I created
this not-quite-random example!

g = 7 # Pick something coprime to n
print gcd(g,phi)
i = mod(g,phi) # look at it mod phi(n)
print i.multiplicative_order ()
print factor(i.multiplicative_order ())

j=i^(11 * 13 * 37 * 1879 * 22973) # take it to as high a
power I can to reduce the order

print j.multiplicative_order () # make sure this is small
print gcd(j,phi) # check we still have the right gcd
print j

What was the problem here? The issue is that we had a ϕ(n) such that
its group of units had elements of tiny order in its group of units. (Two levels
deep here!)

More precisely, we had a ϕ(n) such that Uϕ(n) had elements of very small
order in it, so that

everysmallorder ≡ 1 (mod ϕ(n))

was possible. How can we avoid this?

11.6.4 A solution
When we found elements of big order (primitive roots, for prime modulus) in
Chapter 10, we relied on having the original modulus p being prime. We did
not tell the whole story, but we did do enough of what happens with other
moduli to know that we should suspect that having a small number of primes
to small powers should let us keep finding elements of big order. (For instance,
we saw that 2n had elements pretty close to being primitive roots.)

And we do know something about ϕ(n). Namely, since n = pq is the
product of two primes, we know that ϕ(n) = (p− 1)(q− 1) is also the product
of two numbers. It would be too much to hope for those to be prime! After
all, p− 1 and q − 1 will both be even, since p and q will be odd primes.

However, it’s possible to pick p and q so that p− 1 = 2p′ and q − 1 = 2q′,
where p′ and q′ are both prime. In that case

ϕ(n) = ϕ(pq) = ϕ(p)ϕ(q) = 2p′2q′ = 4p′q′

so that ϕ(n) at least has order four times a product of (still big) prime numbers.
We will not prove it, but it turns out this is enough to guarantee the

existence of elements of orders p′ − 1 and q′ − 1 in Uϕ(pq), just like we had
elements of order p− 1 in Up. To be precise, we get elements of order

p′ − 1 =
p− 1

2
− 1 and q′ − 1 =

q − 1

2
− 1

11.7. OTHER APPLICATIONS 145

if
p− 1

2
and q − 1

2

are both prime. Here is an example of this with very small p and q.

n = 7*11
phi = euler_phi(n)
[mod(i,phi).multiplicative_order () for i in [1.. phi] if

gcd(i,phi)==1]

Going backwards, we are looking for prime numbers p′, q′ such that 2p′ +
1, 2q′ + 1 are also prime, and then we use p = 2p′ + 1 and q = 2q′ + 1 in RSA,
finding an exponent that has big order in Uϕ(n). In this example, p′ = 5 and
q′ = 3.

Such primes p′ and q′ are called Germain primes, for French mathemati-
cian Sophie Germain – the only female number theorist of note before the
twentieth century, and definitely an important figure.

Research into security of number-theoretic cryptography is ongoing. There
are practical points as well; as just one example, one ePrint discovered that
0.2% of a large set of public keys have “secret keys [which] are accessible to
anyone who takes the trouble” to try to find them. Other studies have found
even more – often because of poor randomness.

Another interesting vulnerability is that there is a significant (in practice,
not in theory) chance that two RSA keys will share a (prime) factor. In another
study it was found that not only did a nontrivial number of apparently un-
related keys share a factor (enabling their complete factorization), many keys
were the same! These would still be hard to factor, but as the authors says,
“[g]iven cryptographic key sizes, we would not expect to see devices generate
a single duplicated key for the population sizes we examined if the keys were
generated with sufficient entropy.” This chapter is just a small taste of issues
to consider, and no substitute for having a real security professional!

11.7 Other applications
These are just the most typical and famous encryption systems used in intro-
ductory number theory texts; there is a huge amount of active research into
the mathematics of cryptography, much of which uses rather more advanced
mathematics. The important point is that we have observed some of the basic
issues to consider in such systems. Another good system to check out which
has mathematics at the same level is the El-Gamal system.

There are also tons of other cryptographic applications one can do which
are not directly about encryption. Two of my favorites are finding ways to flip
a coin over the Internet and how to find out if someone makes more money
than you without them revealing their actual salary. For now, we just share
one secret.

11.7.1 Secret sharing
Suppose that three people work at a company with some trade secret, all of
whom have clearance to know about the secret’s details. However, the company
wants to avoid one of the three being bought off by a competitor and revealing
it in an act of corporate espionage.

http://eprint.iacr.org/2012/064
https://factorable.net/weakkeys12.extended.pdf
https://factorable.net/weakkeys12.extended.pdf

146 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

The company needs to devise a system where, in order to actually gain
access to the details of the trade secret, one needs two of the people involved.
In a movie, you would have an impressive safe with three locks; each person
would have a separate key to one of the locks, and the safe would be constructed
so that any two of the keys would open it.

But real cryptography is not the movies! For one thing, the data is proba-
bly electronic, so it’s really something we need to do digitally. Cryptography
provides the perfect way to deal with these issues. What we will do is indeed
give each person a key – a digital encryption key, of course. (The exposition
is based on the one in the book I first learned it from, [C.1.4], which does this
in full generality.)

Algorithm 11.7.1 (Secret Sharing). Suppose the trade secret is digitally rep-
resented as a large number K. Here are steps to create three different keys;
access to any two of these will allow access to K.

• Choose some prime p > K.

• Choose three numbers m1 < m2 < m3 which are:

◦ mutually coprime and coprime to p, i.e. gcd(mi,mj) = 1 and
gcd(mi, p) = 1.

◦ AND such that
m1m2 > pm3

• Let M = m1m2.

• Now choose some t < M/p at random. Then the keys are as follows:

◦ We have a modified secret

K0 = K + tp

◦ Person i gets the key

k1 = K0 (mod mi)

Proof. What good do these do us? Well, the Chinese Remainder Theorem
allows us to reconstruct K0 modulo mimj with any two keys ki and kj . That
may not seem like a lot; that just gives us things to within multiples of mimj .

But by our choice of M = m1m2 > pm3, we know that M/p > m3 (and
hence M/p > mi as well). So

K0 = K + tp < p+ tp = (t+ 1)p ≤ (M/p)p = M

And certainly if K0 < M , then K0 < mimj , since M is the smallest such
product. So the Chinese Remainder Theorem allows us to reconstruct K0

uniquely, and then K = K0 − tp!
Finally, note that just one person doesn’t have enough information to get

K, since that just tells that

K0 ≡ ki (mod mi) ,

so that
K0 = ki + ℓmi

for all ℓ modulo mi.

11.7. OTHER APPLICATIONS 147

Obviously, we’ll want to see this in action.

Example 11.7.2. This is a slight modification of [C.1.4, Example 7.8]. Sup-
pose your secret was K = 4. Let’s pick p = 7, and numbers 11, 13, 16.

K=4
p=7
m1 ,m2,m3=11 ,13,16

We’ll check quickly that m1m2 > pm3:
m1*m2 >p*m3

So M = 11 · 13 = 143, and we can pick t = 15 more or less randomly as
being less than M/p = 143/7 = 20 3

7 .
M=m1*m2
t=15

So K0 = K + tp = 4 + 15 · 7 = 109:
K_0=K+t*p

This gives keys ki, which are K0 modulo mi:
k1 ,k2,k3 = mod(K_0 ,m1),mod(K_0 ,m2),mod(K_0 ,m3)
k1;k2;k3

Note that in our example, we can check all the conditions in the proof by
hand, but with industrial-size numbers that would not be possible.

Now let’s actually reconstruct the secret K in these cases. First, let’s see
that any two people do have enough information.

CRT(10,5,m1,m2); CRT(10,13,m1,m3);CRT(5,13,m2,m3)

109-t*p

Great!
One might suspect that a lone person, without one of the other secret

sharers, might be able to just ‘guess’ which of the various solutions was right
in this very small example, but it’s actually not clear which is the correct K0.
If you get only one chance, you might not want to try to be lucky!

[10+i*m1 for i in [0..10]];[5+i*m2 for i in
[0..10]];[13+i*m3 for i in [0..10]]

As a note, we should point out that this secret sharing method doesn’t
just protect against someone defecting. It also provides protection against one
of the three becoming incapacitated somehow. If all three were necessary to
unlock the secret, the company is an illness or death or resignation away from
its secret being irretrievably lost without a system of this type.

Finally, it is not terribly hard to extend this to a system that works with
spreading a secret known to n in such a way that k of the n sharers are needed
to access the secret. (Again, see [C.1.4].)

148 CHAPTER 11. AN INTRODUCTION TO CRYPTOGRAPHY

11.8 Exercises
1. Do all the encryptions and/or encodings in Sections 11.1 and 11.2 ‘by hand’.

2. Encrypt your name using an affine method (ax+b) with key (5, 6, 29) (don’t
worry about letters), and decrypt BXHBI.

3. Create your own ax+b (mod n) system of encryption and bring an encrypted
message to class.

4. Use the Diffie-Hellman method of encryption to encrypt a short (three to
five character) message with a 26 < p < 50 ‘by hand’ (i.e. without Sage but
with a calculator). Be prepared to explain your choice of e and p, and calculate
that ef ≡ 1 (mod p− 1) by hand.

5. Draw a diagram and show that if Eve has control of both communications
in D-H key exchange (Algorithm 11.4.1), she can intercept and decrypt all
message.

6. Do this two-parter:
• Suppose you discovered that the message 4363094, where p = 7387543,

actually represented the (numerical) message 2718. What steps might
you take to try to discover e?

• Suppose that you discovered in the previous part by hard work that e =
35. Now quickly decrypt the message 6618138.

7. Pick two primes between 1000 and 2000 and create a public key (n, e) for
them. What is the decryption key f? Show your work.

8. Suppose that n = 9211 and e = 539.
• Encrypt a (short) message.
• Find the decryption key f for this situation, and decrypt your message.
• Use f to sign your name!

9. Come up with your own RSA public-key system by choosing p and q and e
as appropriate, but with n > 10000; then encrypt a short numerical message
and hand in only the public key (n, e) and the encrypted message. (Your
instructor’s job will be to crack it!)

10. Construct a secret and share it in the way described in Algorithm 11.7.1.

11. Learn about a symmetric key cryptosystem in common use. Do you own
any devices which use it?

12. Learn about the El-Gamal public key encryption method. How is it im-
plemented? What mathematics used there is similar to what is used in this
chapter? What is different?

13. Learn about the Advanced Encryption Standard. How is the mathematics
used there different from what is used in this chapter?

Chapter 12

Some Theory Behind
Cryptography

Cryptography is fun in and of itself. However, there are powerful theoretical
issues at play throughout – as evidenced by the ever-increasing number of
publications in this area.

With this in mind, we pick two of the many theoretical questions to address.
Certainly we can only touch on basic questions, but the reader will be gratified
to see how much variety there is even in this!

• How do we find all these big primes, anyway?

• How can we be sure it’s not so easy to break the codes – such as by
factoring big numbers?

12.1 Finding More Primes
As we have seen, it is not terribly hard to find lots of small primes easily. One
can use Sieve of Eratosthenes, or make numbers coprime to known primes and
then factoring them.

The problem is that almost every effort to find lots of big ones has been
stymied. Primes simply do not follow nice enough rules to find them easily.
This is despite the fact that they seem to follow very nice rules on average,
which we will explore in later chapters.

12.1.1 Fermat primes
Here is an interesting historical example. Recall (Subsection 11.5.1) that our
friend Pierre de Fermat thought that numbers of the form 22

n

+1 would always
be prime – numbers such as 5, 17, and 257.

Definition 12.1.1. We call numbers of the form Fn = 22
n

+1 Fermat num-
bers.

However, in 1732 Euler proved that this is not true for n = 5:

for n in [0..7]:
pretty_print(html("If␣$n=%s$,␣then␣

$2^{2^n}+1=2^{2^%s}+1=%s$␣factors␣as␣
$%s$"%(n,n ,2^(2^n)+1,factor (2^(2^n)+1))))

149

150 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

Nobody knows if there are any more primes in this sequence. Even the
prime factors seem to be quite large, though.

There is a special test called Pépin’s test that tests Fermat numbers for
primality. It is equivalent to checking whether 3 is a primitive root of 22n + 1.
Proving it is just a little beyond us right now, so we will not address it here
(see Subsection 17.5.2, though).

12.1.2 Primes from Fermat numbers
However, we can at least prove what seems obvious above – namely, that lots
of primes come out of Fermat numbers. First, we need a lemma.

Lemma 12.1.2. If ℓ = jk, and k is even, then 2ℓ − 1 factors as

2ℓ − 1 = 2jk − 1 =
(
2j + 1

) ((
2j
)k−1 −

(
2j
)k−2

+
(
2j
)k−3 − · · ·+

(
2j
)
− 1
)

Proof. Multiply and/or apply a little induction. (See Exercise 12.7.1.)

Example 12.1.3. For instance, 26 − 1 = 63 factors as

23·2 − 1 = (23 + 1)(23 − 1)

which corresponds to the factorization 9 · 7. Similarly, 212 − 1 = 4095 factors
as

23·4 − 1 = (23 + 1)(29 − 26 + 23 − 1)

which corresponds to the factorization 9 · 455.

Proposition 12.1.4 (Fermat numbers are coprime). Fn = 22
n

+ 1 and Fm =
22

m

+ 1 are coprime if m ̸= n.

Proof. First, notice that any two Fermat numbers are very closely related to
each other; if n < m, then Fn − 1 divides Fm − 1. In fact, one is a power of
the other:

22
m

=
(
22

n
)2m−n

Because of this, using Lemma 12.1.2 with j = 2n and k = 2m−n (which is
certainly even), we get

22
m

− 1 =
(
22

n

+ 1
)((

22
n
)2m−n−1

−
(
22

n
)2m−n−2

+ · · ·+
(
22

n
)1

− 1

)
This implies the divisibility relationship

Fn = 22
n

+ 1 | 22
m

− 1 = Fm − 2

so any number d that divides Fn also divides Fm − 2. Now we do a standard
trick; combining all of the above facts, any divisor of Fn which also divides Fm

must divide Fm− (Fm− 2) = 2, so a common divisor of Fn and Fm could only
be two or one.

But both Fermat numbers are odd, so the gcd must be 1.

12.1. FINDING MORE PRIMES 151

12.1.3 Mersenne primes
Another early attempt at finding big primes was an idea of Marin Mersenne.
Mersenne was a Minim monk who not only acted as a clearinghouse for sci-
entific knowledge in early 17th century France (particularly between Pascal,
Fermat, Descartes, Roberval, and their friends) but also wrote major theolog-
ical and music theoretical treatises of his own.

Mersenne suggested that one try searching for primes of the form 2p − 1,
where p is itself prime.

Definition 12.1.5. In general, numbers of the form Mn = 2n − 1 are called
Mersenne numbers. If they are prime, they are called Mersenne primes.

for p in prime_range (100):
pretty_print(html("If␣$p=%s$,␣then␣$2^p -1=2^{%s}-1=%s$␣

factors␣as␣$%s$"%(p,p,2^p-1,factor (2^p-1))))

Certainly this doesn’t always give primes, but it’s not bad. You can help the
world search for more Mersenne primes if you leave your personal computer on
and connected to the Internet, via the Great Internet Mersenne Prime Search
(GIMPS). Random computers in labs at the University of Central Missouri
and UCLA have found some of the largest known primes this way.

The most recent one (as of this writing) was found in January 2016! The
largest known such primes are very large; this one has over twenty-two million
digits. GIMPS even won a monetary prize for finding these huge ones; they
shared it with many of the people who made it possible.

These primes are far too large and are not common enough to use for
serious applications, but nonetheless help us investigate ideas about primes.
Interestingly, although it is not necessarily an application one might think of,
searching for them can also help more mundane hardware testing. A good
example of this is that computing the GIMPS program uncovered a bug in
a major Intel chip. Number theory can push our hardware (and software!)
beyond our imagination.

The reason implementing something like this is conceivable is because of a
special test which applies just to numbers 2p − 1.

Algorithm 12.1.6 (Lucas-Lehmer test). Let x0 = 4 and let p be prime. To
test whether 2p − 1 is prime, create the list of numbers

xn+1 = residue of x2
n − 2 modulo 2p − 1

Do this p − 2 times; if the result is divisible by 2p − 1 (i.e., is zero modulo
2p − 1), then 2p − 1 is in fact prime.

Example 12.1.7. With p = 5 and 2p − 1 = 31, we would start with x0 = 4;
doing it 5− 2 = 3 times gives:

1. 42 − 2 = 14 modulo 31 is 14

2. 142 − 2 = 194 modulo 31 is 8

3. 82 − 2 = 62 modulo 31 is 0

And of course 31 is indeed prime.

http://www.mersenne.org
http://www.mersenne.org/primes/?press=M74207281
http://arstechnica.com/gadgets/2016/01/intel-skylake-bug-causes-pcs-to-freeze-during-complex-workloads/
http://arstechnica.com/gadgets/2016/01/intel-skylake-bug-causes-pcs-to-freeze-during-complex-workloads/

152 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

@interact
def _(p=(71, prime_range (100))):

test = 4
num = 2^p-1
for i in range(p-2):

test=(test ^2-2)%num
pretty_print(html("The␣test␣says␣"+str(bool(test ==0))))
pretty_print(html("And␣in␣fact␣$2^{%s}-1=%s$␣primality␣

is␣"%(p,num)+str(is_prime(num))))

Proving this is slightly beyond our capabilities right now.

12.1.4 Primes from Mersenne numbers
Although we didn’t prove the test, we can prove the lesser result that Mersenne
numbers are coprime, which (just as with the Fermat numbers) can give us a
lot of interesting prime factors.

Proposition 12.1.8 (Mersenne numbers are coprime). Mersenne numbers
2p − 1 and 2q − 1 with coprime exponents are themselves coprime.

Proof. By way of contradiction, let d > 1 be the gcd of the two numbers 2p−1
and 2q − 1. Let’s investigate the order of 2 ̸= 1 in Ud. (Before reading more,
think about why 2 is even in this group.)

By definition of divisibility,

2p ≡ 1 (mod d) and 2q ≡ 1 (mod d)

By group theory (use Theorem 8.3.11) we know that 2k ≡ 1 means that k is a
multiple of the order |2| of the element 2. Since they both satisfy this, p and
q are both multiples of |2|.

Since p and q are coprime, though, the only possibility for |2| is that |2| = 1.
This is a contradiction, so our assumption that d > 1 was wrong.

See this video featuring Holly Krieger, by Numberphile for an interesting
take on this. Namely, all Mersenne numbers after 26 − 1 (even the ones where
p is not prime!) have a new prime divisor.

12.2 Primes – Probably
Primality testing is full of little tidbits like in the previous section, and tanta-
lizingly devoid of easy methods that work for all special cases. Indeed, none
of these paths lead us to reliable, reasonably fast discovery of large primes for
cryptographic purposes, nor do other computationally infeasible methods like
using Wilson’s Theorem or other even stranger formulas (some of which appear
later in the text).

Instead, what is typically done is to pick a number, and then use tests on
it that do not guarantee primality!

Why would this work? The idea is that if you use enough tests that do not
guarantee primality but have a quite low false positive rate in practice, then
the number you have is more likely to be a prime than the chance that your
computer made an arithmetic error.

This is astonishing, but true; and if you end up with a number that likely
to be prime, you can always check it with one of the various slower tests I will
not describe.

https://www.youtube.com/watch?v=09JslnY7W_k

12.2. PRIMES – PROBABLY 153

12.2.1 Pseudoprimes
We start this discussion with our visual representation of powers (see Subsec-
tion 8.2.1).

@interact
def _(p=(11, prime_range (100))):

P=matrix_plot(matrix(p,[mod(a,p)^b for a in [1..p] for
b in srange(1,p+1)]),cmap= ' gist_earth ')

P.show(figsize =6)

Notice again here that Fermat’s Little Theorem is visible in the second-
to-last column. The graphic has been expanded, so that the last column is a
slight restatement thereof, true for all a:

ap ≡ a (mod p) .

(See Exercise 12.7.3.)
This is useful, as it works for all input. We can now use it to state a test

for possible primality:

Fact 12.2.1. If there is an a such that an ̸≡ a (mod n), then n must be
composite.

So if an ≡ a (mod n) for a given n, it’s at least possible that n is prime.

Definition 12.2.2. If an ≡ a (mod n), we say n passes the base a test.

Definition 12.2.3. If an ≡ a (mod n) but n is not prime, we say it is a
pseudoprime base a.

That is to say, if a number satisfies Fermat’s Little Theorem, we think it is
likely enough to be prime to call it a pseudoprime.

It turns out that everyone from the ancient Chinese to Leibniz used this
test for the base a = 2 to assert numbers are prime. And it doesn’t do a
bad job. As some former students pointed out, it’s sort of like internet date
matching for primes; it doesn’t always work but can succeed reasonably often.

@interact
def _(n=100):

pretty_print(html("Here␣are␣the␣numbers␣through␣$%s$␣
that␣pass␣the␣base␣2␣test"%n))

pretty_print(html("along␣with␣whether␣they␣are␣
actually␣prime"))

for i in [2..n]:
if mod (2^i,i)==2:

pretty_print(html("$2^{%s}\equiv␣2\\ text{␣(mod␣
}%s)$␣and␣the␣primality␣of␣$%s$␣is␣
%s"%(i,i,i,is_prime(i))))

We can change the numbers in the range above to check for more – say up
to 1000, which allows exploring the following question.

Question 12.2.4. Are there any numbers which satisfy the base a test and
are not prime?

To the surprise of many in the world of numbers, the answer is yes. The
numbers n = 341, n = 561, and n = 645 turn out to fall in that category.

154 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

pretty_print(html("We␣factor␣341␣and␣get␣
$%s$"%factor (341)))

pretty_print(html("We␣factor␣561␣and␣get␣
$%s$"%factor (561)))

pretty_print(html("We␣factor␣645␣and␣get␣
$%s$"%factor (645)))

That’s still not bad – out of 171 total such potential pseudoprimes base 2,
only 3 of them actually are not prime, or about one and three quarters percent.

Perhaps unfortunately to cryptographers (though interestingly to pure math-
ematicians!), it turns out that there are infinitely many such pseudoprimes.

Fact 12.2.5. If n is a pseudoprime (base 2), then so is 2n − 1.

We will get this result as a corollary of something stronger soon (see Corol-
lary 12.4.3 and Theorem 12.4.2).

All the Fermat and Mersenne numbers pass the base 2 test, incidentally,
though they are all quite large compared to a typical number you might try.

12.2.2 Prime impostors, and how to avoid them
If we want to check things out more carefully, we can try to test for primality
with a different base. In the next cell, we choose a = 3.

for n in [341 ,561 ,645]:
pretty_print(html("$3^{%s}\equiv␣%s\\text{␣(mod␣

}%s)"%(n,mod(3,n)^n,n)))

As you can see, this exposes 341 and 645 as fakes. What about 561? Let’s
try that one with base 5 as well.

@interact
def _(p=(5, prime_range (50))):

for pr in prime_range(next_prime(p)):
pretty_print(html("$%s^{561}\ equiv␣%s\\text{␣(mod␣

}561)"%(pr,mod(pr ,561) ^561)))

Hmm, that’s interesting. What if I add some primes, like 7 or 11? Try it
above.

In the next cell, I get systematic. We should expect output if 561 doesn’t
pass the base a test for some a.

@interact
def _(p=(5, prime_range (1000))):

pretty_print(html("The␣primes␣up␣to␣$%s$␣for␣which␣
561␣fails␣the␣base␣p␣test:"%p))

for pr in prime_range(next_prime(p)):
if mod(pr ,561) ^561!= pr:

pretty_print(html("$%s^{561}\ equiv␣%s\\text{␣
(mod␣}561)$"%(pr,mod(pr ,561) ^561)))

It appears that p561 ≡ p mod 561 for every prime p! Let’s prove it.

Fact 12.2.6. The number 561 is a pseudoprime for every prime base p.

12.2. PRIMES – PROBABLY 155

Proof. By the Theorem 5.3.1,

a561 ≡ a (mod 561)

if and only if the same congruence holds for all the prime power factors of 561.
We know that

561 = 3 · 11 · 17 ,

so these are the ones to check.
Remember, the exponents for these congruences live in the (mod ϕ(p))

world, so we just need to check what 561 is in each of those worlds. We get:

• 561 ≡ 1 (mod 16 = 17− 1)

• 561 ≡ 1 (mod 2 = 3− 1)

• 561 ≡ 1 (mod 10 = 11− 1)

That is, for p = 3, 11, 17 we see

a561 ≡ a1 (mod p)

Using the Chinese Remainder Theorem, this congruence is always true!

Definition 12.2.7. We call a number which is pseudoprime to every base a,
but is not a prime number a Carmichael number, in honor of the first person
to actually produce such numbers, Robert Carmichael (in 1912).

So is 561 a Carmichael number? We saw the factorization above, but here
it is again:

factor (561)

The proof of Fact 12.2.6 suggests that to find a Carmichael number, we
might want to look at n which are a product of primes pi such that n− 1 ≡ 1
in the exponent world of pi. It turns out that this is true, and we can prove
something even more specific.

Proposition 12.2.8 (Korselt’s Theorem). Carmichael numbers are precisely
those composite n for which n is a product of at least two distinct primes pi
(no squares)

n = p1p2p3 · · · pk with pi ̸= pj

such that
pi − 1 | n− 1

for all the prime factors.

Proof. Prime numbers satisfy almost all the conditions trivially. To show that
561 is a Carmichael number we used this idea in the form n ≡ 1 (mod ϕ(pi))
for all three prime factors, and essentially that is the entire proof that such
numbers are Carmichael numbers.

We will not prove the other half of this theorem (that all Carmichael num-
bers have this form). It is not hard, however, using a slight variant on the
Euler ϕ function one can acquire from investigating Un for composite n.

Example 12.2.9. Here is another Carmichael number.

156 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

n=29341
pretty_print(html("$%s$␣is␣composite␣with␣factorization␣

$%s$,␣but"%(n,factor(n))))
for fact ,pow in factor(n):

pretty_print(html("$%s^{%s}\equiv␣%s\\text{␣(mod␣
}%s)$"%(fact ,n,mod(fact ,n)^n,n)))

pretty_print(html("and"))
for fact ,pow in factor(n):

pretty_print(html("$%s\equiv␣%s\\text{␣(mod␣
}\phi(%s)=%s)$"%(n, mod(n,euler_phi(fact)), fact ,
euler_phi(fact))))

12.3 Another Primality Test
For a long time it was open whether we might be lucky and there are finitely
many Carmichael numbers. However, as was proved in the mid-nineties, there
are infinitely many Carmichael numbers.

So now what? Can we find other ways to reliably get primes?

12.3.1 Another pattern
To answer this, we turn to another result visible in our modular power graphic.

@interact
def _(p=(11, prime_range (100))):

P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in [1..p-1]
for b in srange(1,p)]),cmap= ' gist_earth ')

P.show(figsize =7)

As usual, Fermat’s Little Theorem is the right-hand column. What’s that
pattern in the middle column?

Theorem 12.3.1 (The Square Root of Fermat’s Little Theorem).

a(p−1)/2 ≡ ±1 (mod p) for any odd prime modulus p ∤ a

Proof. Since ap−1 ≡ 1 we know that a(p−1)/2 is a solution to x2 ≡ 1. (Note
that p is odd> so (p− 1)/2 makes sense.)

We can rewrite and factor the congruence x2 ≡ 1 as p | x2−1 = (x+1)(x−1)
and given that p is prime, that means p | x− 1 or p | x+ 1.

Then x ≡ ±1 (mod p). (This is restated in Subsection 16.1.1.) Since
a(p−1)/2 is one such solution, then a(p−1)/2 ≡ ±1 (mod p).

What is the use for us of this theorem? Think similarly to the pseudoprime
situation. Imagine we are testing some number n for primality, but we then
find that

a(n−1)/2 ̸≡ ±1 (mod n) ,

then that number is definitely not prime.
Let’s try this on our pesky Carmichael number, once again starting with

base a = 2.

mod (2 ,561) ^((561 -1) /2)

http://www.math.dartmouth.edu/~carlp/PDF/paper95.pdf

12.3. ANOTHER PRIMALITY TEST 157

Not again! Try another base – maybe a = 3?

mod (3 ,561) ^((561 -1) /2)

Phew, this works, as 3(561−1)/2 ̸≡ ±1 (and 561 is not prime). So this
criterion does help us test at least a little better.

12.3.2 Miller’s test
A slightly stronger variant of this test is called Miller’s test base a for
primality.

Algorithm 12.3.2 (Miller’s test for base a). We will proceed by dividing and
then checking a congruence.

• Begin with taking n− 1; divide it by two, and then check the power

a(n−1)/2 (mod n)

If the result is −1 we say n passes Miller’s test. If the result is not ±1,
we say it fails Miller’s test (since if n is prime, the result would certainly
be ±1). If the result is +1, we continue.

• Assuming a(n−1)/2 ≡ 1, we continue by dividing the power itself by two
and then taking a to that new power. Once again, if the result is −1 we
say n passes the test, and if it is not ±1, we say it fails.

• If the result is +1, continue dividing the power by two, check the result. If
we arrive at the point where we have divided n− 1 by all possible powers
of two and the result is still ±1, then we say n passes the test.

Example 12.3.3. Let’s see a few examples of this. First, here is a number
pseudoprime base 2 – but it does not pass this test, which is good since it’s
composite.

n=1387
pretty_print(html("We␣know␣$%s$␣is␣composite␣because␣it␣

factors␣as␣$%s$"%(n,factor(n))))
pretty_print(html("Let ' s␣check␣$2^{(%s-1)/2}$␣modulo␣$%s$:␣

it ' s␣$%s$"%(n,n,mod(2,n)^((n-1)/2))))

Looking good … But let’s try another pseudoprime number (a Mersenne
number, in fact) to see if it passes, just to be sure.

n=2047
pretty_print(html("We␣know␣$%s$␣is␣composite␣because␣it␣

factors␣as␣$%s$"%(n,factor(n))))
pretty_print(html("Let ' s␣check␣$2^{(%s-1)/2}$␣modulo␣$%s$:␣

it ' s␣$%s$"%(n,n,mod(2,n)^((n-1)/2))))

As we can see, this shows that n = 2047 passes the first part of Miller’s
test base 2, and that there is no further to go because (2047− 1)/2 = 1023 is
odd. So, as far as we know thus far, 2047 is prime.

Let’s try this same test with an actual prime.

158 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

n=1009
pretty_print(html("We␣know␣$%s$␣is␣prime␣because␣it␣

factors␣as␣$%s$"%(n,factor(n))))
pretty_print(html("Let ' s␣check␣$2^{(%s-1)/2}$␣modulo␣$%s$:␣

it ' s␣$%s$"%(n,n,mod(2,n)^((n-1)/2))))
pretty_print(html("Let ' s␣check␣$2^{(%s-1) /2/2}$␣modulo␣

$%s$:␣it ' s␣$%s$"%(n,n,mod(2,n)^((n-1) /2/2))))

We see that this passes Miller’s test the first time, but we keep going since
we got ≡ 1; the second time we got ≡ −1, so we stop and hope it’s prime. (It
is, in this case!)

12.4 Strong Pseudoprimes
Since composite numbers can pass this primality test too, this can get frus-
trating if we don’t organize. So we come up with another name.

Definition 12.4.1. We call a composite number n that passes Miller’s test
base a a strong pseudoprime base a.

The bad news is that strong pseudoprimes exist, as we saw above with
n = 2047. In fact, we can prove a theorem about it, which is analogous to
Fact 12.2.5 and has it as an implication.

Theorem 12.4.2. If n is a pseudoprime base 2, then 2n − 1 is a strong
pseudoprime base 2.

Proof. Let n be composite and odd, but it passes the test

2n ≡ 2 (mod n)

Since n is odd, we can cancel 2, and get

2n−1 ≡ 1 (mod n)

Rewrite this as 2n−1 − 1 = nk for some (odd) integer k, which yields

(2n − 1)− 1 = 2n − 2 = 2
(
2n−1 − 1

)
= 2nk

Now apply Miller’s test to 2n − 1.

2(n−1)/2 = 2nk = (2n)
k ≡ 1k ≡ 1 (mod 2n − 1)

It passes Miller’s test.
All that remains is to show 2n − 1 is composite if n is composite; this is a

fairly straightforward extension of Lemma 12.1.2 (see Exercise 12.7.2).

Corollary 12.4.3. We have proved that if n is a pseudoprime base a, so is
2n − 1. (This is Fact 12.2.5.)

Proof. All we need is that (±1)2 = 1.

Corollary 12.4.4. There are infinitely many strong pseudoprimes (and hence
regular pseudoprimes) base 2.

Proof. Just keep doing 2n − 1.

12.4. STRONG PSEUDOPRIMES 159

Example 12.4.5. For instance, we now know that 2341 − 1 must fall in that
category, and since the second number below is odd, this confirms it.

n=2^341 -1
print mod(2,n)^((n-1)/2) ,(n-1)/2

But there are not strong Carmichael numbers! In fact:

Theorem 12.4.6. If n is an odd composite positive integer, then n passes
Miller’s test for at most (n− 1)/4 bases a between 1 and n− 1.

Proof. We will not do this proof, as it is somewhat long, but it is accessible to
us at this time. It counts numbers of solutions of xℓ − 1 modulo various prime
powers and combines them with the Chinese Remainder Theorem to give a
good counting argument.

Needless to say, no one could compute that many bases to prove primality
for any realistic n! But Rabin used this fact to suggest a test for a probable
prime with probability of failure less than

(
1
4

)k for any desired k.

Algorithm 12.4.7 (Miller-Rabin (probabilistic) primality test). Run Miller’s
test for k different bases less than n − 1. If a number passes all of them, the
probability of failure is less than

(
1
4

)k.

For 100 primes, this is the probability that would come out.

(1./4) ^100

So if you run the test for 100 primes, you are in pretty decent shape.
You can also always use some slow test to prove primality. That is what

is called a certificate of primality, and although you may not believe it,
programs that reliably generate reasonably large (100-200 digits, right now)
primes and can verify it are hot items on the virtual shelves of those who care
about such things.

Finally, let’s see this in action. Remember that we wanted keys larger than
1024 bits for at least a semblance of security in RSA? Here we go with a start:

p=next_probable_prime(randrange (2^1024))
q=next_probable_prime(randrange (2^1024))
n=p*q
pretty_print(html(p))
pretty_print(html(q))
pretty_print(html(n))

The p and q we get above are just probable primes. Verifying them could
take a little longer! Here, we try it with just one of them.

p=next_probable_prime(randrange (2^1024))
%time is_prime(p)

Sage note 12.4.8 (Reminder about timing). Don’t forget, you could use
%time is_prime(p) to time this operation in a worksheet or Sage command line.

160 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

12.5 Introduction to Factorization
Let’s take a last crack at issues directly related to cryptography. (That doesn’t
mean that other stuff we do in this text is unrelated – oh no! Especially the
geometry is connected. But we will not make direct connections.)

We will focus on the main attack on the RSA algorithm, namely factoriza-
tion.

12.5.1 Factorization and the RSA
Let’s look at another toy RSA problem to get a sense of what is going on.
First, I choose a modulus n = 899. I will also use Sage to verify it has two
prime factors, without telling you what they are.

n=899
pretty_print(html("There␣are␣$%s$␣prime␣factors␣and␣their␣

powers␣are␣$%s$␣and␣$%s$."%(len(n.factor ()),
n.factor ()[0][1] , n.factor () [1][1])))

Then I choose an exponent to raise my secret message by …

e=13
pretty_print(html("We␣choose␣$n=%s$␣and␣exponent␣$e=%s$,␣

and␣verify␣that␣$gcd(e,\phi(n))=1$:␣
%s"%(n,e,1== gcd(e,euler_phi(n)))))

I haven’t told you ϕ(n), but this guarantees it is coprime to my (public)
encryption key, which I have chosen to be e = 13. Now we can encode our
message, x = 11.

x=11
message=mod(x,n)^e
message

Now, how could we hope to crack this sinister message? (Assume that
euler_phi(899) is just too huge for Sage to do.) Well, we do know n = 899 and
that e = 13. That could help. Remember, if we knew p and q, we could easily
calculate ϕ(n) without even using Sage, which should be enough.

Question 12.5.1. Can you quickly now factor n without using Sage?

Remark 12.5.2. Be smart about it. Think strategically; how should I have
chosen a public modulus n to make this hard to do? How should p and q
relate?

Hopefully you figured out p and q. Then we just need to find an inverse
modulo ϕ(n) = (p− 1)(q − 1) to get our decryption key.

Sage note 12.5.3 (Trying your primes yourself). You can fill in the values
you got for p and q here to make things work. Try it!

p=
q=
f=inverse_mod(e,(p-1)*(q-1))
f

12.5. INTRODUCTION TO FACTORIZATION 161

And we decrypt:

message^f

This gives us the original message x = 11 again.

This simple example makes it clear why factorization, not just looking for
primes, might be important. To be truthful, many researchers in factorization
simply do it to stay one step ahead of the other side, who is presumably also
researching factorization – so to some extent it is an arms race.

But factorization is also inherently interesting mathematically! Here is an
interesting statement, as an example.

Fact 12.5.4. If I know ϕ(n) and n, and know that n is a product of exactly
two distinct primes, I can easily compute them both.

Proof. Of course, if we know ϕ(n), we already can crack the code, but who
cares; maybe we are given ϕ(n) and n and want the factorization. Here is the
short proof.

Suppose the (as yet unknown) primes are p and q. Then expand our formula
to

ϕ(n) = (p− 1)(q − 1) = pq − p− q + 1 = n− (p+ q) + 1

We now can represent both p+ q and pq as formulas in n and ϕ(n):

• p+ q = n− ϕ(n) + 1

• pq = n

Where might we have a formula with p + q and pq? That should seem
familiar …

(x− p)(x− q) = x2 − (p+ q)x+ pq

So we can simply use the quadratic formula on this expression to get the values
for p and q!

p, q =
(p+ q)±

√
(p+ q)2 − 4pq

2
=

n− ϕ(n) + 1

2
±
√

(n− ϕ(n) + 1)2 − 4n

2

Example 12.5.5. Continuing the example above,

x2 − (899− 840 + 1)x+ 899 = x2 − 60x+ 899 = 0

gives

x =
60±

√
602 − 4(1)(899)

2(1)
= 30±

√
3600− 3596

2
= 30± 1 = 29, 31

12.5.2 Trial division
The first, and oldest, method of factoring is one you already know, and maybe
used a few minutes ago – trial factorization. It is the method we used with
the Sieve of Eratosthenes; you just try each prime number, one by one.

Do you remember what the highest number you would have to try in order
to factor n by trial division is? (Can you prove it?)

The following algorithm does this very naively (and slowly, even for trial
division). Let’s try to talk through what each step does.

162 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

Sage note 12.5.6 (Code for trial division). This is one of the few places where
it really is important to follow the code. That said, the details of the syntax
are not as important as the algorithm – unless you want to harness the power
of computers more effectively!

def TrialDivFactor(n): # We define the function
p = next_prime (1) # We start off by testing the

next prime after 1
top = ceil(math.sqrt(n)) # This was proved to be the

biggest number we need
while p < top: # As long as the prime is less

than that bound , we keep going
if mod(n,p)==0: # In this case , p divides n and

we ' re done!
break # This is Python ' s way of

saying we are done searching
p=next_prime(p) # Otherwise , we try the next

prime until we ' re done looking
if n==1: # We probably could have

checked for this right away
print "1␣is␣not␣prime" # Well , 1 is not a prime!

elif p==n: # If we get all the way through
and end with a prime ...
print n,"is␣prime" # Then our number was prime

elif mod(n,p)==0: # But otherwise ... (!)
print n,"factors␣as",p,"times",n/p # We have a

factorization!
else: # And finally ...

print n,"is␣prime" # We must have gotten
lucky.

Algorithm 12.5.7 (Trial Factorization). To factor n, first enumerate the
primes in ascending order p1, p2, · · · pk, where pk is the largest prime less than
or equal to

√
n. For each prime in order, check whether pi | n. If it does,

terminate by returning pi and n/pi; otherwise n must be prime.

Now let me verify it works on easy examples. Remember, we are just
looking for factors at this point, not complete factorizations.

for z in range (1,18):
TrialDivFactor(z)

Okay, so this seems reasonable. But it’s a little more problematic when
you try to do large numbers, where large means “bigger than you can do by
hand, but nowhere close to the size we looked at in general.” I’ll actually time
how long it takes.

@interact
def _(n=6739815371):

TrialDivFactor(n)
timeit(' TrialDivFactor (%s) ' %n)

Sage actually has this implemented in a much faster way, primarily by using
optimized integers and a special version of Python that allows turning it into
much faster code in the C language (Cython). Notice that it just returns a
single factor – another slight speedup.

12.5. INTRODUCTION TO FACTORIZATION 163

@interact
def _(n=6739815371):

print n.trial_division ()
timeit(' %s.trial_division () ' %n)

That’s roughly one thousand times faster for the initial example! Naturally,
it’s possible to speed up even more. But note that getting the full factorization
slows us back down; after all, one has to check that the remaining factor is
prime (or factor it, if it isn’t).

@interact
def _(n=6739815371):

print n.factor ()
timeit(' %s.factor () ' %n)

Even for this smaller number it takes some actual time – here is where one
sees the difference between different implementations of the same algorithm.

timeit(' TrialDivFactor (997*991) ')

timeit(' (997*991).trial_division () ')

timeit(' (997*991).factor () ')

12.5.3 Starting in the middle
So much for trial division! But we have other tools at our disposal.

Some of you might have tried something other than straight trial factor-
ization when attacking n = 899 from our earlier problem. Reason this way;
since we know that someone is trying to protect a secret, they probably are
not going to pick a number with primes like 3 and 5 in it. After all, that would
be too easy to factor.

In fact, it stands to reason that the primes p and q should be relatively
large compared to n – so why not start in the middle?

This was Fermat’s idea for factoring larger numbers. However, he didn’t
just start with primes in the middle; for one thing, if your number is even
somewhat big and you don’t have a computer or huge list of primes, how
would you know where to start? So Fermat became clever, as always, and used
an algebraic identity to help himself along.

Fact 12.5.8. Write n = ab, with a > b, and assume n is odd. Then we can
write n as a difference of two square numbers.

Proof. Namely, n is the difference of the squares of s = a+b
2 and t = a−b

2 :

s2 − t2 =

(
a+ b

2

)2

−
(
a− b

2

)2

=
a2

2
− a2

2
+

b2

2
− b2

2
+

2ab

4
+

2ab

4
= ab = n

Remark 12.5.9. Why is it fine to assume n is odd in these circumstances?

164 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

This may seem like an obscure identity to us, but at the time (and even
well into the last century) such identities were the bread and butter of algebra,
before we had tools like computers to help us along.

So what Fermat did is to try this identity backwards. Here is his strategy.

Algorithm 12.5.10 (The Fermat factorization algorithm). To find a factor
for a number n, begin by seeking a perfect square s2 bigger than n, but still as
close as possible. Now, do the following until you succeed, increasing s by one
each time.

• Check whether s2 − n is itself a perfect square t2.

• That means we essentially turned

s2 − t2 = n around into s2 − n = t2

Once you succeed, then s and t are not the factors of n; rather, they are

a = s+ t and b = s− t .

Proof. It should be clear why a and b are the factors. But how do we know
this algorithm terminates?

Assuming you started with s as instructed, eventually you will reach s =
(n + 1)/2, which is much larger than

√
n. But then ((n + 1)/2)2 − n =

n2+2n+1−4n
4 = ((n − 1)/2)2. You should check that this gives us the trivial

factorization n = n · 1, though! (See Exercise 12.7.9)

Here is an implementation – again, assuredly slow, but at least verbose in
its explanation – of this strategy. We simply start with the next s above the
square root of n, and just keep trying s2 − n again and again for bigger and
bigger s.

def FermatFactor(n,verbose=False):
if n%2==0:

raise TypeError ,"Input␣must␣be␣odd!"
s=ceil(math.sqrt(n))
top=(n+1)/2
while is_square(s^2-n)==0:

if verbose:
print s,"squared␣minus",n,"is",s^2-n,"which␣is␣

not␣a␣perfect␣square"
s=s+1

t=sqrt(s^2-n)
print "Fermat␣found␣that",s,"squared␣minus",t,"squared␣

equals",n
if s^2==n:

print "So",n,"was␣already␣a␣perfect␣
square ,",s,"times",s

elif s<top:
print

"So",s+t,"times",s-t,"equals",(s-t)*(s+t),"which␣
is",n

elif s==top:
print "So␣Fermat␣did␣not␣find␣a␣factor ,␣which␣

means",n,"is␣prime!"

12.6. A TASTE OF MODERNITY 165

Example 12.5.11. Before we move on, let’s try to factor 143 and 93 using
this algorithm. Remember, we start with s2 − n, where s is the next integer
above

√
n, and see if it is a perfect square; then we increase s by one each time.

After we do them by hand, we can see what Sage does with them to check.

FermatFactor (143, verbose=True)

Well, we struck gold on the first try here! That happens if your number
is the product of two primes which are two apart. (Such primes are known as
twin primes, and have some interesting stories. Among other things, calculat-
ing with them helped find a bug in the Pentium computer chip in 1995; see
Subsection 22.3.2.)

FermatFactor (93, verbose=True)

As you can see, we probably would have been better off with trial division
for n = 93. It’s obvious that it’s divisible by 3, but that takes a long time to
reach from the middle.

12.6 A Taste of Modernity
Now, these methods are the beginnings of how people really factor big numbers.
Typically, one does trial division up to a certain size (maybe the first few
hundred or thousand primes), then perhaps some modification of Fermat to
make sure that there aren’t any factors close to the square root if you are
attacking something like RSA where that would otherwise be advantageous.

Then what?
There are many answers, some of which involve cool things called con-

tinued fractions or number fields. We won’t really touch on those topics,
but the previous section did talk about something very useful in the previous
sections.

Namely, we could come up with some probabilistic/random methods! That’s
right, we are going to try to find a factor randomly!

12.6.1 The Pollard Rho algorithm
Here is the essence of this random approach; it is highly recursive, like many
good algorithms.

Algorithm 12.6.1 (Generic routine for “random” factoring). Follow these
steps.

• Pick some polynomial that will be easy to compute mod (n).

• Plug in an essentially random seed value. (Often the seed is 2 or 3.)

• Compute the polynomial’s value at the seed.

• If that has a non-trivial gcd with n, we have a factor. Otherwise, plug
the value back into the polynomial, and repeat (and hope it eventually
succeeds).

Below is code for the method we’ll discuss in this section. It has a modifi-
cation to the generic algorithm which I will discuss below..

166 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

def PollardRhoFactor(n,kstop=50,seed =2):
d=1
a,b=seed ,seed
k=1
def f(x):

return (x^2+1)%n
while (d==1 or d==n):

a = f(a)
b = f(f(b))
d=gcd(a-b,n)
k=k+1
if k>kstop:

pretty_print(html("Pollard␣Rho␣breaking␣off␣
after␣$%s$␣rounds"%k))

break
if d>1:

pretty_print(html("Pollard␣Rho␣took␣$%s$␣
rounds"%k))

pretty_print(html("The␣number␣it␣tried␣in␣the␣last␣
round␣was␣$%s$,␣which␣shares␣factor␣
$%s$"%(a-b,d)))

pretty_print(html("And␣$%s$␣is␣a␣factor␣of␣$%s$␣
since␣$%s\cdot␣%s=%s$"%(d,n,d,n/d,d*(n/d))))

The essence of the method is that by plugging in the values of the poly-
nomial modulo n, we are generating a ‘pseudo-random’ sequence of numbers.
And a ‘pseudo-random’ sequence might be better than the sequences we used
for trial division or Fermat factorization, precisely because it will hit some
small(ish) factors and some other large random factors. It might also be good
that it could give us numbers which, although not a factor of n, might at least
share a factor with n.

Example 12.6.2. Here are some details. Let x0 = 2 and f(x) = x2+1 (these
could be different, but they are a typical first choice). We create the following
sequence of xi:

• x0 ≡ 2

• x1 ≡ f(x0)

• x2 ≡ f(x1)

• etc., all (mod n).

For instance, doing it with n = 8051, we get

var(' x ')
@interact
def _(seed=2,n=8051, poly=x^2+1, trials =(10 ,[2..50])):

f(x)=poly
for i in range(trials):

pretty_print(html("$x_{%s}=%s$"%(i,seed)))
seed = (ZZ(f(seed)) % ZZ(n))

pretty_print(html("$x_{%s}=%s$"%(i+1,seed)))

12.6. A TASTE OF MODERNITY 167

Now, these might be kind of random, but we will not actually try to find
common divisors of these numbers with n.

Instead, we will try to see if all the differences xi − xj share a common
factor with n, using the (highly efficient to compute) gcd. That is a lot more
opportunities! And hopefully it’s just as (or more) ‘random’, and just as
effective at finding factors.

However, that is too many to check quickly. So instead one modifies this
one last time, with the following modification to the algorithm.

First, remember that polynomials are well-defined in modular arithmetic,
and so the sequence of results will eventually repeat modulo any particular
modulus d, since there are finitely many possible xi. In particular, if d is a
divisor of n, then if gcd(xi − xj , n) = d is a shared divisor found by the pair
xi and xj , then not only will it be the case that

xi ≡ xj (mod d)

but it will also be the case for any number of iterations of f that

fn(xi) ≡ fn(xj) (mod d)

which means the sequence (modulo d, the common divisor) repeats itself every
j − i terms.

Let k = j− i (or the first multiple of this which is greater than i); then the
congruence

xk ≡ x2k (mod d)

will have to be true as well, so all the xi, xj pairs which come from the first one
to share a divisor can be checked by checking just this one gcd(x2k − xk, n).

Algorithm 12.6.3 (Pollard Rho factoring algorithm). Follow these steps.

• Pick some polynomial f(x) that will be easy to compute mod (n) (typically
x2 + 1).

• Plug in an essentially random seed value x0. (Often the seed is 2 or 3.)

• Compute the polynomial’s value at the seed, x1.

• Continue plugging in f(xi) = xi+1, modulo n.

• For each k we check whether

1 < gcd(x2k − xk, n) = d < n .

Proof. We will not formally prove this, as it does not always work. However,
probabilistically (just like with Miller-Rabin) it should succeed for k in the
neighborhood of the size of the square root of the smallest factor of n. So if n
has a big, but not too big, divisor, this test should help us find that divisor.

Example 12.6.4. In the example above, the numbers we would get for the
first three rounds are

• x2 − x1 = 26− 5 = 21

• x4 − x2 = 7474− 26 = 7448

• x6 − x3 = 871− 677 = 194

168 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

These factor as follows:

factor (21),factor (7448) ,factor (194)

and have the following gcds with 8051:

gcd (8051 ,21),gcd (8051 ,7448) ,gcd (8051 ,194)

So this would catch the four factors 3, 7, 19, and 97, which is not bad, and
indeed the final one caught a common divisor with 8051.

PollardRhoFactor (8051)

Remark 12.6.5. This method is usually called the Pollard rho method be-
cause it is due to John Pollard and because a very imaginative eye can interpret
the xi eventually repeating (mod d) (in the example, d = 97) as a tail and then
a loop, i.e. a Greek ρ.

PollardRhoFactor (991*997)

Notice that sometimes the rho method doesn’t come up with an answer
quickly, or at all (it took 50 rounds without success here). I could up this to a
lot more. So what do you do then – bring out the big guns? Not at all – just
as with primality testing, you just change your starting point to try again!

PollardRhoFactor (991*997 , seed =3)

In general, there are other such probabilistic algorithms, and they are quite
successful with factoring numbers which might have reasonably sized but not
gigantic factors. According to Wikipedia:

The rho algorithm’s most remarkable success has been the factor-
ization of the eighth Fermat number by Pollard and Brent. They
used Brent’s variant of the algorithm, which found a previously
unknown prime factor. The complete factorization of F8 took, in
total, 2 hours on a UNIVAC 1100/42.

Well, this was in the 70s. But still, it’s not bad! Things don’t automatically
work quickly even now.

PollardRhoFactor (2^(2^8) +1 ,1000000) # one million rounds!

Hmm, what now? Let’s change the seed.

PollardRhoFactor (2^(2^8) +1 ,1000000 , seed =3)

http://en.wikipedia.org/wiki/Pollard's_rho_algorithm

12.6. A TASTE OF MODERNITY 169

Luckily, we have bigger guns at our disposal in Sage (especially in the
component program Pari), that polish thing off rather more quickly.

factor (2^(2^8) +1)

A little better than two hours on a mainframe, or even on this computer, I
hope you’ll agree.

Sage note 12.6.6 (Building interacts). Real factorization algorithms use sev-
eral different methods to attack different types of factors. We can try to
simulate this in a basic way by creating a Sage interact. Evaluate the first cell
to define things, then the second one, which is the interact.

def TrialDivFactor(n):
p = next_prime (1)
top = ceil(math.sqrt(n))
while p < top:

if mod(n,p)==0:
break

p=next_prime(p)
if n==1:

print "1␣is␣not␣prime"
elif p==n:

print n,"is␣prime"
elif mod(n,p)==0:

print n,"factors␣as",p,"times",n/p
else:

print n,"is␣prime"

def FermatFactor(n,verbose=False):
if n%2==0:

raise TypeError ,"Input␣must␣be␣odd!"
s=ceil(math.sqrt(n))
top=(n+1)/2
while is_square(s^2-n)==0:

if verbose:
print s,"squared␣minus",n,"is",s^2-n,"which␣is␣

not␣a␣perfect␣square"
s=s+1

t=sqrt(s^2-n)
print "Fermat␣found␣that",s,"squared␣minus",t,"squared␣

equals",n
if s^2==n:

print "So",n,"was␣already␣a␣perfect␣
square ,",s,"times",s

elif s<top:
print

"So",s+t,"times",s-t,"equals",(s-t)*(s+t),"which␣
is",n

elif s==top:
print "So␣Fermat␣did␣not␣find␣a␣factor ,␣which␣

means",n,"is␣prime!"

@interact
def _(n=991*997 , method =[' trial ' , ' Fermat ' , ' Pollard␣Rho ']):

if method == ' trial ' :
TrialDivFactor(n)

170 CHAPTER 12. SOME THEORY BEHIND CRYPTOGRAPHY

if method == ' Fermat ' :
FermatFactor(n)

if method == ' Pollard␣Rho ' :
PollardRhoFactor(n)

An interact is just a Sage/Python function, except with @interact before
it. There are many different input widgets you can use; this one demonstrates
using a list and an input box which takes any input. See the interact docu-
mentation or Quickstart for many examples and more details.

If you think this sort of thing is cool, the Cunningham Project is a place
to explore. I particularly like their Most Wanted lists. The idea is this.

The Cunningham Project seeks to factor the numbers bn ± 1 for
b = 2, 3, 5, 6, 7, 10, 11, 12, up to high powers n.

Another interesting resource is Sage developer Paul Zimmermann’s Integer
Factoring Records. Finally, Wagstaff’s The joy of factoring [C.3.11] has tons of
awesome examples and procedures – far too many, really, as well as an excellent
discussion of how to speed up trial division etc.

12.7 Exercises
1. Check the multiplication needed in Lemma 12.1.2.

2. Prove the statement of Lemma 12.1.2 in the case that ℓ is odd.

3. Explain why the extension to Fermat’s Little Theorem just before Fact 12.2.1
is true.

4. Check that 1729 and 2821 are Carmichael numbers.

5. Find a Carmichael number of the form 7 · 23 · p for a prime p.

6. Use either the Fermat or Mersenne coprime facts 12.1.4,12.1.8 to provide a
different proof that there are infinitely many primes.

7. Pick some 4-6 digit numbers that don’t share a factor with 30030 = 2 · 3 ·
5 · 7 · 11 · 13. Find factors by trial division (Algorithm 12.5.7).

8. Do the same with Fermat Factorization (Algorithm 12.5.10). Try to create
a number that takes five steps with Fermat and with trial division.

9. Verify the last bit of the proof of The Fermat factorization algorithm.

10. Try using Pollard Rho on a large number you create out of a few big
primes (not too big!) with different seeds. Can you get it to take longer than a
few turns? Get your prize numbers; now try factoring again with this method
where you have changed the polynomial to x3+1 or something else other than
x2 + 1.

http://doc.sagemath.org/html/en/reference/notebook/sagenb/notebook/interact.html#sagenb.notebook.interact.interact
http://doc.sagemath.org/html/en/reference/notebook/sagenb/notebook/interact.html#sagenb.notebook.interact.interact
http://doc.sagemath.org/html/en/prep/Quickstarts/Interact.html
http://homes.cerias.purdue.edu/~ssw/cun/
http://www.loria.fr/~zimmerma/records/factor.html
http://www.loria.fr/~zimmerma/records/factor.html

Chapter 13

Sums of Squares

We have now more or less exhausted a lot of what we can do with linear
questions. With that in mind, we return to other considerations. As a warmup
for this and ensuing chapters, consider the following question.

Question 13.0.1. Take a positive integer n and try to write it as n = a2 + b2

for a, b ∈ Z. For which n is this possible, for which is it not?

It seems that Albert Girard already knew the answer to this question in
the first quarter of the 17th century, and Fermat discovered it a couple years
later as well. A full proof of the answer to this question did not come until
Euler (no surprise here) about six score years later.

Remark 13.0.2. Girard is an interesting figure, less well-known than his
contemporaries; he apparently was the first to use our modern notation for
trigonometric functions, and spent his adult life in the Netherlands escaping
religious persecution as a Protestant in France. Euler is well known for being
a rather conventional religious family man amidst the Enlightenment court of
Frederick the Great, and for taking a lot of teasing from Voltaire and the king
(among other things, for being partly blind at the time). As with most things
about Fermat’s personal life, it’s less well known that he also had a religious
side; in [C.6.12] a well-known classicist translates a moving poem about the
dying Christ written in honor of one of Fermat’s friends.

So try out the question! Some things to think about while you try this:

• Are any special types of numbers easier to write in this way than others?

• Is there any way of generating new such numbers from old ones?

• If some types of numbers are not a sum of squares, how might you prove
this?

A separate question to at least keep track of is this.

Question 13.0.3. Assuming you can indeed write it in this way, how many
ways you can write a number as a sum of squares?

This chapter is completely devoted to continuing to address questions about
writing numbers as a sum of two squares. It will lead us a little far afield,
of necessity, to ask (and start to answer) questions about congruences again.
Much of this chapter will be devoted to a geometric proof that certain numbers
are indeed representable as as sum of two squares. This chapter is a perfect
illustration of one of the main themes of this text – the unity of mathematics.

171

172 CHAPTER 13. SUMS OF SQUARES

13.1 Some First Ideas

13.1.1 A first pattern
Let’s assume you’ve done some exploration on your own. Here’s a first pattern
that you may have noticed, similarly to patterns in the past.

Fact 13.1.1. If n ≡ 3 (mod 4), then n is not writeable as a sum of squares.

Proof. You should be able to prove this pretty easily based on things you
already know about squares modulo 4. (See Exercise 13.7.1)

The next thing to note is that Sage has a nice command to tell us an answer.

two_squares (29)

If a representation doesn’t exist, we get an error. If it does, Sage returns
two numbers (a, b) such that a2 + b2 = your number.

In the next cell, I pick a number for which n ≡ 1 (mod 4), but this number
is not writeable. Thus Fact 13.1.1 doesn’t just take care of all cases.

two_squares (21)

Fact 13.1.2. There are n ≡ 0, 1, 3 (mod 4) which are not representable as a
sum of two squares.

Proof. Show that 12, 21, and 6 are not. (See Exercise 13.7.2)

You can use this interact to avoid the errors.

@interact
def _(n=29):

try:
a,b = two_squares(n)
pretty_print(html("We␣can␣write␣

${0}={1}^2+{2}^2$".format(n,a,b)))
except ValueError:

pretty_print(html("${0}$␣is␣not␣a␣sum␣of␣two␣
squares".format(n)))

Sage note 13.1.3 (Handling errors). Most computer languages have a way
to “handle” errors if we don’t want to think of them as errors. In Python, this
is the try/except syntax you see above. Basically, we are trying to use the two
squares command, but if it hiccups, we instead just print a nice message.

Remark 13.1.4. We have already addressed a very special case of writing
numbers as a sum of squares. In fact, in Theorem 3.4.5 we saw a precise
characterization of when a perfect square is a sum of two squares. We will
mention this again briefly in Subsection 14.2.2.

13.1. SOME FIRST IDEAS 173

13.1.2 Geometry
Next, we can interpret this question very differently, relying on our geometric
intuition. This graphic helps us visualize the problem.

var('x,y ')
@interact
def _(n=(5, range (100))):

viewsize=ceil(math.sqrt(n))+2
g(x,y)=x^2+y^2
p = implicit_plot(g-n, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
lattice_pts = [[i,j] for i in [-viewsize .. viewsize]

for j in [-viewsize .. viewsize]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
curve_pts = [coords for coords in lattice_pts if

g(coords [0], coords [1])==n]
if len(curve_pts)==0:

show(p+plot_lattice_pts , figsize = [5,5], xmin =
-viewsize , xmax = viewsize , ymin = -viewsize ,
ymax = viewsize , aspect_ratio =1)

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1),pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin
= -viewsize , ymax = viewsize , aspect_ratio =1)

In this graph, n = a2 + b2, then n is the square of the radius of a circle
which has (a, b) as the coordinates of a point. So the sum of squares problem
is actually a geometric one!

That is, we can rewrite our questions like this.

Question 13.1.5.

• Which circles around the origin have lattice points, and which ones do
not?

• If a circle has lattice points, how many does it have?

We will choose to address these questions by connecting to geometry. There
are many ways; for instance, in Section 20.1 we will connect to calculus ideas
in number theory.

13.1.3 Connections to some very old mathematics
The following identity was, separately, already known to Diophantus (remem-
ber Diophantine equations?) around 250, to Brahmagupta (about whom more
later) around 600, and to Leonardo of Pisa (known also as Fibonacci) around
1250.

Fact 13.1.6 (Brahmagupta-Fibonacci identity).(
a2 + b2

) (
c2 + d2

)
= (ac− bd)

2
+ (ad+ bc)

2

Proof. Multiply and cancel.

174 CHAPTER 13. SUMS OF SQUARES

This sort of identity may seem amazing to us, but to people used to needing
lots of symbolic manipulation, it was just part of a toolkit by the time number
theory began ascending with Fermat or Euler.

What is useful about this identity is that it implies the following.

Fact 13.1.7. Products of numbers writeable as sums of squares may also be
written as sums of squares!

Proof. Use 13.1.6 above.

@interact
def _(m=(13 ,[0..100]) ,n=(8 ,[0..100])):

try:
a,b = two_squares(m)
c,d = two_squares(n)
pretty_print(html("We␣know␣we␣can␣write␣

${6}={0}\ cdot␣{1}$␣as␣
$({2}^2+{3}^2) ({4}^2+{5}^2)$".format(m, n, a,
b, c, d, m*n)))

pretty_print(html("But␣it␣is␣also␣writeable␣as␣
$({0}\ cdot {1} -{2}\ cdot {3})^2␣+␣
({0}\ cdot {3}+{1}\ cdot {2})^2␣=␣
{4}^2+{5}^2={6}$".format(a, c , b , d ,
abs(a*c-b*d), a*d+b*c,m*n)))

except ValueError:
pretty_print(html("Please␣pick␣numbers␣that␣are␣

both␣writeable␣as␣a␣sum␣of␣two␣squares"))

A final question for the reader is to ponder why this means that we can re-
ally reduce the question to whether primes are writeable as a sum of squares.

13.2 Primes Can Be Written in at Most One
Way

Most of the rest of this chapter is dedicated to proving what we can about how
to write numbers as sums of squares. We will begin our proofs by talking about
how many ways we can write some numbers as a sum of squares. Namely, we’ll
connect sums of squares to factorization.

Remember that the Brahmagupta-Fibonacci identity says that if two num-
bers are in sums of two squares, so is their product. Remarkably, we can sort
of do this backwards.

First, we need to say what we might mean as writing a number as a sum
of squares in two essentially different ways. Compare

13 = 32 + 22 = 22 + 32

to the situation
25 = 52 + 02 = 32 + 42

We say the latter ways are essentially different. Now we see how to

Fact 13.2.1. If an odd number N is writeable in two essentially different
(nonnegative) ways as a sum of two squares, then N = yz, where y, z > 1 and
y, z are themselves writeable as two squares’ sum.

13.2. PRIMES CAN BE WRITTEN IN AT MOST ONE WAY 175

Proof. Assume first that

N = a2 + b2 = c2 + d2

with a, c odd and b, d even. Then let

k = gcd(a− c, d− b) and n = gcd(a+ c, d+ b) (both are even)

and
ℓ =

a− c

k
=

d+ b

n
and m =

a+ c

n
=

d− b

k
.

Then we get that

N =

[(
k

2

)2

+
(n
2

)2] (
m2 + ℓ2

)
There are some details here, especially in terms of verifying all these num-

bers exist, but they mostly just use the definitions of gcd and parity. See
Exercise Group 13.7.8–13.7.10

Example 13.2.2. For N = 25, what are a, b, c, d?
Then k = gcd(2, 4) = 2, n = gcd(8, 4) = 4 which means ℓ = 1 and m = 2,

yielding

25 =

[(
2

2

)2

+

(
4

2

)2
] (

12 + 22
)
= 5 · 5

And so 25 is a product of numbers themselves writeable as a sum of two
squares.

It is now nearly trivial to prove the following.

Proposition 13.2.3. A prime is writeable in zero or one (positive) way as a
sum of two squares.

Proof. This is clear for p = 2, and if p ≡ 3 (mod 4) this is part of Fact 13.1.1.
It remains to consider the case of p ≡ 1 (mod 4).

• On the one hand, if p is writeable in two different ways, it factors.

• But prime numbers don’t factor nontrivially.

• So there is just one way to do it.

We can see this visually below, in that each of the circles with radius square
root a prime either has no lattice points, or has only positive lattice points that
are (a, b) and (b, a) for one a and b.

var('x,y ')
@interact
def _(n=(5, prime_range (150))):

viewsize=ceil(math.sqrt(n))+.5
g(x,y)=x^2+y^2
p = implicit_plot(g-n, (-1,viewsize), (-1,viewsize),

plot_points = 100)
lattice_pts = [[i,j] for i in [-1.. viewsize] for j in

[-1.. viewsize]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)

176 CHAPTER 13. SUMS OF SQUARES

curve_pts = [coords for coords in lattice_pts if
g(coords [0], coords [1])==n]

if len(curve_pts)==0:
show(p+plot_lattice_pts , figsize = [5,5], xmin =

-1, xmax = viewsize , ymin = -1, ymax =
viewsize , aspect_ratio =1)

else:
plot_curve_pts = points(curve_pts , rgbcolor =

(0,0,1),pointsize =20)
show(p+plot_lattice_pts+plot_curve_pts , figsize =

[5,5], xmin = -1, xmax = viewsize , ymin = -1,
ymax = viewsize , aspect_ratio =1)

13.3 A Lemma About Square Roots Modulo n

We’ll continue our formal investigation of what numbers are in sums of two
squares by taking a look at a lemma seemingly unrelated to this. Later we’ll
see that square roots of negative one in Z (not Zn) are connected to sums of
squares as well, so this is not a completely implausible connection.

Before we do this, let’s codify something we already have discussed, e.g. in
Fact 7.3.1 or Section 7.6.

Definition 13.3.1. We say that a number a has a square root modulo n
if there is some number x with

x2 ≡ a (mod n) .

As an example, here is an alternate proof of Exercise 7.7.10.

Fact 13.3.2. For an odd prime p, the only way there is a square root of −1
modulo p is if p ≡ 1 (mod 4).

Proof. We will use group theory to prove this.
Assume there is a square root, so that

u2 ≡ −1 (mod p) .

Then the order of u in Up is four, since

u4 = (u2)2 ≡ (−1)2 = 1 .

We know that the order
| Up |= p− 1

but then Lagrange’s (group theory) Theorem 8.3.11 says that four divides p−1.
Given that, the only possible kind of prime p solving this is the form 4k +

1.

Remember, this means there can’t be a square root of minus one if p ≡
3 (mod 4). Of course, it also only means that there might be one if p ≡
1 (mod 4), so we certainly need the following lemma to confirm there is one.
(See its use in Subsection 16.1.1, where we combine everything into Fact 16.1.2.)

Lemma 13.3.3. If p ≡ 1 (mod 4), then there actually does exist a square root
of −1 modulo p. That is, there is a u such that

u2 ≡ −1 (mod p) .

13.3. A LEMMA ABOUT SQUARE ROOTS MODULO N 177

Proof. Before we start the proof, recall Theorem 7.5.1, that (p−1)! ≡ −1 (mod
p) for primes. Do you remember our proof? We paired up all the numbers from
2 to p− 2 in pairs of multiplicative inverses (mod p), thus:

(p− 1)! = 1 · 2 · 2−1 · 3 · 3−1 · · · (p− 1) ≡ (p− 1) ≡ −1 (mod p) .

Our strategy for this proof will be similar.
Assume Wilson’s Theorem is true. Now pair up the numbers from 1 to

p− 1 in a different way, in pairs of additive inverses (mod p):

(p− 1)! = 1 · (p− 1) · 2 · (p− 2) · 3 · (p− 3) · · · p− 1

2
· p+ 1

2
=[

1 · 2 · 3 · · · p− 1

2

]
·
[
(p− 1) · (p− 2) · · · p+ 1

2

]
.

This makes sense because (p− 1)/2 is an integer halfway between 1 and p, as
p is odd.

If we rethink things (mod p), we can rewrite this in a more suggestive way.

• Let
(
1 · 2 · 3 · · · p−1

2

)
be called f (this is also

(
p−1
2

)
!, of course).

• Then [
1 · 2 · 3 · · · p− 1

2

]
·
[
(p− 1) · (p− 2) · · · p+ 1

2

]
≡ f ·

[
−1 · −2 · −3 · −p− 1

2

]
≡ f · (−1)

p−1
2

[
1 · 2 · 3 · · · p− 1

2

]
≡ (−1)

p−1
2 f2 .

Remember that our hypothesis is p ≡ 1 (mod 4). Then p = 4k + 1, so
p−1
2 = 2k is even, which means

−1 ≡ f2 or f2 ≡ −1 (mod p)

What is neat about this proof is that it shows there are precisely two square
roots of negative one (as Lagrange’s (polynomial) Theorem 7.4.1 suggests), and
we even have a formula for them:

±
(
p− 1

2

)
!

Somehow this is a satisfying answer. We can check that these really are
square roots of −1 using Sage.

@interact
def _(p=(13 ,[q for q in prime_range (200) if q%4==1])):

k=mod(factorial ((p-1)/2),p)
pretty_print(html("The␣potential␣square␣roots␣of␣-1␣

are␣$\pm␣
\left (\\ frac{%s -1}{2}\\ right)!=%s,%s\\text{␣(mod␣
}%s)$"%(p,k,-k,p)))

pretty_print(html("And␣we␣can␣compute␣that␣
${0}^2\ equiv {1}$␣and␣${2}^2\ equiv␣{3}$␣modulo␣
${4}$".format(k,k^2,-k,(-k)^2,p)))

178 CHAPTER 13. SUMS OF SQUARES

13.4 Primes as Sum of Squares
In the past few sections, one of the many things you may have conjectured
about sums of squares is that every prime of the form p = 4k + 1 can be
represented as the sum of two squares. (We discussed why limiting the question
to primes was sufficient.) It turns out this is true, and we will spend most of
the remainder of this chapter proving it (in the manner of [C.1.1, Chapter
10.6], though expanded greatly to avoid any direct reference to Minkowski’s
Theorem). At the end of the chapter, we’ll combine it with the observation
about primes of the form p = 4k+3 to see exactly which numbers can be thus
represented.

13.4.1 A useful plot
First, let’s look at the following plot on the integer lattice. As you can see,
I am plotting certain points on the circle x2 + y2 = n, with n = 5 to begin.
I have done some ‘magic’ to turn the square root of −1 (mod n) into these
points. Before telling you the magic, this graphic will help us get ready to see
it.

var('x,y ')
@interact
def _(p=(5,[q for q in prime_range (200) if q%4==1])):

u=mod(factorial ((p-1)/2),p)
viewsize=ceil(math.sqrt(p))+2
g(x,y)=x^2+y^2
plot1 = implicit_plot(g-p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [1]-u*coords [0])%p==0]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1+plot_grid_pts+plot_lattice_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

To be precise, I’ve used this square root of −1 to create the regularly
spaced grid of blue points. You can think about it as a bunch of corners of
parallelograms.

Remark 13.4.1. Sometimes we generically call things like the set of blue
dots a lattice, though we will usually use the word lattice only to refer to the
integer lattice of the black dots. A general lattice is something related to a
concept from linear algebra – vectors generated by a basis, except instead of
being vectors over Q or R, they are over Z.

Here is how we constructed the blue grid.

• Assume that p is our prime and k =
(
p−1
2

)
! is our square root of negative

one.

• The blue points all are of the form (ak + bp, a) for all integers a, b.

13.4. PRIMES AS SUM OF SQUARES 179

For one final preliminary, let’s define one more thing for any old point (x, y)
in the integer lattice (and especially for our blue dots).

Definition 13.4.2. We call the norm of a point (x, y) the sum of squares,
N(x, y) = x2 + y2.

13.4.2 Primes which are sums of squares
We are now ready to state our big theorem for the section. (See Fact 14.1.6
for a quite different proof.)

Theorem 13.4.3. Every prime p of the form 4k + 1 can be written as a sum
of squares.

Proof. The proof is fairly long. Here is the strategy; the first step will be
detailed in Subsection 13.4.3 and Subsection 13.4.4.

Suppose we find some blue dot (ak + bp, a) such that

0 < N(ak + bp, a) = a2 + (ak + bp)2 < 2p .

Then we know, modulo p, that

N(ak+bp, a) = a2+(ak+bp)2 ≡ a2+(ak)2 ≡ a2+a2k2 ≡ a2−a2 ≡ 0 (mod p) ,

so p in fact divides the norm of the point (ak + bp, a).
So we have that 0 < a2 + (ak + bp)2 < 2p and that p | a2 + (ak + bp)2,

meaning the only possibility is that p = a2+(ak+bp)2, which gives p explicitly
written as a sum of squares.

Example 13.4.4. For instance, with p = 5, we have that k =
(
5−1
2

)
! = 2! = 2,

so we need to find a point (a, 2a + 5b) such that a2 + (2a + 5b)2 < 2p. Guess
and check with a = 1 and b = 0 gives us

N(1, 2 · 1 + 5 · 0) = 12 + (2 · 1 + 5 · 0)2 = 5 < 2 · 5 = 10

so this point should work, and this does give the correct statement that

5 = 12 + 22 .

What remains to be shown is that there actually is such a blue dot.

13.4.3 Visualizing the proof
To prove the theorem that for any p = 4k + 1 we can write it as a sum of
squares, we need to prove there is a blue dot (somewhere) that is not at the
origin but also has norm smaller than 2p. We will prove this by heavy reference
to graphics, but all claims also make sense algebraically. Sometimes we need
help to be able to think about more involved proofs.

@interact
def _(p=(5,[q for q in prime_range (200) if q%4==1])):

u=mod(factorial ((p-1)/2),p)
viewsize=floor(sqrt (2*p))+2
g(x,y)=x^2+y^2
plot1 = implicit_plot(g-p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot2 = implicit_plot(g-2*p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)

180 CHAPTER 13. SUMS OF SQUARES

grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j
in [-viewsize .. viewsize]]

plot_grid_pts =
points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)

lattice_pts = [coords for coords in grid_pts if
(coords [1]-u*coords [0])%p==0]

plot_lattice_pts = points(lattice_pts , rgbcolor =
(0,0,1),pointsize =10)

show(plot1+plot2+plot_grid_pts+plot_lattice_pts ,
figsize = [5,5], xmin = -viewsize , xmax = viewsize ,
ymin = -viewsize , ymax = viewsize , aspect_ratio =1)

We include a variation on the graphic to make this visually clear. The
bigger circle is the one we care about now – it has formula x2 + y2 = 2p, so
radius

√
2p. If we find a blue point inside that circle but not at the origin,

then the argument in the proof sketch shows it must be on the smaller circle.
Very strangely, the best way to do this is by considering the areas of the

various circles, and showing that they are so big you just must have a blue
point in it (but not at the origin). Let’s see how this works.

The area of the bigger circle, which has radius
√
2p, is π(

√
2p)2 = 2πp.

Since π > 2, we have that 2π > 2(2) = 4, which mean that the area of the
bigger circle is bigger than 4p.

@interact
def _(p=(5,[q for q in prime_range (200) if

q%4==1]) ,triangles_on=False):
u=mod(factorial ((p-1)/2),p)
viewsize =2*p
g(x,y)=x^2+y^2
plot1 = implicit_plot(g-p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot2 = implicit_plot(g-2*p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot3 = line ([[0,0], [2*p-2* Integer(u) ,2], [2*p,0],

[2* Integer(u) ,-2], [0,0]], rgbcolor =(1,0,0))
plot4 = line2d ([[0,0], [2*p,0]], rgbcolor =(1,0,0),

linestyle= ' -- ')
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [1]-u*coords [0])%p==0]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =10)
plot_lattice_pts2 = points ([[2* coords [0],2* coords [1]]

for coords in lattice_pts], rgbcolor =
(0,1,0),pointsize =20)

if triangles_on:
show(plot1+plot2+plot3+plot4 + plot_grid_pts +

plot_lattice_pts+plot_lattice_pts2 , xmin =
-viewsize/2, xmax = viewsize , ymin =
-viewsize/2, ymax = viewsize/2, aspect_ratio =1)

else:
show(plot1+plot2+plot_grid_pts + plot_lattice_pts

+ plot_lattice_pts2 , xmin = -viewsize/2, xmax =
viewsize , ymin = -viewsize/2, ymax =
viewsize/2, aspect_ratio =1)

13.4. PRIMES AS SUM OF SQUARES 181

What we do now is to create a sublattice of the blue dots, which we will
color green. (This is just a subset of a lattice which still otherwise satisfies the
conditions for being a lattice.)

To create the green sublattice, take all blue dots, and just double their
coordinates. (Naturally, each green dot is still a blue dot.)

Next, we take a look at the triangles made by the different colored dots.
(You can click on triangles_on in the interact above to see them in red.) Com-
pare the thinnest such triangles.

• The thinnest triangle made by blue dots would be from the origin and
the points (p, 0) (with a = 0, b = 1) and (k, 1) (with a = 1, b = 0).

• The thinnest triangle made by the green dots has width 2p (from the
origin to (2p, 0), the previous point doubled) and height 2 (to the point
(2k, 2), which is (k, 1) doubled).

The green dot triangle has area 4p/2 – so the parallelogram with the solid
red lines made of two of them has area 4p. This area means it is smaller than
the bigger circle.

This proof is very visual, so before we move on, make sure you believe all
of this. Then we will analyze the exact areas involved more closely to finish.
Remember, we are trying to prove that there is a blue point inside the bigger
blue circle, but away from the origin.

13.4.4 Finishing the proof
Let’s take stock.

• We’ve created circles of various sizes to find points in, and two lattices
to examine.

• The area of the circle is more than the area (4p) of the smallest parallel-
ogram made by green dots.

• Because all points inside the parallelogram (not just green, blue, or lattice
points) will repeat outside of it in another parallelogram, 4p is the biggest
area you can have and not repeat some point.

• So, the circle, having a bigger area, must have two points (not necessarily
blue points, just points on the plane) which are repeated by the shifting
of this parallelogram (called a fundamental region).

This may sound a little suspicious, so let’s be sure about it.

Claim 13.4.5. The circle has two points of some kind repeated by shifting the
fundamental region.

Proof. Call the parallelogram in red L. The circle is composed of all the pieces
of the circle which lie in different parallelograms (comprised of green dots)
congruent to L.

Let’s ‘move’ the pieces in the circle to the corresponding part of L. Now
suppose there are not two points which are repeated in the big circle. Then
this movement of pieces of the circle to L is one-to-one.

If that movement is one-to-one, then the pieces of the circle must at most fill
up L, but the circle has a bigger area than L! This is not possible, since moving
doesn’t change area, and thus there are two points which are repeated.

182 CHAPTER 13. SUMS OF SQUARES

Now let’s continue the proof of the main Theorem 13.4.3. To start, take
two points that are repeated in the circle; call them v and w. Then if we
consider the points as vectors, v−w is itself a green point, since the difference
one shifts them by must be one of the obvious directions of the parallelogram
in order to be a repeat.

By the construction of the green points, that means (v − w)/2 is a blue
point. This point can’t be the origin, since v and w are different!

Further, this blue point is inside the big circle (so its norm is less than 2p).
Why?

• Since the circle is nicely symmetric about the origin, the point −w is also
in the circle.

• The midpoint of the line segment connecting v and −w, both points in
the big circle, is in fact (v − w)/2 = v+(−w)

2 .

• Circles are convex, so this blue point being between v −w means it’s in
the big circle. So we have found a blue point other than the origin in the
blue circle.

Here is the picture of how to find the blue point in the circle. The black
points are v, w, and −w, and you see the midpoint of the line is indeed blue.

@interact
def _(p=(5,[q for q in prime_range (200) if q%4==1])):

u=Integer(mod(factorial ((p-1)/2),p))
big = math.floor(math.sqrt (2*p))
viewsize =2*p
g(x,y)=x^2+y^2
plot1 = implicit_plot(g-p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot2 = implicit_plot(g-2*p, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 100)
plot3 = line ([[0,0], [2*p-2*u,2], [2*p,0], [2*u,-2],

[0,0]], rgbcolor =(1,0,0))
plot4 = line2d ([[0 ,0] ,[2*p,0]], rgbcolor =(1,0,0),

linestyle= ' -- ')
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [1]-u*coords [0])%p==0]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =10)
big_lattice_pts = [[2* coords [0],2* coords [1]] for

coords in lattice_pts]
plot_lattice_pts2 = points(big_lattice_pts , rgbcolor =

(0,1,0),pointsize =20)
w = []
v = []
mw = []
for i in [1..2*p-1]:

for coords in [l for l in big_lattice_pts if
l!=[0 ,0]]:
if (i+coords [0]) ^2+(coords [1]-1)^2 < 2*p:

for coords2 in [k for k in big_lattice_pts
if k!=[0 ,0] and k!= coords]:

13.4. PRIMES AS SUM OF SQUARES 183

if (i+coords2 [0])^2 + (coords2 [1]-1)^2
< 2*p:
w = [i+coords [0], coords [1]-1]
v = [i+coords2 [0], coords2 [1]-1]
mw = [-a for a in w]
break

if w: break
if w: break

if not v:
for i in [j for j in [u..p+u]]:

for coords in [l for l in big_lattice_pts if
l!=[0 ,0]]:
if (i+coords [0]) ^2+(coords [1]-1)^2 < 2*p:

for coords2 in [k for k in
big_lattice_pts if k!=[0 ,0] and
k!= coords]:
if (i+coords2 [0])^2 +

(coords2 [1]-1)^2 < 2*p:
w = [i+coords [0], coords [1]-1]
v = [i+coords2 [0], coords2 [1]-1]
mw = [-a for a in w]
break

if w: break
if w: break

if not v:
print [p-u..2*p-u]
for i in [j for j in [p-u..2*p-u]]:

if i==6: print i
for coords in [l for l in big_lattice_pts if

l!=[0 ,0]]:
if coords ==[-4,2] and i==6: print coords
if (i+coords [0]) ^2+(coords [1]+1) ^2 < 2*p:

for coords2 in [k for k in
big_lattice_pts if k!=[0 ,0] and
k!= coords]:
if coords2 ==[-2,-4] and i==6 and

coords ==[-4,2]: print coords2
if

(i+coords2 [0]) ^2+(coords2 [1]+1) ^2
< 2*p:
w = [i+coords [0], coords [1]+1]
v = [i+coords2 [0], coords2 [1]+1]
mw = [-a for a in w]
break

if w: break
if w: break

P1=point(v,pointsize =20, rgbcolor =(0,0,0))
P2=point(w,pointsize =20, rgbcolor =(0,0,0))
Z=point(mw,pointsize =20, rgbcolor =(0,0,0))
plot5 = line([v,mw],rgbcolor =(0,0,0))
plot6 =

point (((v[0]+mw[0])/2,(v[1]+mw[1]) /2),pointsize =20)
show(plot1+plot2+plot3+plot4 + P1+P2+Z+plot5+plot6 +

plot_grid_pts + plot_lattice_pts +
plot_lattice_pts2 , figsize = [5,5], xmin =
-viewsize/2, xmax = viewsize , ymin = -viewsize/2,
ymax = viewsize/2, aspect_ratio =1)

184 CHAPTER 13. SUMS OF SQUARES

Sage note 13.4.6 (Examining code is good for you). This is by far the longest
code we’ve seen up to this point. It is a brute force check of all movements of
all points in the parallelogram to find two points in the bigger circle. Can you
think of ways to make it more efficient?

Believe it or not, we’ve concluded the proof – whew!
Why was this so hard? I can think of three reasons.

• First, we are trying to prove something about squares by proving some-
thing about square roots. It works, but it means there will be many
steps.

• Secondly, we are not just algebraically proving it exists by solving an
equation; we are forced to prove our square root exists with inequalities,
which brings another set of complication.

• Third, we are looking not just at any old inequalities, but truly geometric
ones, and so we must gain insight that way – worthwhile, but stretching.

Remark 13.4.7. Many more theorems of this kind can be proved using these
techniques – the names of Minkowski and Blichfeldt show up in further gener-
ality, which we are intentionally avoiding. Those who have had some physics
may have heard of Minkowski before, as his work nearly beat Einstein to the
notion of special relativity.

13.5 All the Squares Fit to be Summed
There is one loose end. What are all the numbers we can represent as a sum
of squares?

For instance, why are some composite numbers of the form 4k+1 not write-
able as the sum of two squares? Also, many even numbers are representable –
how do we tell which even numbers are writeable? We conclude our discussion
by proving the full statement, after a couple of preliminary lemmas.

Lemma 13.5.1. If N has only primes of the form 4k + 1 and 2 as factors, it
is writeable as a sum of two squares.

Proof. Each of those primes is representable, so we can use Brahmagupta-
Fibonacci identity to write the intermediate products that way; hence all such
products are representable.

Example 13.5.2. Consider this:

2 · 13 · 17 = 442 =
(
12 + 12

) (
32 + 22

)
· 17

=
[
(1 · 3− 1 · 2)2 + (1 · 2 + 1 · 3)2

] (
42 + 12

)
=
(
12 + 52

) (
42 + 12

)
= (1 · 4− 5 · 1)2 + (1 · 1 + 5 · 4)2 = 12 + 212

Lemma 13.5.3. If N only has prime factors of the form 4k+3 to even powers,
it is writeable as a sum of two squares.

Proof. First, p2 is trivially always representable, since p2 = p2 + 02. Now,
rather than using Fact 13.1.6, simply multiply this by N/p2 (which itself must
be a perfect square).

13.6. A ONE-SENTENCE PROOF 185

Example 13.5.4. Consider this:

35802 = 442 · 34 =
(
12 + 212

)
32 · 32

= 12 · 32 · 32 + 212 · 32 · 32 = 92 + 1892

Theorem 13.5.5. N can be written as a sum of two perfect squares precisely
if it has only even powers (including zeroth powers) of any primes of the form
4k + 3.

Proof. From 13.5.1 and 13.5.3, the only case left to consider if N has a prime
of the form p = 4k+3, but to an odd power. This seemed to be the bottleneck
in our exploration.

By way of contradiction, suppose that it is possible to write

N = a2 + b2 .

First, divide this equation by any factors of p common to both sides to get

M = c2 + d2

The power of p we divided by (so that N = Mpk) must be an even power, since
each term on the right-hand side is a perfect square and can only contribute
even powers of primes by the Fundamental Theorem of Arithmetic.

Since N had an odd power of p, we know M still has an odd power of p
dividing it, yet p ∤ c, d.

Take everything modulo p to get the congruence

0 ≡ c2 + d2 (mod p) .

Since p ∤ c, we can multiply this congruence by
(
c−1
)2 to get

0 ≡ 1 +
(
c−1
)2

d2 ⇒ −1 ≡
(
c−1d

)2 (mod p)

This is a contradiction, as there is no square root of −1 modulo p by
Fact 13.3.2!

If this still seems too neat and dried, it can be instructive to get insight by
plugging in different n below. When do you get an error, when not?

n=20
factor(n), two_squares(n)

(As a bonus, can you turn this into an interactive cell? See Sage note 12.6.6.)

13.6 A One-Sentence Proof
There is a completely different approach to this problem which has gained
some notoriety. Often one wants multiple approaches in order to understand
a problem more deeply; here, we have picked a geometric approach.

It happens that D. Zagier provided the culmination of a series of proofs
using only sets and functions, and that proof takes only one sentence to write
down! This is reproduced from the famous article [C.6.2] with the following
title:

186 CHAPTER 13. SUMS OF SQUARES

Proposition 13.6.1 (A One-Sentence Proof that Every Prime p ≡ 1 (mod 4)
is a Sum of Two Squares).

Proof. The involution on the finite set

S = {(x, y, z) ∈ N3 | x2 + 4yz = p}

defined by

(x, y, z) →

(x+ 2z, z, y − x− z) if x < y − z

(2y − x, y, x− y + z) if y − z < x < 2y

(x− 2y, x− y + z, y) if x > 2y

has exactly one fixed point, so |S| is odd and the involution defined by (x, y, z) →
(x, z, y) also has a fixed point.

In Exercise Group 13.7.17–13.7.21, you will be asked to verify the various
statements that this proof depends on. Although perhaps it is not the easiest
single sentence after all, it is still fun – fun enough that you can watch a couple
videos about it from Numberphile!

13.7 Exercises
1. Prove that if n ≡ 3 (mod 4), then n cannot be written as a sum of two
squares (13.1.1).

2. Prove Fact 13.1.2.

3. Show that if n ≡ 7 (mod 8), then n cannot be written as a sum of three
perfect squares.

4. Find two numbers that can be written as a sum of three squares in two
different ways (where different really means different, not 12 + 02 + 02 = 02 +
12 + 02).

5. Find as many integers n as possible which are only writeable as a sum of
squares via n = a2 + a2 = 2a2, i.e. n is not writeable as a sum of distinct
squares.

6. Verify Fact 13.1.6 by hand (i.e. write all the algebra out).

7. Let r2(n) be the number of different ways to write n as a sum of two
squares, where every different way (not just essentially different) is counted.
For instance,

r2(2) = 4 because (−1, 1), (−1,−1), (1, 1), (1,−1) all work.

Prove that
r2 (2

m) = 4 for all m .

Let N be odd, and let N = a2 + b2 and n = c2 + d2, where the pairs (a, b) and
(c, d) are both positive and not the same or just switched in order. Verify the
following to finish the proof of Fact 13.2.1.

It’s okay to assume that a and c are odd and b and d are even.8.
If this is the case, show that k = gcd(a−c, b−d) and n = gcd(a+c, b+d)
are both even.

9.

Assuming the previous two exercises, show that a−c
k = b+d

n and b−d
k =

a+c
n .

10.

https://www.youtube.com/watch?v=yGsIw8LHXM8

13.7. EXERCISES 187

Pick four random (to you) three digit numbers which are not of the form 4k+3.
Decide whether these numbers are a sum of two squares without using
Sage.

11.

Pick two of those numbers and write them in all possible ways as a sum
of two squares.

12.

13. Show a positive integer k is the difference of two squares if and only if
k ̸≡ 2 (mod 4).

14. Prove that if n ≡ 12 (mod 16), show that n cannot be written as a sum
of two squares.

15. Is there any congruence condition modulo 6 for which a number cannot
be written as a sum of two squares?

16. Referring to the proof of the main theorem: Check that the pictures you
get from some other primes with these lattices really work.

Check every piece of the Zagier proof (Proposition 13.6.1).

The set S is finite. Try figuring out what S is for p = 5 or p = 13, the
smallest such primes.

17.

Each (x, y, z) has exactly one of the three things to go to.18.

The function in question is an involution. That is, if you take the
output and apply the function a second time, you get your original
(x, y, z) back (this is a little tougher).

19.

If (x, y, z) goes to (x, y, z) then it turns out that (x, y, z) = (1, 1, p−1
4)

(you will probably need to use the definition of S for this, and remember
that we assume p ≡ 1 (mod 4)).

20.

That if the map (x, y, z) → (x, z, y) has a point which is fixed (the
output is same as input) then this, combined with the definition of S,
means that p is writeable as the sum of two squares.

21.

188 CHAPTER 13. SUMS OF SQUARES

Chapter 14

Beyond Sums of Squares

There are many fascinating topics that sums of squares connect to. This chap-
ter gives some interesting points of view on several.

14.1 A Complex Situation
14.1.1 A new interpretation
Let’s see another to interpret sums of squares. Suppose first that, as before,

n = a2 + b2 .

Then, if we let the symbol i stand for a (putative) square root of negative one,
so that −1 = i2, we could legitimately factor the equation:

n = a2 − (i2b2) = (a+ bi)(a− bi)

Example 14.1.1. For instance, we could factor the prime number thirteen!!!

print 3^2+2^2; print (3+2*i)*(3-2*i)

It turns out that there is a beautiful connection between the theory of
numbers representable as a sum of two squares and the following beautiful
definition.

Definition 14.1.2. The Gaussian Integers Z[i] may be defined as the set

Z[i] = {a+ bi | a, b ∈ Z}

This does assume that we can have such a symbol i with i2 = −1.

Remark 14.1.3. These are named after C.F. Gauss, who explored them a
great deal, though others were at least incipiently aware of them. There are so
many stories about Gauss that one can hardly know where to begin, and he
will come up again when we continue exploring prime numbers in Section 21.2;
perhaps most relevant to our work is that he actually published about Gaussian
integers!

If we bring back our lattice of integer points, we can think of such numbers
as being points on the lattice, where the coordinate point (3, 2) corresponds to
3 + 2i, one of the ‘factors’ of 13. I’ll plot both ‘factors’ below.

189

190 CHAPTER 14. BEYOND SUMS OF SQUARES

lattice_pts = [[i,j] for i in [-5..5] for j in [-5..5]]
plot_lattice_pts =

points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)
show(plot_lattice_pts + point ([3,2], pointsize =30) +

point([3,-2], pointsize =30),aspect_ratio =1)

There are many amazing questions to ask about this, and wonderful con-
nections to abstract algebra. For example, the factorization of a2 + b2 yielding
i, a “square root of negative one” over the integers, should mean we aren’t sur-
prised that there is a connection with “square roots modulo n”. More to our
purposes, there is a direct connection to writing numbers as a sum of squares,
and we will show that it can be done more directly in the next section.

14.1.2 Revisiting the norm
How can we decide whether the verb “factor” becomes the legitimate word
factor in such a number system? The reason we can is because prime numbers
can be defined for this new system as well.

Fact 14.1.4. Prime numbers in the Gaussian integers are of the following
three possible forms:

• The form p = 4n+ 3 for a (normal) integer prime

• The form pi for p of the same form

• The factors with respect to i of the (normal) primes of the form p = 4n+1
and p = 2

We know the latter exist because we can write them as the sum of two
squares.

Viewing these so-called Gaussian primes is fun. Many authors have
created beatiful graphics such as this.

@interact
def _(viewsize =10):

lattice_pts = [[i,j] for i in [-viewsize .. viewsize]
for j in [-viewsize .. viewsize]]

plot_lattice_pts =
points(lattice_pts ,rgbcolor =(0,0,0),pointsize =2)

GG.<I> = GaussianIntegers ()
Gaussian_primes = [x for x in lattice_pts if

GG(x[0]+x[1]*I).is_prime ()]
plot_Gaussian_primes =

sum([polygon ([(G[0]+1/2 ,G[1]+1/2) ,
(G[0]+1/2 ,G[1] -1/2), (G[0]-1/2,G[1] -1/2),
(G[0]-1/2,G[1]+1/2)],alpha =.6) for G in
Gaussian_primes])

show(plot_Gaussian_primes+plot_lattice_pts ,
aspect_ratio =1)

pretty_print(html("Plot␣of␣Gaussian␣primes␣with␣
coordinates␣less␣than␣{0}␣in␣absolute␣
value".format(viewsize)))

The basic reason this even makes sense is that we can use the Euclidean
algorithm here. First, let’s use the same definition of norm as we used earlier
for the points, so that N(x+ iy) = x2 + y2.

14.1. A COMPLEX SITUATION 191

Example 14.1.5. The norm of 3 + 2i is 32 + 22 = 13 while the norm of
13 = 13 + 0i is 169.

The difference is that instead of saying simply that a = bq + r for r < b,
we will need to compare the norms of r and b. Namely, you can write two
Gaussian integers a and b as a = bq + r, where 0 ≤ N(r) < N(b). Continue
this process just as in Euclidean algorithm, and it ends by the Well-Ordering
Principle to define gcd(a, b). In this case ±1 and ±i are all possible stopping
points if a and b don’t share a factor.

Further, if g and h are “relatively prime” Gaussian integers (gcd(g, h) = ±1
or ±i), then there are other such integers x and y such that gx + hy = 1. So
we have a Bezout identity as well to play with.

Computing with Gaussian integers this way is possible in Sage.
ZZI.<I> = GaussianIntegers ()
(1+I).is_prime ()

Crucially, I am skipping whether we actually have unique factorization
in Z[i]; this is true, and used below in Fact 14.1.6, but properly belongs in an
algebra course.

14.1.3 A different approach to sums of squares
This allows a quite different approach to the fact primes of the form 4n + 1
can be written as a sum of squares. We could use complex numbers instead.
Unfortunately, it requires us to take an algebraic fact on faith instead of the
fact we proved using geometry; there are no shortcuts. Still, it’s worth looking
at.
Fact 14.1.6. If p ≡ 1 (mod 4), then p can be written as a sum of two squares.
(This is Theorem 13.4.3.)
Proof. We already know, from the proof of Lemma 13.3.3 that

r =

(
p− 1

2

)
!

is a square root of −1 modulo p. But now, instead of doing geometry, let’s
look at what that means.

By definition of
r2 ≡ −1 (mod p)

we know that p | r2 + 1. Since r2 + 1 is r2 − i2, let’s factor:

r2 + 1 = (r + i)(r − i)

Clearly p does not divide either of those as something of the form a+bi. So
(crucially!), if we assume the Fundamental Theorem of Arithmetic still holds
for Gaussian integers, then p factors in Z[i], and has a prime divisor a+ bi (in
the sense of Subsection 14.1.2).

It’s not hard to show that then a− bi also must divide p. We’ll skip this.
To finish up, we see that

(a+ bi)(a− bi) | p2 ⇒ a2 + b2 | p2

and the factor a2 + b2 is a nontrivial divisor, since a+ bi was a proper divisor
of p. So the only possibility is

a2 + b2 = p .

192 CHAPTER 14. BEYOND SUMS OF SQUARES

14.2 More Sums of Squares and Beyond
There are many interesting questions one can ask about sums of squares we
have not even touched upon. Each of these is very worthy of independent study
by undergraduates, and also ideal for computer exploration.

14.2.1 Summing more squares
Fact 14.2.1 (Sums of three squares). A positive integer may be written as a
sum of three squares if and only if it is has the form of a product of an even
power of two times an odd number which is congruent to seven modulo eight.

Proof. We will skip the proof, but see Exercise 14.4.4 and Exercise 14.4.5.

One might think that every type of square sum is not always possible, but
we have this result (see also Exercise 14.4.6), first conjectured by our old friend
Bachet:

Fact 14.2.2 (Lagrange’s four square theorem). Any nonnegative integer may
be written as a sum of four squares.

Proof. There are both algebraic proofs using facts similar to Fact 14.1.6 and
geometric proofs using Minkowskian ideas from Subsection 13.4.4. These are
both interesting, because on the one hand it can use the extension of the
complex numbers called the quaternions, and on the other hand it shows
that geometric ideas can still work in more than two dimensions.

One can generalize in many ways.

Example 14.2.3. For example, one can ask how many ways one can write
a number as a sum of three, four, etc. squares. In Exercise 13.7.7 we defined
r2(n) as giving the number of ways to write n as a sum of two squares; the
equivalent functions here would be rk(n) for n ≥ 1. In that case, Lagrange’s
four square theorem above could be more succinctly stated as

r4(n) ≥ 1 for all n ≥ 0

But in general one may want to be able to compute this, or to give bounds for
it as a function of n.

14.2.2 Beyond squares
There are other directions one can generalize our questions. For instance:

Question 14.2.4.

• What numbers can be written as a sum of two cubes?

• Three cubes?

• k cubes?

It turns out that any number can be written as a sum of at most nine
cubes. In the first half of the twentieth century, American mathematician
L. E. Dickson proved this, and with the assistance of very substantial tables
generated by hand by some of his assistants (before the advent of the digital
computer!) he showed that every number except 23 and 239 can be represented
by eight or fewer cubes!

Alternately, one could keep the number of powers the same, but change the
powers.

14.2. MORE SUMS OF SQUARES AND BEYOND 193

Question 14.2.5.

• What numbers can be written as a sum of two cubes?

• Two fourth powers?

• Two nth powers?

The reader should feel free to explore this in Exercise 14.4.7. Note that the
answers for odd powers will be very different if one allows negative numbers!

Now it is time to recall our discussions in Section 3.4, alluded to in Re-
mark 13.1.4. In that situation, we essentially were looking for integer solutions
to

x2 + y2 = z2

In fact, we characterized such triples x, y, z in Theorem 3.4.5.
But we can reinterpret this as a question in this context – when is a perfect

square is a sum of two squares? In that case, the previous question can be
further specialized:

Question 14.2.6.

• What perfect cubes can be written as a sum of two cubes?

• Fourth powers as a sum of two fourth powers?

• What about nth powers? What (integer) solutions are there to this?

xn + yn = zn

Ordinarily, as author I would now send the reader to explore some of these
questions in Exercise 14.4.8. However, Fermat already proved that other than
trivial solutions (such as writing 04 + (−1)4 = 14) there were no solutions in
the case n = 4; this is Fact 14.2.7. Euler nearly proved the same statement
for n = 3, but made the same hidden assumption as in Fact 15.3.4 (and see
[C.3.13] again for the proof).

There is a huge field (algebraic number theory) which developed from this,
but we will not digress further upon it. If you recall the discussion in Subsec-
tion 11.6.4, it turns out Germain originally investigated n in the case where it
is one of the numbers now known as Germain primes. In 1995 Andrew Wiles,
along with his former student Richard Taylor, proved the following result via a
very deep investigation of (among other things) elliptic curves (recall the brief
mention in Section 3.5).

Fact 14.2.7 (Fermat’s Last Theorem). For n > 2, there are no three positive
integers x, y, z such that

xn + yn = zn

Proof. Hanc marginis exiguitas non caperet.

14.2.3 Waring’s problem
The English mathematician Edward Waring asked for an outrageous gener-
alization of these questions of sums of powers, which is still an active area
of research called Waring’s Problem. The most important result is truly
spectacular.

194 CHAPTER 14. BEYOND SUMS OF SQUARES

Fact 14.2.8 (Hilbert-Waring Theorem). For each positive integer power m,
there is a number g(m) such that every nonnegative integer can be written as
a sum of g(m) mth powers.

There is even a potential formula that

g(m) = 2m +

⌊
3

2

⌋
− 2

This has been verified for m out to many millions, and is conjectured to al-
ways be true. The aforementioned Dickson notes that this formula was first
conjectured by Euler’s son, Johann Albrecht.

On the other hand, the question of finding the smallest integer G(m) (for
a given m) such that every sufficiently large number can be written as a sum
of that many mth powers is still wide open. Perhaps you will explore it? (See
e.g. Exercise 14.4.9.)

14.3 Related Questions About Sums
There is yet another generalization that will serve better as a lead-in to the
next chapters. Think about the following two problems.

• What numbers can be written as x2+2y2? (Think of it as x2+ y2+ y2.)

• What numbers can be written as x2 + 3y2?

These are very natural generalizations to the “two squares” question. How
could we approach them? Here’s one type of idea.

Fact 14.3.1. No number

n ≡ 5 or n ≡ 7 (mod 8)

can be written as x2 + 2y2.

Proof. Try all numbers modulo 8 and see what is possible! (See Exercise 14.4.3.)

Already Fermat (unsurprisingly) claimed a partial converse to Fact 14.3.1.
He stated that any prime number p which satisfies p ≡ 1 or p ≡ 3 (mod 8)
could be written as a sum of a square and twice a square.

This time, Euler wasn’t the one who proved it! But you could almost
imagine that by factoring

x2 + 2y2 = (x−
√
2iy)(x+

√
2iy)

you could start proving such things. When might a square root of two exist
modulo p …

Here are some numbers which can be written in this form.

@interact
def _(n=10):

pretty_print(html("Using␣a␣and␣b␣up␣to␣$%s$:"%n))
L=[a^2+2*b^2 for a in [0..n] for b in [0..n]]
L.sort(); print L

In Exercise 14.4.10, you will try to discover a similar pattern for x2 + 3y2.
See also Section 15.4.

http://www.ams.org/journals/bull/1936-42-12/S0002-9904-1936-06432-3/S0002-9904-1936-06432-3.pdf

14.4. EXERCISES 195

14.4 Exercises
1. Look up the concepts of ‘Gaussian moat’, ‘Gaussian zoo’, and/or ‘Gaussian
prime spiral’ and tell what you think!

2. Look up ‘Eisenstein integers’. Can you find any interesting theorems along
these lines which they prove? What would Eisenstein primes look like? What
about “Eisenstein triples”? (See [C.6.17] and Exercise 3.6.12.)

3. Finish proving Fact 14.3.1.

4. Find numbers writeable in two different ways as a sum of three squares.

5. Show that an odd number which is congruent to seven modulo eight may
not be written as a sum of three squares.

6. Research Lagrange’s four-square theorem and write an essay about it; which
proof do you prefer?

7. Write a program in Sage (or another language) to explore which numbers
may be written as a sum of two cubes, two fourth powers, and so forth.

8. Write a program in Sage (or another language) to verify Fermat’s Last
Theorem for some small x, y, z and n.

9. Write a program in Sage (or another language) to compute g(n) in the
Hilbert-Waring Theorem for small n.

10. Look for a pattern, similar to the one we found for sums of squares, for
which primes can be written in the form x2 + 3y2. Prove that the primes not
of this form are impossible.

196 CHAPTER 14. BEYOND SUMS OF SQUARES

Chapter 15

Points on Curves

We have already seen a lot of the geometric viewpoint of number theory; think
about Section 13.4, for instance.

The goal of the next several chapters is to examine what other questions
can one ask of a purely geometric nature – or how far geometry can go in
answering other questions.

This chapter returns to the notion of finding specific types of points on
graphs of number-theoretic equations. But instead of looking at lines as we
did before, there are a variety of curves we can consider.

For instance, our previous discussion about the sum of two squares was
essentially interpreted as asking when the curve x2 + y2 = n has an (integer)
lattice point on it or not. We have completely answered this question.

But if we were considering x2 + y2 = n to be about a circle of radius
√
n,

then x2 + 2y2 = n must be about an ellipse! Here is a visualization of points
on these ellipses.

var('x,y ')
@interact
def _(n=3):

plot1=implicit_plot(x^2+2*y^2-n, (x,-n,n), (y,-n,n),
plot_points =100)

grid_pts = [[i,j] for i in [-n..n] for j in [-n..n]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(2* coords [1]^2+ coords [0]^2) ==n]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1 + plot_grid_pts + plot_lattice_pts ,

figsize =[5,5], aspect_ratio =1)
pretty_print(html("The␣ellipse␣$x^2+2y^2=%s"%n))

Questions like this are at the heart of modern number theory – plus, there
are such nice pictures! It turns out this investigation will have surprising
connections to calculus and group theory too.

With that in view, you may want to try to find integer points on the
following curves. Each exemplifies a type we will discuss in this chapter.

1. y3 = x2 + 2

2. x2 + 2y2 = 9

3. x2 − 2y2 = 1

197

198 CHAPTER 15. POINTS ON CURVES

What we will do is to slowly try to make our way to finding integer solutions
to some more difficult Diophantine equations, using an idea about rationals
which simplifies Pythagorean triple geometry. We’ll then return to the integer
setup once we’ve gotten this background.

15.1 Rational Points on Conics
15.1.1 Rational points on the circle
Remember that in Section 3.4 we thought of Pythagorean triples as solutions
to

x2 + y2 = z2 .

Now, let’s divide the whole Pythagorean thing by z2:

x2

z2
+

y2

z2
= 1 ⇒

(x
z

)2
+
(y
z

)2
= 1 .

Since we can always get any two rational numbers to have a common denomi-
nator, what that means is the Pythagorean problem is the same as finding all
rational solutions to the simpler formula

a2 + b2 = 1 ,

which seems to be a very different problem. Let’s investigate this.

var('x,y ')
@interact
def _(slope =-2/3):

plot1=implicit_plot(x^2+y^2-1, (x, -1.5 ,1.5),
(y, -1.5 ,1.5), plot_points =100)

plot2=plot(slope*(x-1),x, -1.5 ,1.5)
plot3=point (((slope ^2-1)/(slope ^2+1),

-2*slope/(slope ^2+1)), rgbcolor =(1,0,1),
pointsize =20)

show(plot1+plot2+plot3 + point ((1,0),
rgbcolor =(0,0,0), pointsize =20), figsize =[5,5],
aspect_ratio =1)

In the interact above, the blue line intersects the circle x2 + y2 = 1 in the
point (1, 0) and has rational slope denoted by slope. If you change the variable
slope, then the line will change.

It is not a hard exercise to see that the line through two rational points on
a curve will have rational slope, nor what its formula is, so that every rational
point on the circle is gotten by intersecting (1, 0) with a line with rational
slope.

It is a little harder to show that intersecting such a line with the circle
always gives a rational point, but this is also true! It is also far more useful,
as it gives us a technique to find all rational points and hence all Pythagorean
triples.

Fact 15.1.1. All lines with rational slope through (1, 0) intersect the unit circle
in a second rational point.

Proof. In fact, we can do even better than prove this; we can get a formula for
the points.

15.1. RATIONAL POINTS ON CONICS 199

First, any line with slope t has formula y = t(x − 1). We can then obtain
all intersections with the circle x2 + y2 = 1 by plugging in y, so:

x2 + (t(x− 1))2 = 1 ⇒ x2 + t2x2 − 2xt2 + t2 = 1

We will skip showing (see Exercise 15.7.1)that the quadratic formula yields
the two answers t2±1

t2+1 . Note that t2+1
t2+1 = 1 gives the point (1, 0) which we

already knew.
The other, new, point is t2−1

t2+1 = x; plugging this in gives y = t
(

t2−1
t2+1 − 1

)
=

−2t
t2+1 .

In summary, every rational slope t gives us the point
(

t2−1
t2+1 ,

−2t
t2+1

)
.

Even the inputs t = 0 and t = ∞ have an appropriate interpretation in this
framework. Such a description of the (rational) points of the circle is called a
parametrization. Plug in various t and see what you get!

Remark 15.1.2. You could start the whole process with (−1, 0) or (0, 1), use
all lines through it with rational slopes, and get a different parametrization.

15.1.2 Parametrization in general
But will this always work? Here is an amazing fact we will not prove.

Fact 15.1.3. If you have a quadratic equation with rational coefficients with at
least one rational point, then you can get all other rational points by intersecting
all lines with rational slope through that point on the curve.

Example 15.1.4. Here’s an example with x2 + 3y2 = 1.

var('x,y ')
@interact
def _(slope =-1/2,f=x^2+3*y^2-1):

f(x,y)=f
plot1=implicit_plot(f, (x, -1.5 ,1.5), (y, -1.5 ,1.5),

plot_points =100)
plot2=plot(slope*(x-1),x, -1.5 ,1.5)
show(plot1+plot2+point ((1,0), rgbcolor =(0,0,0),

pointsize =20), figsize =[5,5], aspect_ratio =1)

As in the proof of Fact 15.1.1, the line going through (1, 0) has equation
y = t(x−1). Here, the ellipse has equation x2+3y2 = 1, so that we must solve
the equation

x2 + 3t2(x− 1)2 = 1 ⇒ x2 + 3t2x2 − 6t2x+ 3t2 − 1 = 0

for x to find a parametrization of x in terms of t.
This seems daunting. Here are two strategies (see Exercise 15.7.2 to try

them).

• We already know that there is a solution x = 1, so that x− 1 must be a
factor of the expression! So we could factor it out if we wished.

• Alternately, we could use the quadratic formula and discard the solution
x = 1.

200 CHAPTER 15. POINTS ON CURVES

In either case you should get

x =
3t2 − 1

3t2 + 1
, y =

−2t

3t2 + 1

Now you can find all kinds of interesting solutions like
(
11
13 ,

−4
13

)
.

Where does this go? These solutions lead us to integer solutions of three-
variable equations. In this case, it gives solutions to ones like x2 + 3y2 = z2.

var('x,y ')
@interact
def _(viewsize =15):

plot1=plot3d(sqrt(x^2+3*y^2), (x,-viewsize ,viewsize),
(y,-viewsize/2,viewsize /2))

grid_pts = [[i,j,k] for i in [-viewsize .. viewsize] for
j in [-viewsize .. viewsize] for k in [0.. viewsize]]

lattice_pts = [coords for coords in grid_pts if
(coords [0]^2+3* coords [1]^2== coords [2]^2)]

plot_lattice_pts = point3d(lattice_pts , rgbcolor =
(1,0,0),pointsize =40)

show(plot1+plot_lattice_pts)

Since x and y have a common denominator, we can just multiply through
by the square of that denominator to get a solution to this. E.g.

112 + 3(−4)2 = 132

which is a rather non-obvious solution, to say the least, and only one of many
that this method can help us find.

15.1.3 When curves don’t have rational points
However, this method does not always work. Namely, you need at least one
rational point to start off with. And what if there isn’t one that exists? It
turns out that Diophantus already knew of some such curves.

Fact 15.1.5. The circle x2 + y2 = 15 has no rational points.

Proof. First, note this is a much stronger statement than what we already
know, which is that this curve has no integer points (see Fact 13.1.1).

The way to prove this is to correspond this to integer points on x2 + y2 =
15z2.

Every rational point on the first curve looks like (p/q, r/q) for some p, r, q ∈
Z, so multiplying through by the common denominator gives us integer points
on the second surface.

But now consider the whole thing modulo 4. The reader should definitely
check that there are no legitimate possibilities! (See Exercise 15.7.4)

var('x,y ')
@interact
def _(viewsize =15):

plot1=plot3d(sqrt(x^2+y^2)/sqrt (15), (x,0,viewsize),
(y,0,viewsize))

grid_pts = [[i,j,k] for i in [0.. viewsize] for j in
[0.. viewsize] for k in [0..3* viewsize]]

lattice_pts = [coords for coords in grid_pts if
(coords [0]^2+ coords [1]^2==15* coords [2]^2)]

15.2. A TEMPTING CUBIC INTERLUDE 201

plot_lattice_pts = point3d(lattice_pts , rgbcolor =
(1,0,0),pointsize =40)

show(plot1+plot_lattice_pts)

As we can see, there are no rational points on a circle of radius
√
15 because

there are no integer points on the corresponding surface other than ones with
x, y = 0 – and those correspond to z = 0, which would give a zero denominator
on the circle. Here is a place where rational points are helped by integer points
instead of vice versa.

Let’s do another example.

Example 15.1.6. Try to find rational points on the ellipse 2x2 + 3y2 = 1.

Solution. A rational point would correspond to 2x2+3y2 = z2. You can try
looking at it modulo four, but that goes nowhere. Instead, given the three as
a coefficient, look at it modulo 3!

In this case it reduces to

2 ≡ (zx−1)2 (mod 3)

This is impossible since [0], [1], [2] all square to [0] or [1] in Z3.

The point is that, at least sometimes, modular arithmetic and going back
and forth between integer and rational points helps us both find points and
prove there are no such points.

15.2 A tempting cubic interlude
It is interesting that our investigation of rational points, initially motivated by
integer points like Pythagorean triples, inevitably led back to integer points.
Soon we will look at some remarkable properties that sets of integer points on
certain curves have, and whether any such points even exist.

But before moving on, it is worth looking at some interesting tidbits relating
to another type of equation, x3 + ay3 = b.

For the first example, consider that sometimes mathematicians like to ex-
plore hard questions for their own sake. Sometimes proofs are very challenging,
indeed. Then again, sometimes a very easy proof is missed.

One example of this is the equation x3 − 117y3 = 5. At one point a well-
known number theorist specializing in Diophantine equations asserted this was
known to have few solutions. A few years later, using field theory, this was
proved.

Two years later, a note was published in an obscure Romanian journal
that if one reduces the original equation modulo nine, a simple congruence is
obtained which one can show has no solutions just by trying all possibilities
by hand (you can try it in Exercise 15.7.5). (See this MathOverflow question
for background.)

Another interesting story related to this is that of Henry Dudeney’s “Puzzle
of the Doctor of Physic”, related by Andrew Bremner of Arizona State Uni-
versity in [C.6.15]. Dudeney was on of the most famous puzzle constructors of
a century ago, and this puzzle is a doozy.

Question 15.2.1. Find the (rational) diameters of two spheres whose com-
bined volume is that of two spheres of diameters one foot and two feet.

http://mathoverflow.net/questions/42512/awfully-sophisticated-proof-for-simple-facts

202 CHAPTER 15. POINTS ON CURVES

This is equivalent to finding rational points on the curve x3 + y3 = 9.
The puzzle itself gives the points (1, 2) and (2, 1), so the question is whether

one can find any other such points. Bremner takes the reader through a ge-
ometric tour of trying to intersect this curve with various lines with rational
slope in the hope of finding a proper solution to this problem. Here is a po-
tential first step, using the tangent line to the curve at (2, 1).

var(' y ')
implicit_plot(x^3+y^3==9, (x,-3,3), (y,-3,3)) +

plot(-4*x+9,(x,1,3)) + point ((2,1),size =10)

It turns out that this point is not acceptable as a solution (why?). In fact,
it takes several more steps of connecting points to arrive at a solution, namely(

415280564497

348671682660
,
676702467503

348671682660

)
which does seem a bit excessive but is sure fun.

We are now ready to begin our discussion of more integer points on curves.
As mentioned before, we’ll try to find integer points on the following types

of curves:

• y3 = x2 + 2 (sometimes called the Bachet equation)

• x2 + 2y2 = 9 (a well-known friend, the ellipse)

• x2 − 2y2 = 1 (a hyperbola with surprising connections to
√
2)

15.3 Bachet and Mordell Curves
Let’s start by talking about y3 = x2 + 2 as a type of curve. Recall from
Section 3.5 that Bachet de Méziriac first asserted this had one positive integer
solution in 1621, very early in the development of modern number theory.

Example 15.3.1. What is that solution?

Fermat, Wallis, and Euler also studied this and gave various discussions
and proofs of this fact. As we saw earlier, this equation is actually one of a
more general class of equations called the Mordell equation:

y3 = x2 + k , k ∈ Z

Louis Mordell, an American-born British mathematician, proved some remark-
able theorems about this class of equations.

Notice that Mordell’s set of curves are not quadratic/conic but rather cu-
bic, which makes them more mysterious (and, as it happens, more useful for
cryptography). There is a theorem that they can only have finitely many in-
teger points (in fact, there are even useful bounds for how many that depend
only on the prime factorization of k). At the same time, they are apparently
“simple” enough that they can still have infinitely many rational points; Gerd
Faltings won a Fields Medal for proving that higher-degree curves cannot.

var('x,y ')
@interact
def _(k=(2 ,[-15..15]),viewsize =10):

g(x,y)=y^3-x^2

15.3. BACHET AND MORDELL CURVES 203

plot1 = implicit_plot(g-k, (-viewsize ,viewsize),
(-viewsize ,viewsize), plot_points = 100)

grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j
in [-viewsize .. viewsize]]

plot_grid_pts =
points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)

lattice_pts = [coords for coords in grid_pts if
(coords [1]^3- coords [0]^2==k)]

plot_lattice_pts = points(lattice_pts , rgbcolor =
(0,0,1),pointsize =20)

show(plot1+plot_grid_pts+plot_lattice_pts , figsize =
[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize)

pretty_print(html("Integer␣points␣on␣the␣Mordell␣
equation␣$y^3=x^2+%s$␣in␣this␣window"%k))

15.3.1 Verifying points don’t exist
Proving things about Mordell’s equation is quite tricky, but once in a while
there is something you can do. For instance, we can verify something we can
see in the interact above.

Fact 15.3.2. There are no integer solutions to x3 = y2 − 7.

Proof. Look at the equation modulo 4, which gives

x3 ≡ y2 − 3 (mod 4)

Two cases are easily dealt with.

• If x is even, this reduces to y2 ≡ 3 (mod 4), which we already know is
not possible.

• Likewise, if x ≡ 3 (mod 4), then x3 ≡ 3 as well, so that y2 ≡ 6 ≡
2 (mod 4), also impossible.

So it remains to look at the possibility that x ≡ 1 (mod 4).
Now we do a cute trick. Since 7 is one less than a perfect cube, we rewrite

the original equation as

x3 + 8 = y2 + 1 ⇒ (x+ 2)(x2 − 2x+ 4) = y2 + 1

We rewrite this as
(x+ 2) | y2 + 1

which implies any prime divisor of x+ 2 must also divide y2 + 1.
Since we are assuming x ≡ 1 (mod 4), we have that

x+ 2 ≡ 3 (mod 4) ,

so at least one of those prime divisors p of x+ 2 must also be p ≡ 3 (mod 4).
This implies

p | (y2 + 1) ⇒ y2 ≡ −1 (mod p) .

This is not possible, because Fact 13.3.2 implies there are no square roots
modulo p for this type of p.

This is a simple version of a far more general statement.

204 CHAPTER 15. POINTS ON CURVES

Theorem 15.3.3. If the following hold:

• M ≡ 2 (mod 4),

• N ≡ 1 (mod 2), and

• all prime divisors p of N are of the form 4k + 1.

Then there is no solution to

y2 = x3 + (M3 −N2)

Proof. The proof basically follows the same outline as Fact 15.3.2; see Exer-
cise 15.7.7.

There are lots of similar statements one can prove too. But there is a larger
point, based on the very specific conditions on M and N . Namely, if we want
to prove anything about such equations with methods we currently have access
to in this text, we have no hope of getting any general results.

15.3.2 More on Mordell
Let’s see what I mean by “no hope” here by returning to Bachet’s original
equation, y3 = x2 + 2. What are some naive things we can say?

• It should be clear that x and y must have the same parity.

• If they are both even then y3 is divisible by 4 but x2 + 2 ≡ 2 (mod 4),
which is impossible.

• So x and y are both odd.

• That doesn’t really narrow things down too much, really.

Now, Euler nearly proves the following fact.

Fact 15.3.4. The only positive solution to the Bachet equation is x = 5, y = 3.

Proof. Proving this is already a little sophisticated, and is closely connected to
the use of complex numbers in Section 14.1. Here we will give the idea behind
Euler’s ‘proof’.

In examining a2 + b2, we factored it as (a+ bi)(a− bi) for a square root of
negative 1. Just as there, we would like to factor the x2 + 2. But it can’t be
done in Z[i].

Instead, we could try to use the square root of −2, and define

Z[
√
−2] = {a+ b

√
−2 | a, b ∈ Z}

Then
y3 = (x−

√
−2)(x+

√
−2)

We haven’t done anything with cubes yet …
Here is the tricky bit. In the integers, if y3 = pq and gcd(p, q) = 1, then

p and q must both be perfect (integer) cubes. So Euler assumes this works
in Z[

√
−2] as well, and that the factors of x2 + 2 are “coprime” (whatever

that means in this new number system). (A very nice discussion of this is in
[C.3.13], including a full proof in its appendix.)

Then some basic algebraic manipulation of

x−
√
−2 =

(
a+ b

√
−2
)3

15.4. POINTS ON QUADRATIC CURVES 205

and and divisibility considerations end up showing that b | 1 and a = ±b,
which ends up showing x = ±5 and y = 3. (We will not take this further; see
Exercise 15.7.8.)

Where’s the problem? It turns out you can say that a product which is a
cube is a product of cubes in this situation, but it requires some (geometrically
motivated) proof, just like with Z[i]. In his 1765 “Vollständige Anleitung zur
Algebra”, sections 187-188 and 191, Euler explicitly says that this just works
– in any number system with Z[

√
c]. He solves this one in section 193, and

solves x2 + 4 = y3 using the same technique in section 192, without realizing
the problem.

But we shouldn’t be too hard on Euler! He was one of the first people to
even consider some essentially random new number system of this type. And,
in 1738, he gives a correct and full proof of the observation that 8 and 9 is the
only time a perfect square is preceded by a perfect cube, which is Mordell’s
equation for k = −1. (See also Question 3.5.1.)

If you are interested in more information about how to prove cases of
Mordell’s equation, there are many good resources, including a nice one on
Keith Conrad’s website.

In case you are wondering, even finding a bound on the size of the set of
solutions to Mordell’s equation for a given k is tricky.

• Mordell, Siegel, and Thue all had a part after World War I in showing
there are finitely many solutions for a given k, but said nothing about
how big x and y might be.

• An early bound was that

|x| < e10
10|k|10

4

which is of course ridiculously huge.

• More recent conjectures are that x has absolute value less than eC |d|2+ϵ,
where ϵ is as small as you want and C seems to pretty close to one,
probably less than two.

Finally, we have to mention a very famous result. Recall that these curves
can have infinitely many rational points, even if they have finitely many (or
zero) integer points. The following is a bit of a surprise, then; the rational
points can still be described finitely.

Theorem 15.3.5 (Mordell’s Theorem). Essentially, the set of points on a
Mordell curve is a combination of finitely many “cyclic” groups (in a very
specific way I will not describe), and so it can be described using finitely many
of the rational points.

If you like, the rational points might be infinite, but not too infinite.

15.4 Points on Quadratic Curves
On the other hand, finding lattice points on a quadratic curve is much more
tractable. This is because we understand conic sections so well, after having
worked with them for two thousand years!

var('x,y ')
@interact
def _(a=1,b=2,c=9):

http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/mordelleqn1.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/mordelleqn1.pdf

206 CHAPTER 15. POINTS ON CURVES

viewsize=math.sqrt(c)+1
g(x,y)=a*x^2+b*y^2
plot1 = implicit_plot(g-c, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 200)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(a*coords [0]^2+b*coords [1]^2==c)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1+plot_grid_pts+plot_lattice_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

Here we see our second prototype, x2 + 2y2 = 9. You can see that, in
addition to the obvious solution where y = 0, there is the (nearly as obvious,
because the numbers are small, but still interesting) solution x = 1, y = 2.

In general, for our purposes an ellipse is special because there are only
finitely many lattice points to check. So much for the computational problem
– just get a fast computer! However, I just want to mention where a general
theory for such things might come from. After all, it gets harder to check with
“industrial strength” ellipses, and we want theorems.

15.4.1 Transforming conic sections
Although it’s being removed from the curriculum nowadays, there is something
that often happens in high school mathematics or first-year college calculus
where you learn how to transform one conic section to another one of the same
type with a matrix.

Example 15.4.1. We can get from the circle x2 + y2 = 9 to x2 + 2y2 = 9

by multiplying the vector (x, y) by the matrix
(
1 0

0 1/
√
2

)
; that would not

stretch the x-axis, but shrinks in the y axis by the appropriate amount.

However, one can also think of both conics in such a transformation as
coming from matrices. Compare these:(

x y
)(1 0

0 1

)(
x

y

)
= x2 + y2

(
x y

)(1 0

0 2

)(
x

y

)
= x2 + 2y2 .

Gauss was interested in extending Fermat’s question; namely, what numbers
are representable in these ways, as opposed to just a sum of squares? It turns
out that many such quadratic forms represent the same sets of integers (recall
Section 14.3).

The Sage reference manual even uses our example to demonstrate this:(
x y

)(1 0

0 2

)(
x

y

)
= x2 + 2y2 and

(
x y

)(1 1

1 3

)(
x

y

)
= x2 + 2xy + 3y2

Both of these should fulfill Fermat’s result about primes modulo 8 in the dis-
cussion around Fact 14.3.1; as an example, both should represent 11. Clearly
11 = 32 + 2 · 12 works, but what about the other version?

http://www.sagemath.org/doc/reference/sage/quadratic_forms/binary_qf.html

15.4. POINTS ON QUADRATIC CURVES 207

var('x,y ')
@interact(layout =[[' a ' , ' b '],[' c ' , ' d '],[' output ']])
def _(a=1,b=1,c=1,d=3,output =11):

viewsize=ceil(math.sqrt(output)+1)
g(x,y)=a*x^2+(b+c)*x*y+d*y^2
plot1 = implicit_plot(g-output ,

(x,-viewsize ,viewsize), (y,-viewsize ,viewsize),
plot_points = 200)

grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j
in [-viewsize .. viewsize]]

plot_grid_pts =
points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)

lattice_pts = [coords for coords in grid_pts if
(a*coords [0]^2 + (b+c)*coords [0]* coords [1] +
d*coords [1]^2 == output)]

plot_lattice_pts = points(lattice_pts , rgbcolor =
(0,0,1),pointsize =20)

show(plot1+plot_grid_pts+plot_lattice_pts , figsize =
[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

pretty_print(html("Integer␣lattice␣points␣on␣
$%sx^2+% sxy+%sy^2=%s$"%(a,b+c,d,output)))

Looks like x = 2, y = 1 will do it. The real reason behind this is that

x2 + 2xy + 3y2 = (x+ y)2 + 2y2

is a coordinate transformation.)
There is some very deep theory there, which is another place where lie the

beginnings of algebraic number theory, just like with the Gaussian integers.
But we’ll let it rest there.

15.4.2 More conic sections
Instead, we will continue looking for integer points on a given specific curve.
Assuming that ellipses are doable by simply counting, what is next?

The parabola comes to mind. A general parabola would look like ny = mx2;
this can be thought of in your usual terms as y = ax2 and a = m/n.

Then I can just check all x ∈ Z such that n | mx2. Since gcd(m,n) = 1 for
this (lowest terms), we would just need in fact that n | x2 (so if n is prime,
n | x suffices)!

So if y = mx2 for integer m, any x will do. That makes sense; integer input
had better give integer output, which would be a lattice point!

Example 15.4.2. If 2y = x2, we just look at it as 2 | x, so that requiring x
even will give lattice points.

And so on.

var('x,y ')
@interact
def _(m=1,n=2):

viewsize =3*n^2
f(x,y)=(m/n)*x^2
plot1 = plot(f,-viewsize ,viewsize)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [0.. viewsize ^2]]

208 CHAPTER 15. POINTS ON CURVES

plot_grid_pts =
points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)

lattice_pts = [coords for coords in grid_pts if
(m*coords [0]^2==n*coords [1])]

plot_lattice_pts = points(lattice_pts , rgbcolor =
(0,0,1),pointsize =20)

show(plot1+plot_grid_pts+plot_lattice_pts , figsize =
[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-1, ymax = (m/n)*viewsize ^2)

One might think this is all there is to say about points on the parabola.
But before we go on, I want to point out something very interesting. Look
at the following two setups in interacts. In one I create the line through two
integer points on the conic, in the other I create the tangent line through one
integer point.

a=1
b=2
var('x,y ')
viewsize =10
R.<x,y> = ZZ[]
f(x)=(a/b)*x^2
plot1 = plot(f,-viewsize ,viewsize)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j in

[0.. viewsize ^2]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(a*coords [0]^2==b*coords [1])]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
line1 = plot((f(2)-f(4))/(2-4)*(x-2)+f(2),

-viewsize ,viewsize , color= ' red ')
line2 = plot((f(2)-f(4))/(2-4)*x, -viewsize ,viewsize ,

color= ' red ' ,linestyle= ' -- ')
line3 = plot((f(2)-f(4))/(2-4)*(x+2)+f(-2),

-viewsize ,viewsize , color= ' red ' ,linestyle= ' -- ')
show(plot1+plot_grid_pts + plot_lattice_pts +

line1+line2+line3 , xmin=-5,ymin=-1,ymax=viewsize ^2/2)

a=1
b=2
var('x,y ')
viewsize =10
R.<x,y> = ZZ[]
f(x)=(a/b)*x^2
plot1 = plot(f,-viewsize ,viewsize)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j in

[0.. viewsize ^2]]
plot_grid_pts = points(grid_pts ,

rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(a*coords [0]^2==b*coords [1])]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
line1 = plot (2*(a/b)*4*(x-4)+f(4), -viewsize ,viewsize ,

color= ' red ')

15.5. MAKING MORE AND MORE AND MORE POINTS 209

line2 = plot (2*(a/b)*4*x,-viewsize ,viewsize ,
color= ' red ' ,linestyle= ' -- ')

line3 = plot (2*(a/b)*4*(x+2)+f(-2), -viewsize ,viewsize ,
color= ' red ' ,linestyle= ' -- ')

show(plot1+plot_grid_pts + plot_lattice_pts +
line1+line2+line3 , xmin=-5,ymin=-1,ymax=viewsize ^2/2)

In both cases you get another integer point! Could this be coincidence?

15.5 Making More and More and More Points
Based on our previous work, we know that we should be able to do these things
to get new rational points.

Algorithm 15.5.1 (Getting New Rational Points). Two ways to obtain new
rational points on a conic from rational points you already have are:

• Connect two points with a line, and then make a line with the same slope
but through another (rational) point. We call this adding points.

• Find the tangent line through a point, and then make a line with the
same slope but through another point. We call this doubling a point.

Fact 15.5.2. The set of rational points on a conic section is an Abelian group.
Assuming you have a point selected as an identity element, the group opera-
tion on two points P and Q is given by the first, “adding points”, operation
Algorithm 15.5.1. That is, you connect P and Q by a secant line of slope m,
and then connect the identity to a fourth point P +Q with a line of slope m.
Adding a point P to itself uses the slope of the tangent line at P , the second,
“doubling points”, operation in Algorithm 15.5.1.

15.5.1 Toward integer points
More germane to our investigation, our limited experience in the previous
section suggests these processes may often give you integer points. This is not
a coincidence; in general, we should try to add or double points to get (new)
integer points.

As we are only guaranteed rational points, this doesn’t always work. Below,
I try this on the ellipse from the beginning of Section 15.4.

a=1
b=2
c=9
var('x,y ')
viewsize=ceil(math.sqrt(c)+1)
f=a*x^2+b*y^2
g(x,y)=f
plot1 = implicit_plot(g-c, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 200)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j in

[-viewsize .. viewsize]]
plot_grid_pts = points(grid_pts ,

rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(a*coords [0]^2+b*coords [1]^2==c)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)

210 CHAPTER 15. POINTS ON CURVES

line1 = plot(x+3, -viewsize ,viewsize , color= ' red ')
line2 = plot(x+1-2, -viewsize ,viewsize ,

color= ' red ' ,linestyle= ' -- ')
line3 = plot(x-1-2, -viewsize ,viewsize ,

color= ' red ' ,linestyle= ' -- ')
show(plot1+plot_grid_pts+plot_lattice_pts+line1+line2+line3 ,

figsize = [5,5], xmin = -viewsize , xmax = viewsize ,
ymin = -viewsize , ymax = viewsize , aspect_ratio =1)

Rotten luck. But in some circumstances, this strategy works very well
indeed. The following hyperbola is simple, just x2 − dy2 = 1.

var('x,y ')
@interact
def _(viewsize=slider (10,20,1),d=2):

f(x,y)=x^2-d*y^2
plot1 = implicit_plot(f-1, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 200)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts = points(grid_pts , rgbcolor =(0,0,0),

pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]^2-d*coords [1]^2==1)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1+plot_grid_pts+plot_lattice_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

pretty_print(html("The␣hyperbola␣$x^2-%sy^2=1$"%d))

So let’s try it. What happens when we take the tangent line to the point
(3, 2) as the solution to x2 − 2y2 = 1?

d=2
var('x,y ')
@interact
def _(x_0=3,y_0=2,lattice=False ,auto_update=False):

g(x,y)=x^2-d*y^2
x_1 ,y_1=x_0 ^2+2* y_0^2,2*x_0*y_0
plot1 = implicit_plot(g-1,(x_0 -4,x_1+4) ,(x_0 -4,x_1+4),

plot_points = 200)
grid_pts = [[i,j] for i in [x_0 -4.. x_1+4] for j in

[x_0 -4.. x_1 +4]]
plot_grid_pts = points(grid_pts , rgbcolor =(0,0,0),

pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]^2-d*coords [1]^2==1)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
line1 = plot((x_0 /(2* y_0))*(x-x_0)+y_0 ,x_0 -4,x_1+4,

color= ' red ')
line2 = plot((x_0 /(2* y_0))*(x-1),x_0 -4,x_1+4,

color= ' red ' , linestyle= ' -- ')
if lattice:

show(plot1 + plot_grid_pts + plot_lattice_pts +
line1 + line2 , figsize = [5,5], xmin = x_0 -4,
xmax = x_1+4, ymin = y_0 -4, ymax = y_1+4,
aspect_ratio =1)

15.5. MAKING MORE AND MORE AND MORE POINTS 211

else:
show(plot1+plot_lattice_pts+line1+line2 , figsize =

[5,5], xmin = x_0 -4, xmax = x_1+4, ymin =
y_0 -4, ymax = y_1+4, aspect_ratio =1)

pretty_print(html("The␣new␣points␣are␣$x_1=%s$␣and␣
$y_1=%s$"%(x_1 ,y_1)))

A new point, amazing! And if we plug that one in, another one. Hmm …
As it turns out, this is quite an old idea. Finding integer solutions to this

hyperbola is called solving Pell’s equation, and has been studied in this form
since the seventeenth century. But a process very similar to this was already
rigorously discussed by Brahmagupta centuries before that!
Remark 15.5.3. In the event, Pell did not have anything to do with them;
it was all based on a misunderstanding. But names stick. In mathematics
this phenomenon of not naming things after the actual discoverer is some-
times called Boyer’s law, more generally Stigler’s law of eponymy (which are
themselves self-referential).

15.5.2 A surprising application
The particular equation x2 − 2y2 = 1 was studied by Greeks such as Theon of
Smyrna to shed light on

√
2, though not in the generality we are. Why would

this help?
Well, imagine that (x, y) fulfill this equation. Then divide and rearrange

the original equation to get
x2

y2
= 2 +

1

y2

If you can find a solution to this equation with a big y, then x2

y2 should be
pretty close to 2, which means x/y itself is pretty close to

√
2.

Let’s see this in action. We already tried to find integer points on this
curve.

var('x,y ')
@interact
def _(viewsize=slider (10,20,1),d=2):

f(x,y)=x^2-d*y^2
plot1 = implicit_plot(f-1, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 200)
grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j

in [-viewsize .. viewsize]]
plot_grid_pts =

points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]^2-d*coords [1]^2==1)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(plot1+plot_grid_pts+plot_lattice_pts , figsize =

[5,5], xmin = -viewsize , xmax = viewsize , ymin =
-viewsize , ymax = viewsize , aspect_ratio =1)

pretty_print(html("Points␣on␣the␣curve␣
$x^2-%sy^2=1$"%d))

The easy one for d = 2 was (3, 2). And after all, 3
2 = 1.5 isn’t too far from√

2 ≈ 1.414. There seems to be another point if we zoom out, but that would
be a tedious way to compute them …

212 CHAPTER 15. POINTS ON CURVES

Example 15.5.4. What if we double the point and take the tangent at (3, 2)?
(See Algorithm 15.5.1.) Then we take that slope, and make a new line through
the “base” point (in this case, (1, 0)).

Then the next point we get is (17, 12). (See Exercise 15.7.12.) Indeed,
172 − 2 · 122 = 1 and 17/12 ≈ 1.417, already correct to three significant digits.
Those Greeks!

15.6 The Algebraic Story
15.6.1 Computing the hyperbola
What is going on algebraically here? The algebra is not hard, but a little
dense; follow this proof closely.

Proposition 15.6.1. Doubling integer points on the hyperbola x2 − 2y2 = 1
yields more integer points.

Proof. Algebraically, if x2−2y2 = 1, then the tangent line at any point (x0, y0)
is given by implicit differentiation to be y′ = x0

2y0
. So we start there.

What is the line through (1, 0) with that same slope? It’s

y =
x0

2y0
(x− 1) ,

of course. Let’s check where else this intersects the hyperbola, if at all.
Start off with plugging the line into the hyperbola:

x2 − 2y2 − 1 = x2 − 2

(
x0

2y0
(x− 1)

)2

− 1 =

(
1− x2

0

2y20

)
x2 +

(
x2
0

y20

)
x+

(
−1−

(
x2
0

2y20

))
= 0 .

This can be simplified and then solve, unbelievably (via the quadratic formula
or factoring out x− 1)

(2y20 − x2
0)x

2 + 2x2
0x+ (−2y20 − x2

0) = 0

x =
−2x2

0 − 4y20
−2x2

0 + 4y20
=

x2
0 + 2y20

x2
0 − 2y20

= x2
0 + 2y20

Finally, do a slick substitution of the original point:

y =
x0

2y0
(x− 1) =

x0

2y0
(x2

0 + 2y20 − (x2
0 − 2y20)) = 2x0y0 .

Now let’s try this with actual points in Sage!

@interact
def _(x_0=17,y_0 =12):

x_1=x_0 ^2+2* y_0^2
y_1=2*x_0*y_0
pretty_print(html("Initial␣point␣was␣$(%s,%s)$;␣new␣

point␣is␣$(%s,%s)$."%(x_0 ,y_0 ,x_1 ,y_1)))
pretty_print(html("And␣indeed␣$%s^2-2\ cdot%s^2$␣equals␣

$%s$"%(x_1 ,y_1 ,x_1^2-2*y_1^2)))

15.6. THE ALGEBRAIC STORY 213

d=2
var('x,y ')
@interact
def _(x_0=3,y_0=2,lattice=False ,auto_update=False):

g(x,y)=x^2-d*y^2
x_1 ,y_1=x_0 ^2+2* y_0^2,2*x_0*y_0
plot1 = implicit_plot(g-1, (x_0 -4,x_1+4),

(x_0 -4,x_1+4),plot_points = 200)
grid_pts = [[i,j] for i in [x_0 -4.. x_1+4] for j in

[x_0 -4.. x_1 +4]]
plot_grid_pts = points(grid_pts , rgbcolor =(0,0,0),

pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]^2-d*coords [1]^2==1)]
plot_lattice_pts = points(lattice_pts , rgbcolor =

(0,0,1), pointsize =20)
line1 = plot((x_0 /(2* y_0))*(x-x_0)+y_0 ,x_0 -4,x_1+4,

color= ' red ')
line2 = plot((x_0 /(2* y_0))*(x-1),x_0 -4,x_1+4,

color= ' red ' , linestyle= ' -- ')
if lattice:

show(plot1 + plot_grid_pts + plot_lattice_pts +
line1 + line2 , figsize = [5,5], xmin = x_0 -4,
xmax = x_1+4, ymin = y_0 -4, ymax = y_1+4,
aspect_ratio =1)

else:
show(plot1+plot_lattice_pts+line1+line2 , figsize =

[5,5], xmin = x_0 -4, xmax = x_1+4, ymin =
y_0 -4, ymax = y_1+4, aspect_ratio =1)

pretty_print(html("The␣new␣points␣are␣$x_1=%s$␣and␣
$y_1=%s$"%(x_1 ,y_1)))

Awesome!

15.6.2 Yet more number systems
Brahmagupta knew how to do this, though of course he did it both without
our geometric interpretation (which was only made possible by Descartes and
Fermat’s introduction of coordinate systems) and also without the benefit of
symbolically representing

√
2, which provides this alternate description of what

we did.
Fact 15.6.2. If (x0, y0) is a solution to x2− 2y2 = 1, then so is (x1, y1) where

(x0 +
√
2y0)

2 = x1 +
√
2y1 .

If you were to do the algebra out here, you’d get exactly the same answer
as we did above (Exercise 15.7.14).

Notice that once again we seem to have created a new number system,
though this time with a square root of a positive, not negative number! (And
yes, it turns out that finding solutions to things like this is related to Z[

√
2] · · ·)

This precisely corresponds to multiplying a group element by 2, e.g.

[5] + [5] ≡ 3 (mod 7) is the same type of thing as (3, 2) + (3, 2) = (17, 12) .

It turns out that there is a more general formula that corresponds to taking
the line through two points and then moving it so that it goes through the
original point (1, 0):

214 CHAPTER 15. POINTS ON CURVES

Example 15.6.3. If (x1, y1) and (x2, y2) are both solutions of x2 − 2y2 = 1,
then so is

(x1x2 + 2y1y2, x1y2 + y1x2)

If you apply this to two points opposite each other like (3, 2) and (3,−2), you
will get

(3 · 3 + 2 · 2 · (−2), 3 · (−2) + 3 · 2) = (1, 0) ,

which is then the group identity.

@interact(layout =[[' x_0 ' , ' y_0 '],[' x_1 ' , ' y_1 '],
[' auto_update ']])

def _(x_0=3,y_0=2,x_1=17,y_1=12, auto_update=False):
if x_0 != x_1:

x_3 ,y_3=x_1*x_0+2*y_1*y_0 ,x_1*y_0+y_1*x_0
pretty_print(html("Initial␣points␣were␣$(%s,%s)$␣

and␣$(%s,%s)$;␣new␣point␣is␣
$(%s,%s)$."%(x_0 ,y_0 ,x_1 ,y_1 ,x_3 ,y_3)))

pretty_print(html("And␣indeed␣$%s^2-2\ cdot%s^2$␣
equals␣$%s$"%(x_3 ,y_3 ,x_3^2-2*y_3^2)))

elif y_0==y_1:
x_3 ,y_3=x_0 ^2+2* y_0^2,2*x_0*y_0
pretty_print(html("Initial␣points␣were␣$(%s,%s)$␣

and␣$(%s,%s)$;␣new␣point␣is␣
$(%s,%s)$."%(x_0 ,y_0 ,x_1 ,y_1 ,x_3 ,y_3)))

pretty_print(html("And␣indeed␣$%s^2-2\ cdot%s^2$␣
equals␣$%s$"%(x_3 ,y_3 ,x_3^2-2*y_3^2)))

else:
print "Input␣correct␣numbers!"

This ends up working for any n. Just change all the 2s above to n. Let’s
see this “by hand” for n = 3, where we solve x2 − 3y2 = 1 with

22 − 3 · 12 = 1 .

That is, I use
x′ = x2 + 3y2 and y′ = 2xy

@interact
def _(x=2,y=1, auto_update=False):

x,y=x*x+3*y*y,x*y+y*x
pretty_print(html("$%s^2-3\ cdot%s^2=%s$"%(x, y,

x^2-3*y^2)))
pretty_print(html("New␣point␣is␣$(%s,%s)$"%(x, y)))

15.6.3 The general solution (any n)
The general solution, given two points (x1, y1) and (x2, y2), would be, for n > 0
and not a perfect square,

x′ = x1x2 + ny1y2 and y′ = x1y2 + x2y1 .

Even more generally, the same formula works for combining solutions of
two different equations like the Pell.

15.7. EXERCISES 215

Fact 15.6.4.
If x2

0 − ny20 = k and x2
1 − ny21 = ℓ

then x = x0x1 + ny0y1, y = x0y1 + y0x1 solves x2 − ny2 = kℓ .

Proof. See Exercise 15.7.15.

This is particularly nice if k = ℓ = −1, because getting a solution for that
would then give a solution to the Pell equation!

Brahmagupta used analogous techniques for his time (and more sophisti-
cated things) to solve very hard ones, as did the later English mathematicians
who answered some challenges of Fermat.

Question 15.6.5.

• Find a nontrivial solution to x2 − 61y2 = 1.

• Find a nontrivial solution to x2 − 109y2 = 1.

Solution. The smallest solution to the second one is

x = 158070671986249, y = 15140424455100 ,

which we can check below.

158070671986249^2 -109*15140424455100^2

Considering that Brahmagupta says that finding the solution x = 1151, y =
120 to the equation x2 − 92y2 = 1 within a year proved the person “was a
mathematician”, we can be very thankful for computers!

15.7 Exercises
1. Do the algebra which we skipped in Exercise 15.7.1.

2. Do the algebra which we skipped in Example 15.1.4.

3. Find a parametrization (similar to Fact 15.1.1) for rational points on the
following curves:

• The ellipse x2 + 3y2 = 4

• The hyperbola x2 − 2y2 = 1

4. Finish proving (Fact 15.1.5) that x2 + y2 = 15 cannot have any rational
points.

5. Finish the proof that x3 − 117y3 = 5 has no integer solutions, looking
modulo nine.

6. Show that the equation x3 = y2 − 999 has no integer solutions.

7. Fill in some (or all) of the details of Theorem 15.3.3.

8. Fill in the details of divisibility to finish Euler’s ‘proof’ of Fact 15.3.4.

9. Look up the current best known bound on the number of integer points on
a Mordell equation curve.

216 CHAPTER 15. POINTS ON CURVES

10. Get the tangent line to the Dudeney curve (see Question 15.2.1) and find
the point of intersection; why can it not give an answer to the original problem?

11. Research Boyer’s or Stigler’s laws. What is the most egregious example of
this, in your opinion?

12. Fill in the details of Example 15.5.4, and find an integer point with even
bigger values.

13. Show that the Pell equation with d = 1 (x2 − y2 = 1) has only two
solutions. Generalize this to when d happens to be a perfect square.

14. Show that the algebra in Fact 15.6.2 yields the same formulas as Proposi-
tion 15.6.1.

15. Verify that if
x2
0 − ny20 = k and x2

1 − ny21 = ℓ

then
x = x0x1 + ny0y1, y = x0y1 + y0x1 solves x2 − ny2 = kℓ .

16. Explain why the previous problem reduces to the method from Section 15.5
where we were trying to use a tangent line to find more integer solutions.

17. Find a non-trivial integer solution to x2 − 17y2 = −1, and use it to get a
nontrivial solution to x2 − 17y2 = 1.

18. Recreate the geometric constructions in Section 15.5 using tangent lines
on the hyperbola with x2 − 5y2 = 1, and use it find three (positive) integer
points on this curve with at least two digits for both x and y. Yes, you will
have to find a non-trivial solution on your own; it’s not hard, there is one with
single digits.

Chapter 16

Solving Quadratic
Congruences

We have been doing a lot of stuff now with squares. It is almost time to see one
of the great theorems of numbers, which gives us great insight into the nature
of squares in the integer world – and whose easiest proof involves lattice points!

This theorem, in the next chapter, will come from our trying to find the
solution to a useful general problem, which I like to think of as the last piece
of translating high school algebra to the modular world. That is the task of
solving quadratic congruences, the modular equivalent to the well-known
quadratic equations.

A quadratic congruence is just something of the form

ax2 + bx+ c ≡ 0 (mod n)

In algebra, we would use the quadratic formula. This chapter will see how far
we can extend this to the modular world.

16.1 Square Roots
16.1.1 Recalling existing answers
To use the quadratic formula, one needs square roots in the real numbers. So
too, our first task for modular arithmetic will be finding such square roots.
Given our work in Chapter 7, e.g. Fact 7.2.2, it should be sufficient to solve

x2 ≡ n (mod p) ,

finding square roots modulo p a prime.
We have already done some of this! We restate here a fact in the proof of

Theorem 12.3.1 and the combination of Fact 13.3.2 and Lemma 13.3.3.

Fact 16.1.1. The congruence x2 ≡ 1 (mod p) always has two solutions, x ≡
±1. So 1 has two square roots modulo p (or one, if p = 2).

Fact 16.1.2. The congruence x2 ≡ −1 (mod p) does not always have solutions.
It does when p = 2 or when p ≡ 1 (mod 4), and when it does there are two
solutions, namely

x ≡ ±
(
p− 1

2

)
! .

217

218 CHAPTER 16. SOLVING QUADRATIC CONGRUENCES

16.1.2 Finding more answers
We know the full answer (any modulus) for square roots of +1 from Fact 7.3.1.
What about finding out when −1 has a square root for non-prime moduli? We
can ask Sage about this:

var(' x ')
@interact
def _(n=50):

for i in [2..n]:
sols = [sol[0] for sol in solve_mod ([x^2==-1],i)]
l = len(sols)
if l!=0:

pretty_print(html("$x^2= -1\\ text{␣(mod␣}%s)$␣
has␣$%s$␣solutions ,␣$%s$"%(i,l,sols)))

But recall that we actually can get a complete answer to this and similar
questions by using Hensel’s Lemma and the Chinese Remainder Theorem.
Algorithm 16.1.3. To solve a polynomial modulo a given modulus, the fol-
lowing information suffices.

• If we can solve, for a given prime p,

f(x) ≡ 0 (mod p) ,

then up to the technical condition about gcd(p, f ′(pe−1)) = 1 we can solve

f(x) ≡ 0 (mod pe) .

• If we can solve, for coprime integers p and q, f(x) ≡ 0 (mod p) and (q) ,
then we can solve

f(x) ≡ 0 (mod pq) .

Example 16.1.4 (Prime power modulus). For instance, let’s go from p to p2

by trying a bit of Example 7.2.4 from earlier. Here, f(x) = x2 + 1 is what we
want a solution for. If we are looking (mod 25), then we already know that
(mod 5) we have x ≡ 2 as a solution. Then a solution (mod 25) will look like
2+k(5) (review earlier where we did this), and, remembering that f ′(x) = 2x,
in fact it will satisfy

22 + 1

5
+ k(2 · 2) ≡ 0 (mod 5)

which is 1 + 4k ≡ 0, which has solution k ≡ 1; hence a solution (mod 25)
should be 2 + 1(5) ≡ 7, and the computations above verify this!

(Notice that 5 ∤ f ′(2) = 4, so the technical condition is granted; otherwise
we’d have to solve 1 ≡ 0!)
Example 16.1.5 (Composite moduli). Similarly, if I want solutions to x2 ≡
−1 (mod 14) I should immediately note that although x2 ≡ −1 (mod 2) has a
solution, x2 ≡ −1 (mod 7) does not (it’s a prime of the form 4k+3) so I can’t
use the crt.

But if I am looking (mod 65), since 65 = 5 · 13 and x2 ≡ −1 has solutions
both (mod 5) and (mod 13), I can use the crt to combine them:

• x ≡ 2 (mod 5)

• x ≡ 5 (mod 13)
So x ≡ 2 · 13 · (13−1 (mod 5)) + 5 · 5 · (5−1 (mod 13)) ≡ 26 · 2 + 25 · 8 ≡

252 ≡ 57 (mod 65) And that also is consistent with the computations above!

16.2. GENERAL QUADRATIC CONGRUENCES 219

16.2 General Quadratic Congruences
From the preceding section, it should be clear that, as far as just determining
whether a solution exists, all we need to examine is prime moduli. Everything
else is taken care of by previous work.

But it’s not like x2 + k is the only quadratic game in town. What about
other quadratics? It turns out that we can use something you are already
familiar with to reduce the whole game to the following.

Question 16.2.1. For what primes p is there a solution to x2 ≡ k (mod p)?

Let’s confirm this with a look at general quadratic congruences.
First let’s try computing. As an example, take x2 − 2x + 3 (mod 9). The

Sage function solve_mod works, if a little naively.

solve_mod ([x^2-2*x+3==0] ,9)

Sage note 16.2.2 (Commands of more sophistication). Notice that the solve_mod

command is more complicated than divmod. solve_mod returns a list of tuples,
where a tuple of length one has a comma to indicate it’s a tuple. (If you tried
to solve a multivariate congruence you would find it returns a longer tuple.)

The result shows that x2 − 2x+3 ≡ 0 (mod 9) has two solutions. But how
might I solve a general quadratic congruence?

16.2.1 Completing the square solves our woes
The key is completing the square! First let’s do an example.

Example 16.2.3. Completing the square for x2 − 2x+ 3 is done by

x2 − 2x+ 3 =

(
x2 − 2x+

(
2

2

)2
)

+ 3−
(
2

2

)2

= (x− 1)2 + 2 ,

so solving the original congruence reduces to solving

(x− 1)2 ≡ −2 (mod n)

Then assuming I have a square root s of −2 (mod n), I just compute s + 1
and I’m done! Go ahead and try this for a few different n, including of course
n = 9, with Sage.

solve_mod ([x^2== -2] ,9)

Should you not particularly enjoy completing the square, here is the basic
idea.

Algorithm 16.2.4 (Completing the square modulo n). To complete the square
for ax2 + bx+ c ≡ 0, the key thing to keep in mind is that we do not actually
divide by 2a, but instead multiply by (2a)−1. Here are the steps.

• Multiply by four: 4a2x2 + 4abx+ 4ac ≡ 0

• Factor the square: (2ax+ b)2 − b2 + 4ac ≡ 0

220 CHAPTER 16. SOLVING QUADRATIC CONGRUENCES

• Isolate the square: (2ax+ b)2 ≡ b2 − 4ac

So to solve, we’ll need that 2a is a unit (more or less requiring that n is
odd), and then to find all square roots of b2 − 4ac in Zn.

Fact 16.2.5. The full solution to

ax2 + bx+ c ≡ 0 (mod n)

is the same as the set of solutions to

x ≡ (2a)−1(s− b) (mod n), where s2 ≡ b2 − 4ac (mod n)

Note that this means gcd(2a, n) = 1 must be true and that s2 ≡ b2 − 4ac must
have a solution.

Example 16.2.6. Let’s do all this with x2 +3x+5 ≡ 0 (mod n). Notice that
b2 − 4ac = 9 − 20 = −11, so this equation does not have a solution over the
integers, or indeed over the real numbers. Does it have a solution in Zn for
some n, though?

L = [(n,solve_mod ([x^2==-11],n)) for n in
prime_range (3 ,100)]

for l in L:
L1 = [m[0] for m in l[1]]
modulus = l[0]
pretty_print(html("Modulo␣$%s$,␣$x^2\ equiv␣ -11$␣has␣

the␣solutions:␣%s"%(modulus ,L1)))
if L1 != []:

try:
LS = [mod(2*1, modulus)^(-1)*(m-3) for m in L1]
pretty_print(html("For␣each␣of␣these ,␣$x\equiv␣

(2\ cdot␣1)^{-1}(s-3)$:␣%s"%(LS)))
LS = [ls^2+3*ls+5 for ls in LS]
pretty_print(html("And␣x^2+3x+5␣gives␣for␣

each␣of␣these:␣%s\n\n"%(LS)))
except ZeroDivisionError:

pretty_print(html("Since␣2␣doesn ' t␣have␣an␣
inverse␣modulo␣$%s$,␣we␣can ' t␣use␣
this.\n\n"%modulus))

16.3 Quadratic Residues
The previous section should really resolve that examining square roots suffices
to a complete solution, so that is what not only the remainder of this chapter,
but the next chapter, will focus on.

16.3.1 Some definitions
We now introduce two definitions, a little more formal in nature.

Definition 16.3.1. Assume that a ̸≡ 0 (mod p), for p a prime.

• If there is a solution of x2 ≡ a (mod p) we say that a is a quadratic
residue of p (or a QR).

16.3. QUADRATIC RESIDUES 221

• If there is not a solution of x2 ≡ a (mod p) we say that a is a quadratic
nonresidue of p.

Note that this is the same thing as saying that a does or does not have a
square root modulo p, but the focus changes to a instead of the square root
itself.

It is not so easy at all to determine even when something is a QR, much
less to compute the square roots, so we will take some significant time on this.

Remark 16.3.2. By the way, the terminology is explained by the fact (recall
Section 4.4) that the equivalence classes [a] are called residues, so one which
is a perfect square is justly called quadratic.

Sage note 16.3.3 (Quadratic residues). Sage can calculate these for us, of
course.

quadratic_residues (17)

Notice that Sage counts zero as a quadratic residue (since 02 = 0 always);
there are technical reasons not to consider it as one in our theoretical treatment,
as will be seen soon.

least_quadratic_nonresidue (17)

This last function gives the smallest nonresidue, in case you need it.

16.3.2 First try for square roots of two
To get more of a flavor for this, let’s explore for which p it is true that x2 ≡ 2
(mod p) has a solution. Or, to put it another way, when does two have a square
root modulo p?

First do some by hand; for what primes up to 20 does 2 have a square root?
Once you’ve done this, then evaluate the next Sage cell to look at more

data.

@interact
def _(odd_primes_up_to =50):

for p in prime_range (3, odd_primes_up_to):
solutions=solve_mod ([x^2==2] ,p)
if len(solutions)!=0:

pretty_print(html("$x^2\ equiv␣2\\ text{␣(mod␣
}%s)$␣has␣solutions␣$%s$␣and␣
$%s$"%(p,solutions [0][0] , solutions [1][0])))

else:
pretty_print(html("No␣solutions␣modulo␣

$%s$"%p))

Question 16.3.4. What do you think? Do you see any patterns?

As it turns out, it is quite hard to prove any such patterns you may find
without the benefit of powerful theoretical machinery. Which means it is hard
to even know whether there is a solution to a given congruence without such
machinery!

222 CHAPTER 16. SOLVING QUADRATIC CONGRUENCES

16.3.3 Some history
In fact, it is even hard to conjecture such things for harder cases unless you
are quite clever. Euler was one of the first to do so. In a very unusual paper,
he included nary a proof, just closely related conjectures to this question. We
list here three links for the paper. Note that if you read it carefully, you will
have hints to the question in the previous subsection, with regard to numbers
of the form a2 + 2b2!

• Euler archive listing

• Euler archive translation

• Euler’s work explained by Ed Sandifer

Next, look at a table made by the great Italian-French mathematician La-
grange, courtesy of the French National Library and its online repository, Gal-
lica.

Formule des nombres proposés. t2+ au2.
Formule de leurs diviseurs impairs, et premiers à a.. py2 ± 2qyz + rz' = 4 an + b.

TABLE III.
In this table, Lagrange is referring to
integers of the form t2 + au2, and
then what form their divisors can have.
That this corresponds to what we have
seen is clear in that a = 1 just means
that primes can divide a sum of squares
if they are themselves of the form y2 +
z2 when they are of the form 4n +
1. (See the discussion around Theo-
rem 13.5.5.) And if you were diligent
in your pattern searching in the previ-
ous subsection, you will have found the
significance for 8n+ 1 and 8n+ 3 with
respect to t2 + 2u2. (For more on this
and its history, see the excellent book
Mathematical Masterpieces [C.4.7].)

Figure 16.3.5: Lagrange’s Table III
from “Recherches d’arithmétique”

Originally from what is now Italy, Lagrange was Euler’s successor in Berlin
after he went back to Russia under the stable (if despotic) regime of Catherine
the Great. One interesting point to make about him is that Lagrange gave
proofs of many of the patterns in quadratic forms (what numbers look like
a2 + b2, a2 + 2b2, etc.) that Fermat and Euler talked about. Although he
isn’t always mentioned as highly as other contemporaries like Euler or Gauss,
note that we’ve already seen two of his theorems (7.4.1 and 8.3.11). Later he
moved to France and was quite influential there. And if you ever read any
science fiction or space stuff that talks about stable places to orbit being called
Lagrange points – that’s him too!

http://www.math.dartmouth.edu/~euler/pages/E164.html
http://arxiv.org/pdf/math/0606057v1
http://eulerarchive.maa.org/hedi/HEDI-2005-12.pdf
http://gallica.bnf.fr
http://gallica.bnf.fr

16.4. SEND IN THE GROUPS 223

16.4 Send in the Groups
What made things work out best in the end was a couple innovations of La-
grange’s successor in Paris, Adrien-Marie Legendre. These were innovations
Gauss made great use of.

One can approach this subject from many vantage points, including the
historical one. However, we have the advantage of having developed the basics
of groups and primitive roots, which will simplify much of our exposition.

16.4.1 Quadratic residues form a group
Definition 16.4.1. Consider the set of all non-zero quadratic residues modulo
some prime p. We call this the group of quadratic residues Qp.

This terminology suggests I had better have a proof in my pocket for the
following theorem.

Theorem 16.4.2. The set of non-zero quadratic residues Qp modulo a prime
p really is a group, and is even a subgroup of the group of units Up.

Proof. We will proceed by showing the group axioms hold under multiplication.
Since this is a subset of Up essentially by definition, that will imply it is a
subgroup of it as well. Let’s look at the three main axioms.

• It is clear that 1 ∈ Qp, since 1 ≡ 12. So there is an identity.

• Next, if a and b are both in Qp (with a ≡ s2 and b ≡ t2), then ab is also
a quadratic residue (since (st)2 ≡ s2t2 ≡ ab).

• All that remains is to check that this set has inverses under multiplication.

To show this last, assume that a ≡ s2 ∈ Qp. Then note that(
s−1
)2

a ≡
(
s−1
)2

s2 ≡
(
s · s−1

)2 ≡ 1

So by definition of inverses (
s−1
)2

= a−1 ,

which means that if a ∈ Qp then a−1 ∈ Qp as well.

Remark 16.4.3. (For those with some additional algebraic background, it
turns out Qp is in fact a quotient group of Up as well, but we will not delve
further into this here.)

16.4.2 Quadratic residues connect to primitive roots
You might be wondering how this piece of Up connects to the most important
thing we’ve seen so far about Up. Recall that Up was cyclic, that it had a
generator whose powers gave us all units modulo p. We called such an element
a primitive root of p (recall Chapter 10).

g=mod(primitive_root (19) ,19);g

So let’s compare the primitive root’s powers and the quadratic residues.
Shouldn’t be too hard … if you aren’t computing this with Sage, just try it
with an even smaller modulus, like seven.

224 CHAPTER 16. SOLVING QUADRATIC CONGRUENCES

g=mod(primitive_root (19) ,19)
L=[g^n for n in range (1,19)]
print L
print quadratic_residues (19)

Note the pattern! This exemplifies a major fact.

Fact 16.4.4. For odd prime modulus p, the quadratic residues are precisely
the even powers of a primitive root g.

Proof. Certainly g2n = (gn)
2, so the even powers of g are QRs.

Now we need the other set inclusion. Suppose that a ∈ Qp and a = s2.
Then first note that s and a are themselves still powers of g (by definition of
g). So let s = gn and a = gm for some n,m. Then we have the implication

a = gm ≡ g2n (mod p) =⇒ m ≡ 2n (mod p− 1) .

This is only possible if m is even since p− 1 and 2n are even.

This fact will turn out to be a fantastically useful theoretical way to find
Qp. It will show up in lots of proofy settings.

16.5 Euler’s Criterion
However, Fact 16.4.4 is a terrible way to actually find quadratic residues for
a given p, since it involves finding a primitive root and listing lots of powers!
We need both theory and practice.

Here is a much easier way. Recall our observation in Theorem 12.3.1:

a(p−1)/2 ≡ ±1 for all a not divisible by p .

We visualized it as the middle column in this graphic.

@interact
def _(p=(13, prime_range (50))):

P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in
range(1,p) for b in srange(p)]),cmap= ' jet ')

show(P,figsize =6)

But as so often in mathematics, solving one question leads to another; after
all, we didn’t say when we got plus or minus 1, just that these are the only
possibilities. Let’s extend this as follows.

Theorem 16.5.1 (Euler’s Criterion). If p is an odd prime, then for all integers
a not a multiple of p, the sign of the following expression determines whether
a is a QR.

a(p−1)/2 ≡ ±1 (mod p)

We obtain +1 if a is a QR, otherwise −1.

Proof. Let g be a primitive root of p, so that a ≡ gi for some i. Then if we let
h = g(p−1)/2, Fermat’s Little Theorem shows that

h2 = gp−1 ≡ 1 (mod p) .

16.6. THE LEGENDRE SYMBOL 225

Since g is primitive, h ≡ 1 is impossible, so h ≡ −1. But then

a(p−1)/2 ≡
(
gi
)(p−1)/2 ≡

(
g(p−1)/2

)i
≡ hi ≡ (−1)i .

This is +1 when i is even and −1 when i is odd. According to Fact 16.4.4,
this is precisely when a is a quadratic residue and nonresidue, respectively.

Example 16.5.2. This immediately gives the result in Fact 16.1.2 that −1 has
a square root modulo an odd prime p precisely when p ≡ 1 (mod 4), because
(−1)(p−1)/2 = +1 precisely when (p− 1)/2 is even, or p ≡ 1 (mod 4). That is
much easier than our previous ad-hoc way of doing it!

Using this same idea, we can prove a very nice result about when a com-
posite number is a QR.

Proposition 16.5.3. If n = ab is a factorization (not necessarily nontrivial)
of n, then n is a QR of p precisely when either both a and b are QRs of p or
both a and b are not QRs of p.

Proof. Modulo p, write a ≡ gi and b ≡ gj for some i, j. Then n = ab ≡ gi+j ,
and i + j is even when i and j have the same parity. Because of Fact 16.4.4,
this is exactly the same thing as the conclusion of the proposition.

Hence if one of a, b is and the other isn’t, neither is n = ab.

Example 16.5.4. Now I can immediately decide that −2 ≡ 21 is not a QR
(mod 23). Why? First, −2 ≡ 21; then recall that −1 is not a QR but 2 is,
which we knew before. Likewise, I can immediately decide that −2 ≡ 9 is a
QR (mod 11) by the fact that neither −1 nor 2 is a QR.

quadratic_residues (23)

quadratic_residues (11)

16.6 The Legendre Symbol
We now introduce a new notation for this entire discussion. Why? Think on
this; Gauss revolutionized number theory, and much of what made it possible
(and accessible to others) was the notion of congruence, along with the symbol
≡.

We alluded to a great innovation of Legendre’s earlier, and it is likewise a
concept and symbol. Earlier in his research into these questions, he discovered
that certain powers were always either ±1, omitting multiples of what we would
today call the modulus. Some of what he found was essentially Theorem 16.5.1.

Like many mathematicians of the eighteenth century, Legendre worked in
many areas, including function theory and mathematical physics. Notably,
as increased professionalization of studies of higher mathematics came about
in post-Revolutionary French engineering studies (a development Judith Gra-
biner argues led to rigorization of calculus), he wrote a widely used geometry
textbook.

226 CHAPTER 16. SOLVING QUADRATIC CONGRUENCES

16.6.1 Introducing the Legendre symbol
What of the plus or minus 1? To quote an article [C.6.5] on this subject, if one
had a symbol for it, it becomes

… more than a notational convenience … Legendre reifies this con-
cept, and makes it into an object of independent study.

—Steven H. Weintraub

In our modern terms, he takes advantage of the fact that a = gi is an even
power exactly when a is a QR, and (−1)i = 1 precisely when i is even (and
hence precisely when a is a QR). This is the so-called Legendre symbol.
(However, he did not use the term QR, just the symbol.)

Definition 16.6.1. We write
(

a
p

)
for the Legendre symbol.(

a

p

)
= 1 if a is a QR modulo p and

(
a

p

)
= −1 if it’s not.

We define the Legendre symbol of a modulo p to be zero if p | a.

Example 16.6.2. We can restate Fact 16.1.2: We have that
(

−1
p

)
= 1 for p

prime if and only if p = 2 or p ≡ 1 (mod 4).

The command in Sage is pretty straightforward.
legendre_symbol (-2,11)

@interact
def _(p=(17, prime_range (50))):

for n in [q for q in quadratic_residues(p) if q!=0]:
pretty_print(html("$%s$␣is␣a␣QR␣of␣$%s$␣and␣

$\left (\\ frac{%s}{%s}\\ right)=%s$"%(n, p, n,p,
legendre_symbol(n,p))))

Remark 16.6.3. A brief note is in order regarding the special status of zero
in Definition 16.3.1, especially since Sage includes zero as a QR.

On the one hand, this recognizes the special case that 02 = 0, while 1 =
12 = (−1)2 (and everything else) usually have two square roots modulo a
prime.

On the other hand, this also conveniently ignores the only integer from 0

to p − 1 which is not in Up, so that in fact you can think of x →
(

x
p

)
to be

a function from Up to {1,−1} of the kind we call a group homomorphism.
(Indeed, it gets us from a cyclic group of order p− 1 to a cyclic group of order
2, with “kernel” a cyclic group of order (p− 1)/2.)

16.6.2 Primitive roots and quadratic residues
Let’s use our usual example to visualize the tension and connection between
primitive roots and quadratic residues.

Question 16.6.4. Before looking at the next graphic, do you see why a
quadratic residue automatically can’t be a primitive root? (This follows from
results earlier in this chapter; see Exercise 16.8.7.)

16.7. OUR FIRST FULL COMPUTATION 227

There is another way to view the tension between primitive roots and
quadratic residues. Try the following graphic yet again.

@interact
def _(p=(13, prime_range (50))):

P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in
range(1,p) for b in srange(p)]),cmap= ' jet ')

show(P,figsize =6)

All the residues are the second column (labeled 1), and all the quadratic
residues are the colors in the third column (labeled 2 as they are squares). See
how that column is symmetric about the middle of the rows, with two of each
of the colors appearing. Note that these are the same colors as every other
column in a row with a primitive root (the rows with every color represented),
though not necessarily in that order.

Also notice that the color of the middle column determines whether the
color beginning that row shows up in the second column. This seems weird –
but is precisely the content of Section 16.5.

Here’s a final fun thing. What is the sum of all Legendre symbols for a
given prime? (As usual, you can do this by hand for small primes if you aren’t
computing.)

@interact
def _(p=(19, prime_range (100))):

L = [legendre_symbol(a,p) for a in [0..p-1]]
pretty_print(html("All␣Legendre␣symbols␣

$\left (\\ frac{a}{%s}\\ right)$␣can␣be␣listed:"%p))
print L
pretty_print(html("And␣they␣sum␣up␣to␣$%s$"%sum(L)))

This is cool, and a nice example of the kind of fun one can have experi-
menting. What do you think? Do you think we can prove it? Try in Exer-
cise 16.8.6.

16.7 Our First Full Computation

We will now completely calculate
(

2
p

)
using Euler’s Criterion to prove that

our explorations in Section 16.3. (There are many proofs of this fact; a nice
one using only the existence of a primitive root is [C.6.16].)

Theorem 16.7.1 (Quadratic Residues of Two). The quadratic residues of two
modulo a prime p is as follows.

•
(

2
p

)
= 1 if p ≡ ±1 (mod 8)

•
(

2
p

)
= −1 if p ≡ ±3 (mod 8)

Proof. We will try to show this by writing (p− 1)! in two different ways.
This is easiest to approach with an example first. We’ll indicate different

ideas to pay attention to with bullets.

228 CHAPTER 16. SOLVING QUADRATIC CONGRUENCES

• For instance, take p = 11. Then we can write

10! = 1(2)(3)(4)(5)(6)(7)(8)(9)(10)

= (2 · 4 · 6 · 8 · 10) · (1 · 3 · 5 · 7 · 9)

= 25(1 · 2 · 3 · 4 · 5) · (1 · 3 · 5 · 7 · 9) .

Notice that 1, 3, 5 repeat; these are all the odd numbers less than or equal
to 11−1

2 = 5.

• Now we will try to create 10! again from what is left. The only ones we
need to change would be 1, 3, 5, as I just said.

• But −1,−3,−5 ≡ 10, 8, 6, which are exactly the missing pieces to 10!. So
I factor out −1 from those three, thus:

10! = 25(1·2·3·4·5)·(1·3·5·7·9) = 25(1·2·3·4·5)·(−1)3 ·(−1·−3·−5)·(7·9)

≡ 25(−1)3(1 · 2 · 3 · 4 · 5)(10 · 8 · 6)(7 · 9) ≡ (−1)325(10)!

• Finally, cancel 10! from both sides, and we get

1 ≡ 25(−1)3 =⇒ 2(11−1)/2 ≡ 25 ≡ (−1)3 ≡ −1

and so 2 is not a QR of 11.

Proving the general case basically follows this to its natural conclusion;
there was nothing special in the above argument about p = 11.

After writing (p − 1)! and factoring out 2(p−1)/2, the “repeated” numbers
will be the odd numbers between 1 and (p− 1)/2. Clearly the only “missing”
numbers are even ones between (p − 1)/2 and p, which are just the negatives
of these odd numbers, so the same argument as above with (p− 1)! will work.

• If p ≡ 3 (mod 4), like p = 11, then (p− 1)/2 is odd so there will be(
p− 1

2
− 1

)
1

2
+ 1 =

p+ 1

4

repeated factors, as 1, 3, 5 above.

• If p ≡ 1 (mod 4) (like p = 13), on the other hand, then (p− 1)/2 is even
and there are exactly (

p− 1

2

)
1

2
=

p− 1

4

repeated factors (in that case, still 1, 3, 5).

In either case, whether the number of repeated factors ((p+1)/4 or (p−1)/4,
respectively) is even or odd determines whether 2 is a quadratic residue!

So in general:

• If p ≡ 1 (mod 4) and p−1
4 is even, it works, so p ≡ 1 (mod 8) does have

2 as a QR.

• If p ≡ 1 (mod 4) and p−1
4 is odd, it does not work, so p ≡ 5 (mod 8) does

not have 2 as a QR.

• If p ≡ 3 (mod 4) and p+1
4 is even, it works, so p ≡ 7 (mod 8) does have

2 as a QR.

16.8. EXERCISES 229

• If p ≡ 3 (mod 4) and p+1
4 is odd, it does not work, so p ≡ 3 (mod 8) does

not have 2 as a QR.

The following Sage cell shows Theorem 16.7.1 off.

@interact
def _(p = (17, prime_range (3 ,100))):

l = legendre_symbol (2,p)
r = p%8
pretty_print(html("The␣prime␣$%s\equiv␣%s\\text{␣(mod␣

}8)$␣and␣
$\left (\\ frac {2}{%s}\\ right)=%s$."%(p,r,p,l)))

16.8 Exercises
1. Prove that if e > 1, then there is no solution to

x2 ≡ −1 (mod 2e) .

Use our knowledge of squares modulo 4.

2. For what n does −1 have a square root modulo n? (Hint: use prime fac-
torization and the previous problem along with results earlier in the chapter.)

3. Clearly 4 has a square root modulo 7. Find all square roots of 4 modulo 73

without using Sage or trying all 343 possibilities.

4. Solve x2 +3x+5 (mod 15) using completion of squares and trial and error
for square roots.

5. Solve the following congruences without using a computer:
• x2 + 6x+ 5 (mod 17)
• 5x2 + 3x+ 1 (mod 17)

6. Prove that if p is an odd prime

p−1∑
a=1

(
a

p

)
= 0 .

7. Show that a quadratic residue can’t be a primitive root if p > 2.

8. Use Euler’s Criterion to find all quadratic residues of 13.

9. Use Euler’s Criterion to prove that 2 has a square root modulo p if p ≡
1 (mod 8).

10. Evaluate all Legendre symbols for p = 7 using Euler’s Criterion.

11. Explore for a pattern for when −5 is a quadratic residue. Try not to use
any fancy criteria, but just to seek a pattern based on the number.

230 CHAPTER 16. SOLVING QUADRATIC CONGRUENCES

12. Explore for a pattern for, given p, how many pairs of consecutive residues
are both actually quadratic residues. Then connect this idea to the following
formula, which you should evaluate for the same values of p:

p−2∑
a=1

(
a

p

)(
a+ 1

p

)
(A harder problem is to prove your evaluation works for all p.)

Chapter 17

Quadratic Reciprocity

So far, we have determined at least when some quadratic congruences have
solutions, but at the pace set thus far, most cases should seem beyond reach.
We certainly won’t want to use Theorem 16.5.1 directly for every single one.

Yet one might think we must, and that our task of finding out when numbers
have square roots (mod p) is hopeless. But quite the opposite is true! In fact,
we will derive results that took quite a bit of work almost effortlessly using the
great theorem that is the title of this chapter.

17.1 More Legendre Symbols
To begin with, let’s get some more intuition by trying to calculate some more
Legendre symbols. Remember, we have several interesting basic properties,
not just Euler’s criterion. In the previous chapter we proved the following as
Proposition 16.5.3:
Proposition 17.1.1. If n = ab is a factorization (not necessarily nontrivial)
of n, then n is a QR of p precisely when either both a and b are QRs of p or
both a and b are not QRs of p. (Hence if one of a, b is and the other isn’t,
neither is n.)

In terms of Legendre symbols, it means(
ab

p

)
=

(
a

p

)(
b

p

)
There is another useful computational fact that comes from the observation

that x2 ≡ a (mod n) if and only if x2 ≡ a+ n (mod n).
Proposition 17.1.2. (

a+ p

p

)
=

(
a

p

)
So we can use these ideas to calculate a lot more Legendre symbols!

Example 17.1.3. Let’s compute a few this way.
What is

(
62
19

)
? On the one hand,(

62

19

)
=

(
62− 19− 19− 19

19

)
=

(
5

19

)
but we don’t know this yet either. On the other hand,(

62

19

)
=

(
62 + 19

19

)
=

(
81

19

)
231

232 CHAPTER 17. QUADRATIC RECIPROCITY

Since 81 is a perfect square regardless, this equals 1.
Let’s try

(
8
19

)
. Here, factoring will help;(

8

19

)
=

(
4

19

)
·
(

2

19

)
Since 4 is a perfect square, its symbol is one, and by Theorem 16.7.1 we know
that two is not a QR modulo 19, so we get 1 · −1 = −1 and eight doesn’t have
a square root there either.

Before continuing, alternately try each of these strategies until you either
get to a perfect square or a number you already know is (or isn’t) a residue.
(See also Exercise 17.7.3.)

•
(
55
17

)
•
(
83
17

)
•
(
45
17

)
•
(
41
31

)
•
(
27
31

)
•
(
22
31

)
Sage note 17.1.4 (Check your work). You can always check your work, if
you wish, using Sage.

It turns out you can resolve theoretical questions this way too.

Fact 17.1.5. There are always consecutive quadratic residues for p > 5.

Proof. First, we know that 1, 4, 9 are all quadratic residues. Thus, if at least
one of 2, 5, 10 was also a QR, then we could guarantee that there were always
consecutive quadratic residues somewhere!

As it turns out, if p = 5 this doesn’t work, because the only (nonzero) QRs
are ±1 for that prime. But if p = 7, then a = 1 and a = 9 ≡ 2 are consecutive.

Now suppose p > 7 is prime. Then at least one of 2, 5, 10 must be a QR,
since one of these things must be true:

• 2 could be a QR

• 5 could be a QR

• If 2 and 5 both aren’t, then(
10

p

)
=

(
2

p

)(
5

p

)
= (−1)(−1) = 1

means 10 is!

Thus we see that calculation and theory must go hand in hand; they are
not separate.

17.2. ANOTHER CRITERION 233

17.2 Another Criterion
Now, we might want to do something more general than just try to compute
Legendre symbols one by one. Notice that what we did in using the Euler’s
Criterion to find

(
2
p

)
was to look at numbers like 2x. So one might ask whether

something like this calculation could work with general a and numbers like ax
to find a better theoretical result.

It turns out that this is true. We are going to follow the steps of Gauss’
protege Eisenstein here to find a way to evaluate

(
a
p

)
for p an odd prime

and gcd(a, p) = 1. It will be slow, and we won’t see the payoff until we prove
Theorem 17.4.1, but it will give us good practice in thinking about the numbers
themselves.

Remark 17.2.1. Eisenstein was yet another brilliant young mathematician
who came out of nowhere but died young because he couldn’t find a job which
could help his chronic illness. (I say “yet another” because this is similar to the
story of Abel (after whom Abelian groups are named), and quite likely would
have been the story of Galois if he hadn’t been killed in a duel first).

17.2.1 Laying the foundation
First, let’s introduce a new set and look at a couple properties. I strongly
advise following along with a prime like p = 11 or p = 13.

Definition 17.2.2. Fix an odd prime p. Let E be the set of even numbers
less than p. That is,

E = {2, 4, 6, . . . , p− 1}
Then call the set of multiples of a by even numbers aE (reduced modulo p) so
that

aE = {2a, 4a, 6a, . . . , (p− 1)a}

Claim 17.2.3. The set of numbers

{(−1)xx | x ∈ aE}

is the same as the set E, considered as (least nonnegative) residue classes
modulo p.

Proof. First, both sets are all evens.

• If x is even, then (−1)xx is just x.

• If x is odd, then (−1)xx is equivalent to p − x, which (as the difference
of two odds) is also even.

Second, the elements of the set in question are all different. Why?

• If any two such numbers were the same, then for some even numbers e
and e′ we have

(−1)aeae ≡ (−1)ae
′
ae′

• Since gcd(a, p) = 1 we can remove the a from the previous congruence
and get that

e ≡ ±e′

• Finally, if e and e′ are different then e ≡ −e′ so e+e′ ≡ 0. But e+e′ = 2p
is not possible since they are smaller than p, and e+e′ = p is not possible
since p is odd. The only remaining choice is that e = e′.

234 CHAPTER 17. QUADRATIC RECIPROCITY

Example 17.2.4. For instance, with p = 11 and a = 3 we get E = {2, 4, 6, 8, 10}
and the set in the claim as

{(−1)66, (−1)11, (−1)77, (−1)22, (−1)88} ≡ {6, 10, 4, 2, 8}

17.2.2 Getting the new criterion
Now we will try to use this set to arrive at something similar to Euler’s criterion.
Our goal would be to actually have that in it, but with something different to
compute, so we would need to arrive at a(p−1)/2 in the end. Let’s follow some
steps that might lead us in that direction.

• Crucially, notice first that the exponent is exactly the number of elements
in E. So to get this, we could multiply all of them:∏

e∈E

ae = a(p−1)/2
∏
e∈E

e

• With that in mind, let’s give a name to the least positive residues modulo
p of each ae for e ∈ E; call them re. Then the previous statement, modulo
p, is ∏

e∈E

re ≡ a(p−1)/2
∏
e∈E

e

(Note the change from = to ≡.)

• If we focus temporarily just on the product of es, then using Claim 17.2.3
and adding all the powers of (−1) in question, we can write∏

e∈E

e ≡
∏
e∈E

(−1)rere ≡ (−1)
∑

e∈E re
∏
e∈E

re

• Now we substitute everything from the previous points together and move
minus signs via multiplication. This gets us that∏

e∈E

re ≡ a(p−1)/2
∏
e∈E

e ≡ a(p−1)/2(−1)
∑

e∈E re
∏
e∈E

re

which means, since dividing and multiplying by powers of (−1) is the
same thing,

a(p−1)/2 ≡ (−1)
∑

e∈E re .

Example 17.2.5. For instance, with p = 11 and a = 3 we get

6 · 12 · 18 · 24 · 30 ≡ 6 · 1 · 7 · 2 · 8 ≡ 25(−1)6+1+7+2+86 · 1 · 7 · 2 · 8

Checking, we see that 6+1+7+2+8 is even. So by Euler’s criterion a should
be a QR modulo p, and 11 + 11 + 3 = 25 = 52 so in this case it is.

More generally, we have the following resulting fact.

Fact 17.2.6. (
a

p

)
= (−1)

∑
e∈E re

Proof. Use Euler’s Criterion and the above steps.

17.3. USING EISENSTEIN’S CRITERION 235

What have we done? We have reduced evaluating the Legendre symbol (and
hence deciding whether things have square roots modulo p) to calculating the
parity of a certain sum. Hopefully that’s an improvement on taking powers.

Remark 17.2.7. Transforming such computations to a simple parity (or
other) check is very common in algebra and number theory.

17.2.3 The final form
Of course, Fact 17.2.6 is still somewhat unwieldy, so there is a final simplifica-
tion.

First, where do these re come from anyway? Well, for e ∈ E, they are the
least positive residues, and that means they are precisely what we get from the
Division Algorithm:

ae = p

⌊
ae

p

⌋
+ re

So if we add them all up, we get∑
e∈E

re =
∑
e∈E

ae− p
∑
e∈E

⌊
ae

p

⌋
But we only care about the parity of this sum! So we can remove the whole

piece with e in it, as that’s all even, and we can replace the −p by 1, since they
are the same modulo 2.

Theorem 17.2.8 (Eisenstein’s Criterion for the Legendre Symbol).(
a

p

)
= (−1)

∑
e∈E⌊ ae

p ⌋ .

Remark 17.2.9. The name of the criterion is long to avoid confusion with
another famous criterion Eisenstein came up with. (See David Cox’s excellent
2011 Monthly article [C.6.4], which won the Lester R. Ford award, on whether
Theodor Schönemann deserves the credit for that criterion too.)

Example 17.2.10. To continue the example with p = 11 and a = 3, let’s
compute this exponent.⌊

6

11

⌋
+

⌊
12

11

⌋
+

⌊
18

11

⌋
+

⌊
24

11

⌋
+

⌊
20

11

⌋
= 0 + 1 + 1 + 2 + 2 = 6

Once again, this is even so 3 is confirmed to be a QR modulo 11.

This very abstruse-seeming criterion will actually be the key to proving
the soon-to-come Theorem 17.4.1. See Laubenbacher and Pengelley’s article
[C.6.8] for an excellent exposition which is elaborated on significantly above.

17.3 Using Eisenstein’s Criterion
Let’s calculate for a bit using this criterion. It says that we can tell whether a
number a has a square root modulo p simply by checking whether

∑
even e, 0<e<p

⌊
ae
p

⌋
is even or odd. So let’s apply it to evaluating

(
3
p

)
for odd primes p. Equiva-

lently, we can answer this question:

Question 17.3.1. When does 3 have a square root modulo p?

236 CHAPTER 17. QUADRATIC RECIPROCITY

If you liked some of the integer-point counting arguments earlier, you will
like this.

For this case, we care about ∑
even e, 0<e<p

⌊
3e

p

⌋
.

Said another way, we are adding the integer parts of y
p for y a multiple of six

less than 3(p− 1).

Example 17.3.2. Let’s try with p = 7: We have⌊
6

7

⌋
+

⌊
12

7

⌋
+

⌊
18

7

⌋
= 0 + 1 + 2 = 3

so 7 ̸≡ s2.
What about with p = 11? The criterion would be for⌊

6

11

⌋
+

⌊
12

11

⌋
+

⌊
18

11

⌋
+

⌊
24

11

⌋
+

⌊
30

11

⌋
= 0 + 1 + 1 + 2 + 2 = 6

This is even, and we already saw several times in the previous section that this
correctly implies 3 is a QR.

What will a fact like this look like in general? All we care about is the
parity of this sum. So, we can really ignore the terms in the sum that are 0 or
2, as they won’t change the parity! That means we are really only looking at⌊
3e
p

⌋
for 3e that are between p and 2p, since ones less than p are 0 and there

can’t be any number bigger than 3p if we only let e go up to e = p− 1.
This means we are considering precisely even e such that p < 3e < 2p, or

all integers y such that the multiples of 6 give

p < 6y < 2p ⇒ p

6
< y <

p

3
.

We’ve reduced to the parity of the cardinality of this small set of integers.
It should be clear that when p moves above or below a multiple of six, this

might change how many are in between. So it seems reasonable to look at
primes of the form p = 6k + r when examining this. That gives

p

6
< y <

p

3
⇒ 6k + r

6
< y <

6k + r

3
⇒ k +

r

6
< y < 2k +

r

3

⇒ r

6
< y < k +

r

3
.

(This works because the cardinality of the sets will be the same if we subtract
an integer.)

Claim 17.3.3. Both of the numbers we are adding to get the parity we are
after can be easily computed:

• The parity of k.

• The parity of the size of the set of integers y such that r
6 < y < r

3 .

The sum of these two parities should be the parity of the set between r
6 and

k + r
3 .

Proof. These can be easily dealt with.

17.4. QUADRATIC RECIPROCITY 237

• The parity of k has two options.

◦ If k is even, then k = 2ℓ and p = 6k + r = 12ℓ+ r.
◦ If not, then k = 2ℓ+ 1 and p = 6k + r = 12ℓ+ 6 + r.

• There are two possible residues r modulo 6 for prime p. Either r = 1 or
r = 5.

◦ If r = 1, we are looking for y such that 1
6 < y < 1

3 , of which there
are none.

◦ If r = 5, we are looking for y such that 5
6 < y < 5

3 , of which there
is one.

Proposition 17.3.4. Three is a quadratic residue (or not) in the following
circumstances.

•
(

3
p

)
= 1 if p ≡ ±1 (mod 12)

•
(

3
p

)
= −1 if p ≡ ±5 (mod 12)

Proof. Combine the facts in Claim 17.3.3. We see that

• If p = 12ℓ+ 1 we add two even numbers, so 3 is a QR.

• If p = 12ℓ+ 5, we add an even number and 1, so 3 is not a QR.

• If p = 12ℓ+ 6 + 1 = 12ℓ+ 7, we add an odd and zero, so 3 is not a QR.

• If p = 12ℓ+ 6 + 5 = 12ℓ+ 11, we add an odd and 1, which is even, so 3
is a QR.

Try it!

for p in prime_range (5,50):
pretty_print(html("$%s\equiv␣%s\\text{␣(mod␣}12)$␣and␣

$\left (\\ frac {3}{%s}\\ right)=%s$"%(p,p%12,p,
legendre_symbol (3,p))))

17.4 Quadratic Reciprocity
Now, if we had to do this prime by prime, it would still be horrible.

Instead, we will end up computing all Legendre symbols
(

a
p

)
with a ̸= −1, 2

by reducing them to
(

−1
p

)
or
(

2
p

)
using techniques from Section 17.1 and the

following theorem.
As we’ve already alluded more than once, this theorem is venerable. Parts

of it were conjectured and proved by Euler, and all of it was conjectured by
Legendre in terms of remainders (some commentators say he proved it as well).
Carl Friedrich Gauss provided no fewer than eight proofs over the course of his
lifetime. See Subsection 17.6.3 for a few more comments.

238 CHAPTER 17. QUADRATIC RECIPROCITY

17.4.1 The theorem
Theorem 17.4.1 (Quadratic Reciprocity). If p and q are odd primes not equal
to each other, then (

p

q

)(
q

p

)
= (−1)(

p−1
2)(q−1

2) .

Proof. See Section 17.6.

Remark 17.4.2. We can multiply the fractions to rewrite it in a way some
authors prefer: (

p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4

Example 17.4.3 (Computing with QR). We immediately apply this to vastly
simplify the calculations in Section 17.3. Let q = 3 and p > 3.

Let’s write the theorem out for this case. Since (3− 1)/2 = 1, we have(
3

p

)(p
3

)
= (−1)(p−1)/2, or

(
3

p

)
= (−1)(p−1)/2

(p
3

)
.

There are two parts to this:

• Since 1 ∈ Q3 and 2 /∈ Q3, the Legendre symbol on the right is:(p
3

)
= 1 if p ≡ 1 (mod 3) and

(p
3

)
= −1 if p ≡ 2 (mod 3) .

• We can also compute the power of −1:

(−1)(p−1)/2 = 1 if p ≡ 1 (mod 4) and (−1)(p−1)/2 = −1 if p ≡ 3 (mod 4) .

Combine these together and we get that
(

3
p

)
= 1 exactly when one of these

two cases occurs:

• p ≡ 1 (mod 3) and mod (4)

• p ≡ 3 (mod 4) and ≡ 2 (mod 3)

This is precisely p ≡ 1, 11 ≡ ±1 (mod 12) as in Proposition 17.3.4!

It’s amazing that this can work so easily.

17.4.2 Why is this theorem different from all other the-
orems?

17.4.2.1 What does it mean?

What does the term “quadratic reciprocity” even mean?
It means that there is a reciprocating relationship between Legendre sym-

bols, and hence between whether there is a square root of two primes modulo
each other.

For instance, it says that usually the following matrix is symmetric – and
that we have a simple formula for when it isn’t.

ls=prime_range (3,50)
M=matrix(len(ls),[legendre_symbol(a,b) for a in ls for b

in ls])
show(block_matrix (2,[0, matrix(1,len(ls),ls),

matrix(len(ls),1,ls), M]))

17.4. QUADRATIC RECIPROCITY 239

Here is another way to say it. For odd primes p and q,(
p

q

)
=

(
q

p

)
except when p ≡ q ≡ 3 (mod 4).

17.4.2.2 What does it do?

What does quadratic reciprocity do?
It makes computation of Legendre symbols very, very easy if you have a

prime factorization of p (and all the intermediate steps). You just need to use
the following facts we already proved, in addition to quadratic reciprocity.

•
(

−1
p

)
= 1 ⇐⇒ p ≡ 1 (mod 4)

•
(

2
p

)
= 1 ⇐⇒ p ≡ ±1 (mod 8)

Algorithm 17.4.4. Any Legendre symbol can be computed using the following
steps, not necessarily in this order and often multiple times:

• Factor the top and use Proposition 16.5.3, then computing each one
separately.

• Reduce modulo the bottom and/or use Proposition 17.1.2 to get convenient
tops (especially perfect squares).

• When you get to an odd prime on the top and bottom, use Theorem 17.4.1.

• When the top is −1 or 2, use Example 16.6.2or Theorem 16.7.1 to finish
your computation.

Proof. Read the chapter up to this point, plus the proof of Theorem 17.4.1.

Example 17.4.5. Let’s calculate
(

99
167

)
.

• Since they are coprime factors,
(

99
167

)
=
(

9
167

)
·
(

11
167

)
.

• Since both 11 and 167 are prime and congruent to 3 modulo four,
(

9
167

)
·(

11
167

)
=
(

32

167

)
· −
(
167
11

)
• Reducing, we get

(
32

167

)
· −
(
167
11

)
= −1 ·

(
2
11

)
• Finally, we use Theorem 16.7.1 and note that 11 ≡ 3 (mod 8) to get

−1 ·
(

2
11

)
= −1 · −1 = 1 and we see that ninety-nine is a QR modulo one

hundred sixty-seven.
Example 17.4.6. In a classroom experience, try these. (Else, see Exer-
cise 17.7.15.)

•
(

83
103

)
•
(
219
383

)
And we can check them, of course.
legendre_symbol (83 ,103),legendre_symbol (219 ,383)

We can also come up with congruence criteria like above for other primes.
See the exercises, such as 17.7.5 and 17.7.17.

240 CHAPTER 17. QUADRATIC RECIPROCITY

17.4.2.3 The Jacobi symbol

What else does quadratic reciprocity do? Indirectly, it allows us to compute
Legendre symbols

(
a
p

)
without factoring a.

Definition 17.4.7. Let n be an odd number which factors as

n = pe11 pe22 · · · pekk .

Then the Jacobi symbol ,
(
a
n

)
, is just the product of the relevant Legendre

symbols: (a
n

)
=

(
a

p1

)e1 (a

p2

)e2

· · ·
(

a

pk

)ek

Amazingly, the Jacobi symbol has all the same properties the Legendre
symbol has – even quadratic reciprocity and the values for a = −1, 2. And if(a

n

)
= −1

then a is not a QR of n. The only thing not the same is:

Fact 17.4.8. If n is not prime, then
(
a
n

)
= 1 does not necessarily imply a is

a QR of n.

Sage note 17.4.9 (Names of functions may vary). In Sage, this is named
after yet another generalization called the Kronecker symbol.

kronecker_symbol (8,15), quadratic_residues (15)

The goal of introducing this is not to use the definition of the Jacobi symbol
to do anything. That would be pointless.

Instead, the idea is that you can use the Jacobi symbol to do your calcu-
lation of Legendre symbols! After all, they follow almost all the same rules.
You’d only need to factor here in order to make sure you don’t have an even
number in the denominator of the symbol.

It turns out that, unlike factoring (as far as we know), this leads to an
algorithm which needs only about the square of the number of digits of p steps
to evaluate the symbol, which is much better than one would need if one had
to factor first.

Some examples would be just as fast doing it either way, like
(

83
103

)
. But

others would be much slower, because you’d have to factor a few different
times. Here’s an example; note that 943 is not prime.

Example 17.4.10.(
943

997

)
=

(
997

943

)
since 997 ≡ 1 (mod 4)

=

(
54

943

)
=

(
2

943

)(
27

943

)
= (+1)

(
27

943

)
since 943 ≡ −1 (mod 8)

= −
(
943

27

)
since both are ≡ 3 (mod 4)

= −
(
25

27

)
= −1 because 25 = 52

And we can check this out with Sage:

http://en.wikipedia.org/wiki/Jacobi_symbol

17.5. SOME SURPRISING APPLICATIONS OF QR 241

kronecker_symbol (943 ,997)

Compare this example with having to first factor 943 and then still do the
whole reciprocity dance, and this is much easier and more automatic for a
computer to do. (By the way, factoring 943 = 23 · 41 is itself not a gimme ‘by
hand’.)

Before we go one, if you haven’t tried to compute lots of things with
quadratic reciprocity, don’t go on until you do. You won’t appreciate the
power and usefulness of the proof until then. It’s just the way these things
are.

17.5 Some Surprising Applications of QR
What else can quadratic reciprocity do? The answer is, a lot.

17.5.1 Factoring, briefly
As an example, it can help us with factoring large integers n; Gauss did this.
Describing the process itself is just a little too long to allow its inclusion, but
it’s important to get the flavor.

The essential idea is that if a is a QR of n, then a is a QR of any prime
p | n. So since QRs often have congruence conditions associated with them, n
must obey all of the congruence conditions for

(
a
p

)
for all the p which divide

it. Which might be a lot of conditions.
Then we can use a variant on the Fermat factoring method to check for

possible a for which a prime divisor p of n definitely is or definitely is not a
QR (which quadratic reciprocity can help with), and then one can compute
Legendre/Jacobi symbols of possible p | n to reduce to just having to check a
very few bigger possible prime factors.

17.5.2 Primality testing
Another application is that it can help us check primality.

One specific place where it is helpful is with the so-called Fermat num-
bers. Recall (Subsection 12.1.1) that Euler blasted the following conjecture of
Fermat’s out of the water:

Fn = 22
n

+ 1 is always prime for n ≥ 0 .

But what about bigger ones; surely they are inaccessible to the usual factoring
techniques?

Just like with Mersenne numbers (Subsection 12.1.3), for which the Lucas-
Lehmer test can check for primality (remember GIMPS?), there is a test called
Pépin’s test which can check for primality of Fermat numbers. (Pépin did this
work in the late 1800s.) It turns out that no bigger Fermat numbers have
turned out to be prime (all the way through n = 31); see the relevant member
of the excellent Prime Pages for more information.

Here is the test in Sage:

@interact
def _(n=(1 ,[1..6])):

F=2^(2^n)+1

http://primes.utm.edu/glossary/xpage/FermatNumber.html
http://primes.utm.edu/glossary/xpage/FermatNumber.html

242 CHAPTER 17. QUADRATIC RECIPROCITY

pretty_print(html("The␣$%s$th␣Fermat␣number␣is␣
$%s$"%(n,F)))

test = mod(3,F)^((F-1)/2)
if test == -1:

pretty_print(html("Since␣$3^{(%s-1) /2}\ equiv␣%s$,␣
this␣Fermat␣number␣is␣prime"%(F,test)))

else:
pretty_print(html("Since␣$3^{(%s-1) /2}\ equiv␣%s$,␣

this␣Fermat␣number␣is␣not␣prime"%(F,test)))

You can already see from this code that it is checking Euler’s criterion mod
(Fn), and looking for a negative answer. Why would this test primality? Let’s
formally state and prove the criterion.
Fact 17.5.1. For n > 0, Fn = 22

n

+ 1 is prime exactly when

32
2n−1

≡ −1 (mod 22
n

+ 1)

Proof. First, let’s assume Fn is prime. Since Fn is one more than a multiple
of four, it is clearly

Fn ≡ 1, 5, or 9 (mod 12) .

• If Fn ≡ 1 (mod 12), then 3 | 22n = Fn − 1, which cannot be true.

• If Fn ≡ 9 (mod 12), then Fn is a number greater than three which is
divisible by three – but it’s prime, so that’s not possible.

• So Fn ≡ 5 (mod 12).

Since Fn is prime, that means by Proposition 17.3.4 we know 3 /∈ Qp.
For the converse, let’s assume that Euler’s criterion gives this answer of

−1. Then square both sides to get

3Fn−1 ≡ 1 (mod p)

for all primes p dividing Fn. Now, what order does 3 have here?

• Since Fn − 1 = 22
n , that means 3 has order some power of 2 (in Up).

• But 3 can’t have order 22
n−1 (or less), because it isn’t the identity when

taken to that power.

• So it must have order 22
n .

The only way 3 can have that big of an order is if p is at least 22n +1 = Fn!
So since p | Fn, they must be equal.

17.5.3 Solving equations
There is even more! As one example, quadratic reciprocity (or at least the
Legendre symbol) helps us solve Mordell equations (e.g. Subsection 15.3.2).
The easiest cases use

(
2
p

)
and multiplicativity. But more advanced ones need

to compute more complicated square roots. Here are two examples, without
proof; there are many others.

• The equation x3 = y2 + 16 has no integer solutions. (Uses
(

−8
p

)
.)

• The equation x3 = y2 − 46 has no integer solutions. (Uses
(

−18
p

)
.)

17.5. SOME SURPRISING APPLICATIONS OF QR 243

17.5.4 Artin’s conjecture
Let’s return to the test for Fn’s primality in Fact 17.5.1. A careful look at
the proof shows that 3 is a primitive root for Fn, if Fn is prime. Thus, if we
had infinitely many Fermat primes (and not just five of them), we’d have an
integer which is a primitive root of infinitely many primes.

Such would provide a proof of at least one explicit case for the following
long-standing question.

Conjecture 17.5.2 (Artin’s Conjecture). Every nonsquare integer except −1
is a primitive root for infinitely many primes.

This conjecture is interesting for several reasons.

• Although it is mostly believed to be true, currently there are no integers
known to be a primitive root for infinitely primes.

• Weirder, it is known that at least one of 3, 5, and 7 does in fact satisfy
this (that is, at least one of 3, 5, or 7 is a primitive root for infinitely
many primes) but we don’t know which one!

• Weirdest, it has been proved that there are at most two exceptions to
this conjecture, yet we also know of no integers which do not satisfy it!
That is, there are at most two nonsquare integers which are not a prim-
itive root for infinitely many primes, yet we do not have a single specific
integer which we can prove that for.

There is some historical connection as well. Gauss spent some time investi-
gating the patterns of repetitions in simple decimal expansions of fractions, like
1
3 = .333 . . . or 2

7 = .285714285714 It turns out that this is directly con-
nected to whether 10 is a primitive root for a given prime (see Exercise 17.7.19).
Likewise, the ‘Great Theorem’ in William Dunham’s book Journey Through
Genius where Euler found that F5 = 4294967297 was composite (recall Subsec-
tion 12.1.1) would have been helped along quite a bit, as Euler’s proof looked
directly at factors of powers of 2 (plus one) and their possible form, not powers
of 3.

@interact
def _(n=(1 ,[1..6])):

F = 2^(2^n)+1
a = mod(3,F)
if a.multiplicative_order ()==F-1:

pretty_print(html("3␣is␣a␣primitive␣root␣of␣
$F_{%s}=%s$"%(n,F)))

else:
pretty_print(html("Not␣prime ,␣no␣primitive␣root!"))

We can use these ideas to find another possible way to attack Artin’s Con-
jecture. It’s not directly related to reciprocity per se, but still connects all our
theoretical ideas of the last several sections.

Example 17.5.3. We put this in the form of several steps. Verifying several
facts in these steps is left to Exercise Group 17.7.8–17.7.11.

Recall from the very end of Section 11.6 that if q and p = 2q + 1 are both
odd primes, then we call q a Germain prime. Every residue of p for which
primitive root makes sense (i.e. not a = −1 or a = 0) is either a primitive root
or a QR.

244 CHAPTER 17. QUADRATIC RECIPROCITY

Such a prime p must be of the form p ≡ 3 (mod 4), because q = 2k + 1 so
that

p = 2(2k + 1) + 1 = 4k + 3

In this case, not only are all residues either a primitive root or a QR, but
a is one of these things precisely when p− a is the other kind. We know that

12, 22, 32, . . . , q2

are all different modulo p, and of course all of these are QRs (and so not
primitive roots).

Here is the key; that means that the additive inverses of perfect suqares,
p− k2, for 2 ≤ k ≤ q, must all be primitive roots. The smallest of these, p− 4,
must thus be a primitive root for any such prime p = 2q + 1!

So if there were infinitely many such Germain primes, we would also have
an explicit example of Artin’s conjecture … but, so far, no such luck.

The largest currently known (as of this writing, discovered in early 2016)
Germain prime, due to James Scott Brown, is

2618163402417 · 21290000 − 1

which is a number with close to four hundred thousand digits. (The previous
record had about half as many, so this is a huge advance.)

@interact
def _(q=(11,[r for r in prime_range (3 ,100) if

is_prime (2*r+1)])):
p = 2*q+1
a=mod(p-4,p)
if a.multiplicative_order ()==p-1:

pretty_print(html("-4␣is␣a␣primitive␣root␣of␣
$%s$"%p))

else:
pretty_print(html("Mistake!"))

17.6 A Proof of Quadratic Reciprocity
You are most likely now exhausted by the many applications and uses of
quadratic reciprocity. Now we must prove it.

Recall the statement: For odd primes p and q, we have that(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

That is to say, the Legendre symbols are the same unless p and q are both of
the form 4k + 3.

Before beginning, let’s recall the tools we will need on our jouney. First,
recall that p and q are odd primes in the context of this proof. Also, we will
use the criterion of Eisenstein’s 17.2.8 we’ve used throughout. So we’ll let

R =
∑

even e, 0<e<p

⌊
qe

p

⌋
be the exponent in question, so that(

q

p

)
= (−1)R .

http://primes.utm.edu/top20/page.php?sort=SophieGermain

17.6. A PROOF OF QUADRATIC RECIPROCITY 245

17.6.1 Re-enter geometry

The key to our proof will be geometrically interpreting
⌊
qe
p

⌋
. We can think of

it as being the biggest integer less than qe
p , which means we can think of it as

an integer height.
The following features are present in the next graphic, which should clarify

how we’ll think of it geometrically. Each type of object is highlighted with a
different color.

• The line through the origin with slope q/p (dotted blue).

• All the grid points in the box of width p and height q (box red, points
black).

• Points with even x-coordinate corresponding to the highest that one can
get while staying under the line of slope q/p (points blue).

• The box of width p−1
2 and height q−1

2 (green), which we’ll need in a
moment.

var('x,y ')
@interact
def _(p=(11, prime_range (3 ,100)),q=(7, prime_range (3 ,100))):

E = [2,4..p-1]
plot4 = plot((q/p)*x,(x,0,p),linestyle= ' -- ')
plot3 = line ([[0,0],[p,0],[p,q],[0,q],[0,0]],

rgbcolor =(1,0,0))
plot2 = line ([[0,0], [(p-1)/2,0], [(p-1)/2,(q-1)/2],

[0,(q-1)/2], [0,0]], color= ' green ')
grid_pts_1 = [[i,j] for i in [1..p] for j in [1..q]]
grid_pts_2 = [[i,j] for i in [1..(p-1)/2] for j in

[1..(q-1) /2]]
plot_grid_pts =

points(grid_pts_1 ,rgbcolor =(0,0,0),pointsize =10)
lattice_pts1 = [coords for coords in grid_pts_1 if

(coords [0]*q-coords [1]*p>0 and coords [0]<p and
coords [0] in E)]

lattice_pts2 = [coords for coords in grid_pts_2 if
(coords [0]*q-coords [1]*p>0 and coords [0]>p/2)]

num1 , num2 = len(lattice_pts1), len(lattice_pts2)
if len(lattice_pts1)!=0:

plot_lattice_pts1 = points(lattice_pts1 , rgbcolor
= (0,0,1),pointsize =20)

else:
plot_lattice_pts1 = Graphics ()

if len(lattice_pts2)!=0:
plot_lattice_pts2 = points(lattice_pts2 , rgbcolor

= (0,.5,0),pointsize =20)
else:

plot_lattice_pts2 = Graphics ()
show(plot2+plot3+plot4 + plot_grid_pts +

plot_lattice_pts1 , xmax=p,ymax=q,ymin =0)
forms = ' $ ' + ' + ' .join([' \left\lfloor \\frac{%s\cdot␣

%s}{%s}\\ right\\ rfloor ' %(q,e,p) for e in E])+ ' $ '
pretty_print(html("The␣blue␣dots␣represent␣"+forms))
forms2 = ' $ ' + ' + ' .join([' \left\lfloor \\frac{%s}{%s}␣

\\ right\\ rfloor ' %(q*e,p) for e in E])

246 CHAPTER 17. QUADRATIC RECIPROCITY

forms3 = ' + ' .join([' %s ' %(floor(q*e/p)) for e in
E])+ ' =%s\equiv%s\\text{␣(mod␣
}2)$ ' %(sum([floor(q*e/p) for e in
E]),sum([floor(q*e/p) for e in E])%2)

pretty_print(html("This␣simplifies␣to␣
"+forms2+ ' = ' +forms3))

It should be clear that each blue stack has the same height as
⌊
qe
p

⌋
for some

even e. The core geometric point of the proof is to convince ourselves of this:

Claim 17.6.1. The number of blue points (which is R) has the same parity as
the total number of (positive) points in and on the green box which are under
the dotted line.

Claim 17.6.2. Suppose that we have proved Claim 17.6.1. Then we can quickly
prove Quadratic Reciprocity.

Proof. The following steps are all we need. Essentially, we take the previous
claim and use it for both Legendre symbols, add, and get the result.

• First, to get
(

q
p

)
, we can ignore R and just focus on the number (indeed,

parity) of positive lattice points in that more-or-less triangle.

• The same argument applies to
(

p
q

)
; we could ignore the exponent

R′ =
∑

even e′, 0<e′<q

⌊
pe′

q

⌋

and instead focus on the number of positive lattice points in and on the
green box to the left of the dotted line. (Think about this; it switches
the role of the vertical and horizontal axes.)

• So the total exponent of −1 we expect from
(

q
p

)(
p
q

)
is just the sum of

those two amounts. That is, the exponent is the number of points in and
on the green box. (There is no overlap, because q and p are coprime, so
there are no lattice points on the dotted line until we get to (p, q), which
is well outside the green box.)

• You’ll note that this box has dimensions p−1
2 and q−1

2 , so that would
mean

p− 1

2
· q − 1

2
≡

∑
even e, 0<e<p

⌊
qe

p

⌋
+

∑
even e′, 0<e′<q

⌊
pe′

q

⌋
(mod 2) ,

so that (
q

p

)(
p

q

)
= (−1)R+R′

= (−1)
p−1
2 · q−1

2 .

17.6. A PROOF OF QUADRATIC RECIPROCITY 247

17.6.2 Proving proper parity
So to finish the proof via Claim 17.6.1, we must show that the number of blue
points (points under the line with even x-coordinate) is the same as the number
of positive points in the green box under the line. Along with Eisenstein, we
call this second number µ.

In the next graphic, there is a lot going on, all of which we will use for
the proof (note especially the new, green, points). We will clarify each of the
pieces below.

var('x,y ')
@interact
def _(p=(11, prime_range (3 ,100)),q=(7, prime_range (3 ,100))):

E = [2,4..p-1]
plot4 = plot((q/p)*x,(x,0,p),linestyle= ' -- ')
plot3 = line ([[0,0],[p,0],[p,q],[0,q],[0,0]],

rgbcolor =(1,0,0))
plot2 = line ([[0,0], [(p-1)/2,0], [(p-1)/2,(q-1)/2],

[0,(q-1)/2], [0,0]], color= ' green ')
grid_pts_1 = [[i,j] for i in [1..p] for j in [1..q]]
grid_pts_2 = [[i,j] for i in [1..(p-1)/2] for j in

[1..(q-1) /2]]
plot_grid_pts =

points(grid_pts_1 ,rgbcolor =(0,0,0),pointsize =10)
lattice_pts1 = [coords for coords in grid_pts_1 if

(coords [0]*q-coords [1]*p>0 and coords [0]<p and
coords [0] in E)]

lattice_pts2 = [coords for coords in grid_pts_1 if
(coords [0]*q-coords [1]*p<0 and coords [0]>(p-1)/2
and coords [1]<q and coords [0] in E)]

lattice_pts3 = [coords for coords in grid_pts_1 if
(coords [0]*q-coords [1]*p>0 and coords [0]<=(p-1)/2
and coords [0] not in E)]

num1 , num2 = len(lattice_pts1), len(lattice_pts2)
if len(lattice_pts1)!=0:

plot_lattice_pts1 = points(lattice_pts1 , rgbcolor
= (0,0,1),pointsize =20)

else:
plot_lattice_pts1 = Graphics ()

if len(lattice_pts2)!=0:
plot_lattice_pts2 = points(lattice_pts2 , rgbcolor

= (0,.5,0),pointsize =20)
else:

plot_lattice_pts2 = Graphics ()
if len(lattice_pts3)!=0:

plot_lattice_pts3 = points(lattice_pts3 , rgbcolor
= (0,.5,0),pointsize =20)

else:
plot_lattice_pts3 = Graphics ()

show(plot2+plot3+plot4 +
plot_grid_pts+plot_lattice_pts1 +
plot_lattice_pts2+plot_lattice_pts3 ,
xmax=p,ymax=q,ymin =0)

forms = ' $\mu= ' + ' + ' .join([' \left\lfloor \\frac{%s\cdot␣
%s}{%s}\\ right\\ rfloor ' %(q,e,p) for e in
[1..(p-1) /2]])+ ' $ '

pretty_print(html("The␣blue␣and␣green␣dots␣in␣the␣
small␣triangle␣represent"))

pretty_print(html("the␣sum␣"+forms))

248 CHAPTER 17. QUADRATIC RECIPROCITY

Let’s look at the two sets of green dots.

• One set is on top, the lattice points with even x-coordinates greater than
p−1
2 which have y-coordinate less than q which are above the dotted line.

• The other set is similar, but on the bottom, with odd x-coordinates less
than p−1

2 which have y-coordinate greater than 0 and are below the line.

You can think of the first set as filling in the even columns greater than
p−1
2 , while the latter set fills in the the triangle for odd columns less than p−1

2 .
To further understand this, in the interactive form of the text you may wish
to try q relatively large compared to p to see this more clearly. Try several
different values!

The key observation is that these two sets of green dots are symmetric
images – they are simply rotated around the point(p

2
,
q

2

)
.

This makes sense, since with p and q odd, this would change odd to even and
vice versa.

So in order to say that µ has the same parity as R (which is our goal to finish
the proof), we just have to show that either set of green points has the same
parity as that of the set of blue points outside the green box. Again, refer to
the interactive graphic and try it with different primes for best understanding.

Claim 17.6.3. Either set of green points has the same parity as the set of blue
points outside the green box.

Proof. There are q − 1 points in each column of points outside the green box.
In particular, there an even number of points in each such column.

So whether the number of blue points in a given column is even or odd, it
is guaranteed that the parity of the green points in that same column is also
even or odd, respectively. So the parity of the green points outside the green
box is the same as the parity of the blue points outside the green box.

This means the parity of the points inside the triangle (µ) is the same as
that of the blue points (R), which is what we wanted to prove!

17.6.3 Postlude
It’s really quite amazing how we needed to understand congruence, parity,
some geometry, and of course the idea of a quadratic residue in the first place
to prove this. As of right now, there is a list of well over two hundred proofs
of this theorem. The very shortest might be one by G. Rousseau , and there
is a nice list online of “favorite proofs” by various mathematicians.

So this is one proof where it is appropriate to say Q.E.D.

17.7 Exercises
1. Evaluate the Legendre symbols for p = 11 and a = 2, 3, 5 using Eisenstein’s
Criterion for the Legendre Symbol.

2. Use the previous problem, your knowledge of
(−1
11

)
and of perfect squares

to evaluate the other Legendre symbols for p = 11.

3. Do any Legendre symbols after Example 17.1.3 which you didn’t already
do.

http://www.rzuser.uni-heidelberg.de/~hb3/rchrono.html
http://dx.doi.org/10.1017/S1446788700034583
http://mathoverflow.net/questions/1420/whats-the-best-proof-of-quadratic-reciprocity
http://mathoverflow.net/questions/1420/whats-the-best-proof-of-quadratic-reciprocity

17.7. EXERCISES 249

4. Make up several hard-looking Legendre symbols
(

a
29

)
(modulo p = 29) that

are easy to solve by adding p or by factoring a.

5. Use the multiplicative property of the Legendre symbol to give a congruence
condition for when

(
−2
p

)
= ±1.

6. For 0 < a, b < p, prove that at least one of a, b, and ab is a quadratic residue
of p.

7. In Exercise 16.8.6 we proved, for an odd prime p,
p−1∑
a=1

(
a

p

)
= 0 .

Conjecture (and, if you can, prove) a similar result for∑
a∈Qp

a .

In Example 17.5.3 there are a number of small issues which need proof; here,
you have the opportunity to finish them off.

Let p be a prime of the form p = 2q+1, where q is prime (recall that q
is called a Germain prime in this case). Show that every residue from
1 to p− 2 is either a primitive root of p or a quadratic residue. (Hint:
Use Euler’s Criterion, and ask yourself how many possible orders an
element of Up can have.)

8.

Prove: if p ≡ 3 (mod 4), and if a ̸≡ ±1, 0, then a is a QR modulo p if
and only if p− a is not a QR.

9.

Prove that for any prime p, if 1 < i, j < p
2 and i ̸= j, then i2 ̸≡ j2

(mod p). (Hint: factor!)
10.

Verify the previous exercise for p = 23.11.

12. Prove that if
(
2
n

)
is the Jacobi symbol instead of the Legendre symbol, it

is still true that
(
2
n

)
= 1 precisely when n ≡ ±1 (mod 8). (Remember, n has

to be odd by definition.)

13. Compute some Legendre symbols that seem pretty hard by using the Ja-
cobi symbol instead.

14. Show that if p is an odd prime, then there are exactly p−1
2 − ϕ(p − 1)

residues which are neither QRs nor primitive roots. (Hint: don’t think too
hard – just do the obvious counting up.)

15. If you didn’t do them already, do the exercises in Example 17.4.6.

16. Evaluate five non-obvious Legendre symbols (ap) for p = 47 using quadratic
reciprocity.

17. Find congruence criteria for p for when a ∈ Qp for a = −3, 6, and 9. (Hint:
Don’t do any extra work – use what you know!)

18. Use quadratic reciprocity to prove the surprising statement that −5 is
a quadratic residue for exactly those primes for whom the sum of the ones
and tens digit is odd. (Did you conjecture this when you completed Exer-
cise 16.8.11? See [C.6.10] about a story behind this unusual result.)

19. Use Sage to explore why repetition in the decimal expansion of a
p is related

to whether 10 is a primitive root modulo p.

250 CHAPTER 17. QUADRATIC RECIPROCITY

Chapter 18

An Introduction to
Functions

The further one goes into number theory, the more one needs to think about
the functions involved as functions, and not just as handy computational short-
hand.

Question 18.0.1. What properties do number-theoretic functions (such as
ϕ(n)) have? What can we do with them?

Most of the remainder of the text deals with such questions. This short
chapter introduces some of the questions we will ask through the lens of one
function we have done a fair amount with, and then through the eyes of one
we have examined in less detail.

The Euler function, like many we have seen and will see, is an example of an
arithmetic function. An arithmetic function is a function with the natural
numbers as its domain, usually going to integer, real, or complex values.

Remark 18.0.2. We pronounce this word with the stress on the third syllable
in number theory when used as an adjective, but (as usual) on the second
syllable when used as a noun.

A-rith-me-tic functions show up when studying the higher a-rith-
me-tic.

There are three types of questions we’ll spend a lot of time with regarding
arithmetic functions. For any given function, we wish to find or examine the
following.

• We want to have as explicit of formulas as possible for our functions,
which are often defined implicitly or in terms of counting.

• We wish to find relational formulas, either between our function and other
functions, or especially among different values of the function itself.

• We desire to see what the long-term or aggregate behavior of the func-
tions is; in practice this usually involves summation of various kinds.

In this chapter, we will start the process, but it will recur throughout the
remainder of the text.

251

252 CHAPTER 18. AN INTRODUCTION TO FUNCTIONS

18.1 Three Questions for Euler phi
It’s easier to say useful things about some functions than others! To begin, let’s
go back and remind ourselves of some of the nice properties of one particular
function we did study a fair amount. In the next chapter, we’ll start exploring
some that we have not yet encountered.

That function is, naturally, the Euler ϕ function. Recall that ϕ(n) gives
the size of the set

{k | 0 < k ≤ n, gcd(k, n) = 1}

of residues modulo n which are coprime to n.

Example 18.1.1. We can use Sage to calculate.

euler_phi (25)

18.1.1 Formulas
Of course, such small values can be calculated by hand. But what about more
general ones? Surely we don’t want to have to check every number up to n
just to compute this.

And indeed, in Exercise 9.6.9 you should have gotten a formula. Do you
remember it? The following Sage cell is a hint.

print factor (275)
print euler_phi (275)
print 275*(1 -1/5) *(1 -1/11)

Fact 18.1.2. If n is the product of prime powers n =
∏k

i=1 p
ei
i then we have

the formula

ϕ(n) = n
k∏

i=1

(
1− 1

pi

)
Proof. Do Exercise 9.6.9!

If you are in a classroom setting, you may want to discuss whether it seems
likely that arbitrary arithmetic functions have formulas.

18.1.2 Relations
One piece of getting a formula for ϕ is the rather interesting property ϕ has
(Fact 9.5.2) that if m,n are coprime then ϕ(m)ϕ(n) = ϕ(mn). This is a general
property an arithmetic function can have.

Definition 18.1.3. We say that f(n) is multiplicative if

f(m)f(n) = f(mn) when m,n are coprime.

The terminology is kind of bad, because of course the function only ‘mul-
tiplies’ for coprime integer inputs, but since relative primality is such a funda-
mental concept this seems okay nonetheless. We can test this here.

18.1. THREE QUESTIONS FOR EULER PHI 253

@interact
def _(a=25,b=11):

pretty_print(html("$\phi(%s)=%s\\text{␣and␣
}\phi(%s)=%s$"%(a, euler_phi(a), b, euler_phi(b))))

if gcd(a,b)==1:
pretty_print(html("And␣$\phi(%s\cdot␣%s)=%s\cdot␣

%s=%s$,␣their␣product!"%(a, b, euler_phi(a),
euler_phi(b), euler_phi(a*b))))

else:
pretty_print(html("But␣$%s$␣and␣$%s$␣aren ' t␣

coprime ,␣so␣$\phi(%s\cdot␣%s)=%s\\neq␣%s\cdot␣
%s$"%(a, b, a, b, euler_phi(a*b), euler_phi(a),
euler_phi(b))))

So ϕ is multiplicative. Do you think this is an unusual property to have?
Again, in a class setting you may wish to discuss whether it seems likely

that arithmetic functions might have some property along these lines.

18.1.3 Summation (and limits)
One thing that might be useful to look at in a function is its behavior in the long
term. In calculus, we certainly talk a lot about things like asymptotes, even
asymptotes other than horizontal and vertical ones. Unfortunately, arithmetic
functions don’t often look that great in this way.
Example 18.1.4. For instance, let’s look at the plot of ϕ.

plot(euler_phi ,1 ,1000)

This doesn’t look like it’s “going” anywhere.
That said, we could look at the highest or lowest points, at least. Certainly

prime numbers p will always have the formula ϕ(p) = p− 1, and that is a nice
graph; the lower limit seems reasonably regular as well. Try to think about
how one might encapsulate such observations in terms of limits.

One strategy that is sometimes used to “smooth” such behavior in places
like analyzing stock prices is trying to calculate “averages” – that is, sum it up
and divide. We are not ready for this with ϕ (see Section 20.5).

However, there was a different interesting property about summation of
ϕ(n), namely Fact 9.5.4. To recall, what was the sum of ϕ(d) over the set of
divisors d of n?

@interact
def _(n=275):

pretty_print(html("$%s$␣factors␣as␣
$%s$"%(n,latex(factor(n)))))

pretty_print(html("Its␣divisors␣are␣
$%s$"%latex(divisors(n))))

pretty_print(html("The␣sum␣of␣ϕ␣of␣the␣divisors␣
is␣$%s$"%sum([euler_phi(d) for d in divisors(n)])))

Ah yes, it was just that
∑

d|n ϕ(d) = n. Even if we can’t say something
about limiting behavior yet, this kind of summation must be getting us closer!

As a final classroom discussion point, what kind of behavior do you think
could happen when summation of arithmetic functions is considered? What
about limits? Could you get anything you can get in calculus, or should some
things not be possible?

254 CHAPTER 18. AN INTRODUCTION TO FUNCTIONS

18.2 Three Questions, Again
Hopefully your appetite is whetted a bit by the previous section, and especially
the discussion opportunities about what you think might be possible.

So let’s start exploring these questions with new functions.

Example 18.2.1. Let r(n) be the number of (all!) ways to write n as a sum of
(two) squares. (This was called r2(n) when first encountered in Exercise 13.7.7,
but we will not consider other rk.)

For instance, r(25) = 12. Why?
Because you can write it using the pairs

(±3,±4), (±4,±3), (±5, 0) and (0,±5) .

Remember, we count all solutions, positive or negative, and in any particular
order possible, in determining the value of r(n).

18.2.1 Formulas
In Exercise 13.7.7, we saw that r(2m) = 4. But we didn’t discuss it enough to
question whether there might be a formula that was easier to compute than
the process of counting all possible sums!

As an encouragement to our search for answers to our three questions, I
will give you a (totally unmotivated!) formula. To see what it looks like, we
use an extension of the Fundamental Theorem of Arithmetic.

Fact 18.2.2. Write the prime factorization of n as

n = 2dpe11 · · · pekk qf11 · · · qfℓℓ

where we write primes of the form 4k + 1 as p, and primes of the form 4k + 3
as q. Then

r(n) =

{
0 if any fj is odd
4
∏k

i=1(ei + 1) otherwise

Proof. Unfortunately, it turns out that every single proof of this is not very
elementary. They all either go into some detail regarding factorization of Gaus-
sian integers (recall our allusion to this in Fact 14.1.6), or they do some lengthy
divisibility and congruence analysis. So we will skip the proof.

To use this, notice that the empty product (no primes of the form 4k + 1)
is 1, just like a sum over zero elements is zero. To prove Exercise 13.7.7, we
note that if r(2m) then all ei and fj are zero, then we are in the second case
and we just get 4 · 1 for the product.

Sage note 18.2.3 (Review quiz). You can use various tools we’ve already
seen to compute this with Sage, such as factoring and multiplication. Try it!

18.2.2 Relations
We just saw an impressive relation among values of ϕ(n). As an example of
it, ϕ(5)ϕ(3) = ϕ(15), since the inputs are coprime. Similarly, there are some
relations with multiplying for r, though it certainly isn’t multiplicative.

Example 18.2.4. Indeed, now that we have a formula, we can compute this.

18.2. THREE QUESTIONS, AGAIN 255

• For instance,
r(3)r(5) = r(15)

because both sides are zero!

• For the same reason, r(8)r(7) = r(56).

• On the other hand,

r(25)r(13) = 12 · 8 = 96 ̸= 24 = r(325)

• Similarly, r(25)r(4) = 12 · 4 = 48 ̸= 12 = r(100).

In these examples, the inputs are relatively prime but it doesn’t multiply.
What might still be true? See Exercise Group 18.3.1–18.3.2.

Sage note 18.2.5 (Explore here). Feel free to explore here!

18.2.3 Limits (and summation)
In Subsection 18.1.3 we saw that (for ϕ) even though we couldn’t yet address
long term behavior, we could at least see some patterns, and could say some-
thing about summing values. In this subsection, we will try to directly address
long-term, average behavior for r(n).

To be precise, we will talk about limits with functions. Yes, limits in number
theory!

Observe the following graphic. It has as its basic content the circle with
radius

√
n and blue lattice points representing all pairs (x, y) such that x2 +

y2 ≤ n. There is a little box of area one around each such lattice point.

@interact
def _(n=(5 ,[1..100])):

viewsize=ceil(math.sqrt(n))+2
a=(math.sqrt(n)+1/ math.sqrt (2))^2
b=(math.sqrt(n) -1/math.sqrt (2))^2
g(x,y) = x^2+y^2
P=Graphics ()
P += implicit_plot(g-n, (-viewsize ,viewsize),

(-viewsize ,viewsize), plot_points = 200)
P += implicit_plot(g-a, (-viewsize ,viewsize),

(-viewsize ,viewsize), linestyle= ' -- ' ,plot_points =
200)

P += implicit_plot(g-b, (-viewsize ,viewsize),
(-viewsize ,viewsize), linestyle= ' -- ' ,plot_points =
300)

grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j
in [-viewsize .. viewsize]]

P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [1]^2+ coords [0]^2 <=n)]
P += points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
squares =[line ([[k-1/2,l-1/2] ,

[k+1/2,l-1/2] ,[k+1/2,l+1/2],
[k-1/2,l+1/2] ,[k-1/2,l-1/2]] , rgbcolor =(1,0,0)) for
[k,l] in lattice_pts]

for object in squares:

256 CHAPTER 18. AN INTRODUCTION TO FUNCTIONS

P += object
show(P, figsize = [5,5], xmin = -viewsize , xmax =

viewsize , ymin = -viewsize , ymax = viewsize ,
aspect_ratio =1)

pretty_print(html("There␣are␣$%s$␣boxes␣with␣a␣circle␣
of␣radius␣$%s$"%(len(squares),math.sqrt(n))))

pretty_print(html("The␣ratio␣of␣the␣area␣of␣boxes␣to␣
the␣square␣of␣the␣radius␣is␣
$\\ approx%s$"%(len(squares)/(math.sqrt(n)^2))))

As you might expect, the boxes roughly cover the circle, but certainly not
exactly. So what does this have to do with r(n)?

Each unit box around each lattice point can be thought of as standing in
for a representation (as a sum of squares) of a given integer less than or equal
to n. Adding up all the areas would thus give a number, as a summation:

n∑
k=0

r(k)

So the area of the boxes can give us information about r.

Fact 18.2.6. Observe that the boxes neither cover nor are covered by the circle
in question. However, we can say two things about them.

• These boxes will entirely cover a disk of radius
√
n minus half the diagonal

length of the boxes, namely 1√
2
, which is the inner circle above.

• Likewise, they are completely contained in a disk of radius
√
n plus half

the diagonal length of the boxes.

Proof. Geometry.

Let’s use this fact to create a double inequality in terms of the area covered
by two circles and the squares.

π

(√
n− 1√

2

)2

≤
n∑

k=0

r(k) ≤ π

(√
n+

1√
2

)2

,

If we divide by n and simplify a bit, then factor, we obtain

π
n−

√
2n+ 1/2

n
≤ 1

n

n∑
k=0

r(k) ≤ π
n+

√
2n+ 1/2

n
,

π

(
1−

√
2

n
+

1

2n

)
≤ 1

n

n∑
k=0

r(k) ≤ π

(
1 +

√
2

n
+

1

2n

)
We’re almost at something interesting.

• First, the limit as n goes to ∞ of the lower and upper bounds with each
of these inequalities exists. In fact, the limit of the bounds in both cases
is π.

• Then, the beloved squeeze theorem from calculus implies that

lim
n→∞

1

n

n∑
k=0

r(k) = π .

18.3. EXERCISES 257

• Finally, note that r(0) = 1, so its presence or absence will not affect the
average in the limit at all.

We can interpret this line of thought as proving and saying:

Fact 18.2.7. The average number of representations of a positive integer as a
sum of squares is π.

WHAT?!

But it’s true. And there’s more to come.

18.3 Exercises
We see in Subsection 18.2.2 that r is not multiplicative. But could some things
still be true?

Look at the cases where zero is involved. State the broadest possible
multiplicativity result you can for this case.

1.

Look at the second two examples in Subsection 18.2.2. There seems
to be a specific sort of relationship in the precise way in which these
examples are not multiplicative. What is that relationship? Can you
prove it? (Hint: first compare the results, only then the individual
inputs.)

2.

3. For a fixed p(x), let Zp(x)(n) be the number of solutions of the polynomial
congruence p(x) ≡ 0 (mod n). Use facts from earlier in the text to show
that this function is multiplicative. Connect this to the question of whether
−1 ∈ Qn.

4. Let the function g be given by
0 n is even
1 n ≡ 1 mod(4)
−1 n ≡ 3 (mod 4)

Show that the function g(n) is multiplicative.

258 CHAPTER 18. AN INTRODUCTION TO FUNCTIONS

Chapter 19

Counting and Summing
Divisors

Among all the possible arithmetic functions one could discuss, there is one
family which is both truly ancient and part of cutting-edge research. We’ll let
ourselves be inspired by the summations in the previous chapter, by summing
the simplest functions of all and seeing what we get.

19.1 Exploration: A New Sequence of Func-
tions

Definition 19.1.1. Let σk(n) be defined as the sum of the kth power of the
(positive) divisors of n, thus:

σk(n) =
∑
d|n

dk .

Before doing any computing, think about what special information about
a number σ1 and σ0 might encode.

Remark 19.1.2. Incidentally, very (very) often one will see σ0(n) written as
τ(n), sometimes also as d(n). Usually σ1(n) is written simply σ(n), though
Euler apparently used

∫
n in his writings (can you think why?).

Hopefully, you realized σ1 is adding all the divisors of n (including n itself),
and that σ0 is the number of (positive) divisors of n. Now, get ready to explore!
Try to figure out as much as you can about these functions. If you’re in a group
in a class, you can certainly save time by dividing up the initial computations
among yourselves, then sharing that information so you have a bigger data set
to look at.

Question 19.1.3. Can you find some or all of the following for these functions?

• A formula, at least for some input types.

• See if at least a limited form of multiplicativity (recall Definition 18.1.3)
holds.

You might also want to look at questions like these.

259

260 CHAPTER 19. COUNTING AND SUMMING DIVISORS

• Can two different n yield the same σk (for a given k)? If so, when – or
when not? Can they be consecutive?

• Is it possible to say anything about when one of these functions yields
even results – or ones divisible by three, four, … ?

• Clearly the size of these functions somehow is related to the size of n –
for instance, it is obvious that σ0(n) = τ(n) can’t possible be bigger than
n itself! So how big can these functions get, relative to n? How small?

• Can anything be said about congruence values of these functions? (This
is a little harder.)

If you come up with a new idea, why not challenge someone else to prove
it? See Exercise Group 19.6.2–19.6.4.

19.2 Conjectures and Proofs
Remark 19.2.1. Don’t read this section until you have tried some of the
exploration in the previous section!

In the last section we defined some new functions, and asked some questions
about them. You can try them by hand, or use computation to explore them
further.

Sage note 19.2.2 (Syntax for sigma). Here is the syntax for doing this in
Sage. This was a case where it was better to try it out by hand first, though!

sigma (12,1),sigma (12,0),sigma (12)

What were some of your conjectures? It is quite likely that you (or others,
if in a class setting) discovered some of these:

• σ1(p) = p+ 1 if p is prime.

• σ0(p
e) = e+ 1 if pe is a prime power.

• σi is in fact multiplicative for i = 0, 1.

If you dug a little deeper, or had a little more time to spend, your conjec-
tures may have also included ones like these:

• σ1(p
e) = 1 + p+ p2 + · · ·+ pe for pe a prime power.

• σ1(2
e) = 2e+1 − 1.

• σ0(n) is odd precisely if n is a perfect square.

Let’s prove the most important of these things, as well as mention a few
other useful formulas.

19.2. CONJECTURES AND PROOFS 261

19.2.1 Prime powers
Again, usually one will have discovered various formulas that are special cases
of the following, among others. It’s surprisingly easy to find the patterns!

Fact 19.2.3. If pe is a perfect prime power, then

σ0(p
e) = e+ 1 and σ1(p

e) = 1 + p+ p2 + · · ·+ pe =
pe+1 − 1

p− 1
.

Proof. There isn’t much to prove here, once discovered. Both formulas come
from the same fundamental observation.

• All possible divisors of a prime power must have only that prime as
divisors, by the Fundamental Theorem of Arithmetic. So, these divisors
are just other (smaller) powers of that prime.

• There are exactly e+ 1 of these divisors, and these divisors are the ones
summed up in the σ1 formula.

The step giving the fraction formula is just the usual geometric summa-
tion formula familiar from precalculus and calculus.

19.2.2 Multiplicativity
It’s a bit harder to prove the following.

Fact 19.2.4. For any i, σi(n) is multiplicative (again, see Definition 18.1.3).
That is,

σi(mn) = σi(m)σi(n) when gcd(m,n) = 1 .

This automatically leads to many facts, in particular to this one.

Theorem 19.2.5. If we factor n > 0 as

n = pe11 pe22 · · · pekk

then we have formulas

σ0(n) =
k∏

i=1

(
ei + 1

)
and σ1(n) =

k∏
i=1

(
pei+1
i − 1

pi − 1

)
.

We will not prove this fact directly! It is possible, and might make a good
challenge exercise. But it is not efficient.

Instead, we will prove below a theorem that exemplifies a general principle:

Principle 19.2.6. In the long run, it is better to prove general results for sums
of arithmetic functions than to do each one by itself.

Otherwise we do an endless line of proofs like the ones we did for ϕ (recall
Fact 9.5.2), but for every arithmetic function.

262 CHAPTER 19. COUNTING AND SUMMING DIVISORS

19.2.3 A very powerful lemma
Let

∑
d|n denote the sum over all positive divisors (including 1 and n) of n.

Then we have the following, the proof of which will be easier than for Euler’s
function.

Theorem 19.2.7. If g is multiplicative and f(n) is defined as

f(n) =
∑
d|n

g(d)

then f is also multiplicative.

Proof. We follow here [C.1.1]. Let m and n be coprime; we are interested in
f(mn).

Basically, this all boils down to asking what the divisors of mn look like.
Any divisor of mn must be the product of some divisor a of m and some divisor
b of n.

The previous observation is just about multiplication and divisibility, not
even coprimeness. But that guarantees that a and b are coprime as well, given
that m and n are. So each divisor d | mn gives us a (unique) pair of (coprime)
divisors a and b of m and n.

Instead of summing over all divisors of mn, we can instead sum over each
divisor of n for each divisor of m. In symbols,

f(mn) =
∑
a|m

∑
b|n

g(ab) .

Now we can use all the facts we have at hand (coprimeness, multiplicativity,
etc.) to finish it off.

f(mn) =
∑
a|m

∑
b|n

g(ab) =
∑
a|m

∑
b|n

g(a)g(b)

=

∑
a|m

g(a)

∑
b|n

g(b)

 = f(m)f(n) .

Corollary 19.2.8. Since g(n) = ni is clearly multiplicative, it is true that∑
d|n

g(d) =
∑
d|n

di = σi(n)

is also multiplicative.

In the special cases i = 0 and i = 1 of the corollary we see that σ0 = τ and
σ1 = σ are multiplicative. Since we will use them later, we properly define the
special cases of ni here.

Definition 19.2.9. Let us set the following two arithmetic functions:

• u(n) = 1 to be the unit function

• N(n) = n to be the identity function

19.3. THE SIZE OF THE SUM OF DIVISORS FUNCTION 263

19.3 The Size of the Sum of Divisors Function
For the rest of this chapter, we will focus on σ1 = σ itself, since the sum of
divisors function has a deep richness of its own. We could ask questions about
evenness, other patterns, and so forth.

This short section asks a particularly interesting question. Try the following
interactive cell.

@interact
def _(n=range_slider (1,150,1,(1,20))):

top = n[1]
bottom = n[0]
cols = ((top -bottom)//10)+1
T = [cols*[' n ' , ' $\sigma(n)$ ' , ' $\sigma(n)/n$ ']]
list = [[i,sigma(i),(sigma(i)/i).n(digits =3)] for i in

range(bottom ,top+1)]
list.extend ((10-(len(list)%10))*[' ' , ' '])
for k in range (10):

t = [item for j in range(cols) for item in
list[k+10*j]]

T.append(t)
pretty_print(html(table(T,header_row = True , frame =

True)))

This table helps you see possibilities for the relative size of σ(n) with respect
to n itself. Alternately, we have the following.

Question 19.3.1. For any given n, what is the constant Cn such that σ(n) =
Cn · n? How big can this get?

The spread of these ratios, for n under one hundred fifty, certainly goes
both above and below 2. If you look carefully, you will see that only one of the
numbers above has a sum of divisors without 1 or 2 as the integer part. What
is it?

Instead of simply trying larger and larger input numbers, we might use a
little theory to get a higher ratio. To wit, if a number has lots of small prime
divisors, we might think it has lots of factors. So taking big powers of these
would have even more small prime divisors and might get us big ratios.

@interact
def _(n=[1..15]):

pretty_print(html("Try␣
$2^{%s}\cdot3 ^{%s}\cdot5 ^{%s}=%s$"%(n, n, n,
2^n*3^n*5^n)))

pretty_print(html("Then␣$\sigma(%s)=%s=%s\cdot␣
%s\\ approx␣%s\cdot␣%s$"%(2^n*3^n*5^n,
sigma (2^n*3^n*5^n),
sigma (2^n*3^n*5^n)/(2^n*3^n*5^n), 2^n*3^n*5^n,
(sigma (2^n*3^n*5^n)/(2^n*3^n*5^n)).n(digits =3),
2^n*3^n*5^n)))

You’ll notice that although we quickly get a ratio above 3 (so that σ(n) >),
we don’t seem to get much further. Why?

A helpful thing to think about with this is the following rewrite, using the

264 CHAPTER 19. COUNTING AND SUMMING DIVISORS

formula for σ(n) with the usual writing of n =
∏k

i=1 p
ei
i :

σ(n)

n
=

∏k
i=1

(
p
ei+1

i −1

pi−1

)
∏k

i=1 p
ei
i

=

k∏
i=1

pi − (1/peii)

pi − 1
≈

k∏
i=1

pi
pi − 1

Based on this, we should expect this approximation to be very close when ei
are all quite large. Then for large numbers, since p

p−1 > 1, if we multiply by
enough of these we will get very large numbers and so σ(n)/n will be greater
than any given C, and then σ(n) > Cn.

Of course, p = 2 is the best for this since 2
2−1 = 2, but the other primes

will hopefully be useful for this as well. For instance, n = 210310 will have

σ(n)/n =
2− 1/210

2− 1

3− 1/310

3− 1
≈ 2

2− 1

3

3− 1
= 3

so certainly σ(610) will be nearly 3 · 610.
If we multiply it by 5 as well that should do it, and that gives the results

we saw in the previous cell:

2− 1/210

2− 1

3− 1/310

3− 1

5− 1/5

5− 1
≈ 2

2− 1

3

3− 1

5

5− 1
= 2 · 3

2
· 5
4
=

15

4
= 3.75

We can check out some of these ideas, and how much bigger we can get.
print (sigma (6^10) /(6^10)).n()
print (sigma (5*6^10) /(5*6^10)).n()

print (sigma (2^4*3^4*5^4*7) /(2^4*3^4*5^4*7)).n(digits =3)

N = prod([p^4 for p in primes_first_n (100)])
print (sigma(N)/N).n(digits =3)

Continuing this for more primes suggests the following.
Fact 19.3.2. For any positive C, there is a positive integer n such that

σ(n) > Cn .

The argument outlined above is not completely rigorous, but is good enough
for now. Trying to prove it this way could bring the distribution of primes to
the table, so doing so might not be trivial.

19.4 Perfect Numbers
19.4.1 A perfect definition and theorem
Definition 19.4.1. When the ratio σ(n)

n is exactly 2, we say n is a perfect
number.

This is a big definition, and it goes back at least to Euclid. Euclid defines
the notion at the beginning of the number-theoretic books of the Elements, and
only mentions it again over one hundred propositions later, where he proves
that certain numbers are, in fact, perfect. (A careful reader will notice that
the primes in question are, in fact, the Mersenne primes!) Such a conclusion
is a fitting end, as William Dunham says in his book, Journey through Genius
[C.4.5].

http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/defVII22.html

19.4. PERFECT NUMBERS 265

Theorem 19.4.2. If n is a number such that 2n − 1 is prime, then the (even)
number 2n−1 (2n − 1) is perfect.

Proof. Euclid’s proof (in the link) of this is worth looking at.

Many centuries later, Euler proved the converse; we will prove them to-
gether. (See also Chapter 1 of Dunham’s Euler: The Master of Us All [C.4.6].)

Theorem 19.4.3 (Characterization of Even Perfect Numbers). If n is an even
number, it is perfect if and only if it is the product of a power 2n−1 and a prime
of the form 2n − 1.

Proof. First, assume that 2n − 1 is prime. Then the factors of 2n−1 (2n − 1)
are coprime, so

σ
(
2n−1 (2n − 1)

)
= σ

(
2n−1

)
σ (2n − 1) = (2n − 1) (2n − 1 + 1)

The steps are because of multiplicativity and the formulas we had earlier (see
Theorem 19.2.5) for σ of powers of two and primes. But then

(2n − 1) (2n − 1 + 1) = 2n (2n − 1) = 2
[
2n−1 (2n − 1)

]
so that the sum of divisors is exactly twice the original number.

Now for the converse, which is somewhat longer. Let us start with an even
perfect number, which is perforce divisible by some power of two.

Looking ahead, call this power the (n− 1)th power! Then our even perfect
number may be written as 2n−1q, where q is the (odd) quotient.

Let’s divide the rest of the proof into several pieces. First, two facts.

• We know that this number is perfect, so

σ
(
2n−1q

)
= 2 · 2n−1q = 2nq

• We also know how to compute σ, so

σ
(
2n−1q

)
= σ

(
2n−1

)
σ(q) = (2n − 1)σ(q)

We can combine these observations to see that

2nq = (2n − 1)σ(q)

Note that this means 2n − 1 | q, since q is the only odd part of the left-hand
side (implicitly using some of Theorem 6.3.2). Let’s write

(2n − 1)m = q .

Substituting, we have

2n (2n − 1)m = (2n − 1)σ(q) ⇒ 2nm = σ(q)

Since m and q both divide q, by the definition of σ we have

σ(q) ≥ q +m = (2n − 1)m+m = 2nm

Since these two divisors (q and m) alone add up to σ(q), it must be true that q
has exactly these two divisors, so it is prime. That meansm = 1, and q = 2n−1,
and so the perfect number is 2n−1 (2n − 1). Great!

We will leave the question about whether there are odd perfect numbers to
Section 19.5.

http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX36.html

266 CHAPTER 19. COUNTING AND SUMMING DIVISORS

19.4.2 Speculation and more terminology
There are many things people have claimed about numbers of this type. A
Hellenistic Roman in the first century in Gerasa1 named Nichomachus claimed
that the nth perfect number had n decimal digits.

Nicomachus was more concerned with mystical claims about perfect num-
bers (which many repeated), but this mathematical assertion continued to be
made for over a thousand years. However, knowing what we do about Mersenne
primes, we see that the fifth such prime is 13, so that the next perfect number,(

213 − 1
)
· 212 ,

was very large and so lay mysterious for a long time. It was apparently dis-
covered in the fifteenth century.

(2^13 -1) *2^12

Until the early modern period, such numbers were basically inaccessible.
Number theorists (often of the amateur variety, but certainly not always)

have come up with all kinds of other names for various concepts related to
σ(n)/n.

Definition 19.4.4. Recall that if σ(n) = 2n, then n is perfect.

• If σ(n) = kn for some integer k, then we say that n is k-perfect.

• Or, if σ(n) > 2n, then n is abundant.

• If σ(n) < 2n, we say n is deficient.

As it will turn out, these things are not really good characterizations of what
it means to have “too many” or “too few” divisors, but in recognition of the
Greeks’ contributions we keep this allusive and fairly standard terminology.
As examples, Exercise 19.6.7 asks for a 3-perfect number, if one exists, and
Exercise 19.6.17 asks for a 4-perfect number.

Definition 19.4.5. Here are some less well-known, but nonetheless interesting,
terms.

• A number is pseudoperfect if it is the sum of some of its divisors (other
than itself).

• A number n is superabundant if the ratio σ(n)/n for n is bigger than
the value of the ratio for all smaller m < n.

• A number is weird if it is abundant but not pseudoperfect. (There is a
famous paper of Erdős on this topic.)

There are many questions one can ask about these and other definitions;
see Exercise Group 19.6.15–19.6.21 One cheeky such question is this.

Question 19.4.6. Is a perfect number pseudoperfect?

One other interesting idea is that of amicable numbers, which are pairs
m,n of numbers such that σ(n) = σ(m) = m+ n. Clearly any perfect number
is amicable with itself. The smallest pair of unequal amicable numbers is
(220, 284); this was known to the ancient Greeks, cherished by some medieval

1Interestingly, this is the same place as one setting of the Biblical story of the demons
called “Legion” who went into swine.

19.4. PERFECT NUMBERS 267

Muslims, and apparently was not improved upon until the modern number-
theoretic era.

Fermat, Descartes, and Euler all worked with this and found large examples,
but it turns out that the next smallest pair was found by a sixteen-year old
Italian boy in 1860!

sigma (1184) ,sigma (1210) ,1184+1210

Apparently he came up with this by trial and error, though no one knows
for sure. The internet can provide some of the most current data on these
pairs.

There is a way to get as many amicable pairs as you like, discovered by Ibn
Qurra and (later) Fermat, finally used by Euler.

Algorithm 19.4.7 (Get Amicable Numbers). Here is one way to get amicable
numbers.

• Make a list of numbers of the form pn = 3 · 2n− 1 and qn = 9 · 22n−1− 1.

• Then check if pn−1, pn, and qn are all prime.

• If so, then 2npn−1pn and 2nqn are an amicable pair.

Proof. Since only primes and powers of two are involved, it’s easy to calculate
σ in this case, so proving it is left as an exercise (see Exercise 19.6.21).

@interact
def _(n=[2..20]):

pretty_print(html("We␣have␣$p_{%s}=%s$␣and␣
$p_{%s}=%s$"%(n ,3*2^(n-1) -1,n ,3*2^(n) -1)))

pretty_print(html("And␣$q_{%s}=%s$␣as␣
well."%(n ,9*2^(2*n-1) -1)))

if is_prime (3*2^n-1) and is_prime (3*2^(n-1) -1) and
is_prime (9*2^(2*n-1) -1):
pretty_print(html("Then␣the␣pair␣$%s$␣and␣$%s$␣is␣

amicable!"%(2^n*(3*2^(n-1) -1)*(3*2^(n) -1),
2^n*(9*2^(2*n-1) -1))))

else:
pretty_print(html("Doesn ' t␣give␣an␣amicable␣pair"))

19.4.3 The abundancy index
It’s time to give a name to the mysterious ratio at the core of this section.

Definition 19.4.8. The ratio σ(n)
n may be called the abundancy index of

n.

A beautiful thing is that once you name a concept, you can ask questions
about it. Here’s another largely open question which seems like it should be
easy…

Question 19.4.9. Rather than asking which integers can be gotten, which
rational numbers can be gotten as σ(n)

n ?

http://amicable.homepage.dk/knwnc2.htm

268 CHAPTER 19. COUNTING AND SUMMING DIVISORS

@interact
def _(n=(20 ,[1..200])):

cols = ceil(n/10)
T = [cols*[' n ' , ' $\sigma(n)/n$ ']]
list = [[i,(sigma(i)/i)] for i in range(1,n+1)]
list.extend ((10-(len(list)%10))*[' ' , ' '])
for k in range (10):

t = [item for j in range(cols) for item in
list[k+10*j]]

T.append(t)
pretty_print(html(table(T,header_row = True , frame =

True)))

There are some interesting theorems about this already known. For one
thing, the abundancy index is the same thing as σ−1(n).

Fact 19.4.10.

σ−1(n) =
σ(n)

n

Proof. We have that

σ(n)/n =

∑
d|n

d

 /n

Now note that for every d | n, the quotient is also an integer divisor d′ of n.
So

σ(n)/n =
∑
d|n

1

d′

This is the same list as the original divisor list, so reordering gives

σ(n)/n =
∑
d|n

1

d
= σ−1(n)

Fact 19.4.11. Clearly all such numbers are in the interval [1,∞)! Here are
some more known facts about the abundancy index.

• If m | n, then σ−1(n) ≥ σ−1(m).

• If σ−1(n) =
a
b in lowest terms, then b | n.

• If r is “caught” between σ(n) and n (such that n < r < σ(n)) and is
relatively prime to n, then r/n is not an abundancy index.

Proof. We skip the proof, but proving the first two facts is left as Exer-
cise 19.6.22.

Holdener and Stanton picturesquely call rational numbers which are not
abundancies abundancy outlaws. The end of this hyper-linked paper [C.6.11]
has a nice list of which numbers thus far have been found, and which have not.

http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Holdener/holdener7.pdf

19.5. ODD PERFECT NUMBERS 269

19.5 Odd Perfect Numbers

19.5.1 Are there odd perfect numbers?
We will return to the abundancy index momentarily. First, we return to a
question alluded to above – one whose answer is still unknown, and open after
two and a half millennia:

Question 19.5.1. Does there exist an odd perfect number?

Yikes!
We do know some things about the question. First, recall from Section 19.3

that
σ(n)

n
=

k∏
i=1

pi − 1/peii
pi − 1

<
k∏

i=1

pi
pi − 1

when n is a product of the prime powers peii . This leads to the following first
information.

Theorem 19.5.2 (Odd perfect numbers aren’t simple). Here are simple forms
of numbers that can’t be perfect.

• An odd perfect number cannot be a prime power.

• An odd perfect number cannot be a product of exactly two prime powers.

• An odd perfect number cannot be a product of exactly three prime powers
unless the first two are 3e and 5f .

Proof. We leave many details to Exercise 19.6.24.

• An odd perfect number cannot be a prime power. This is easy; 2 =
σ(n)
n < p

p−1 isn’t possible, even for p = 2; since we are looking for an odd
perfect number, it definitely won’t be possible!

• An odd perfect number cannot be a product of exactly two prime powers.
Use the same idea, but now with the biggest possible values for odd
primes.

• An odd perfect number cannot be a product of exactly three prime powers
unless the first two are 3e and 5f . This proof is slightly longer.

◦ Suppose that 3 is not the smallest prime involved. Then the biggest
that

p1
p1 − 1

p2
p2 − 1

p3
p3 − 1

can be is
5

4

7

6

11

10
=

77

48
< 2 .

◦ Suppose that 5 is not the second-smallest prime involved (assuming
3 is the smallest). We again get a contradiction.

270 CHAPTER 19. COUNTING AND SUMMING DIVISORS

19.5.2 The abundancy index and odd perfect numbers
What is particularly interesting about this is the connection to something we
have tacitly avoided until now. This is the question whether there are odd
perfect numbers! The connection below is due to P. Weiner in [C.6.14]

We begin with a useful lemma, which answers questions very closely related
to Exercises 19.6.11 and 19.6.12.

Lemma 19.5.3. If n and σ(n) are both odd, then n is a perfect square.

Proof. If n is odd, it is a product of odd prime powers. Let’s look at σ as
applied to each piece, thanks to multiplicativity.

If σ(n) is odd, then each factor 1 + p+ p2 + · · ·+ pe is odd. Such a factor
of σ(n) is a sum of odd numbers, which is only odd if there is an odd number
of them.

Since there are e+1 summands, e must be even for every primes p dividing
n., which finishes proving the lemma.

Theorem 19.5.4. If 5
3 is the abundancy index of N , then 5N is an odd perfect

number.

Proof. Assume this works for some N . Then 3σ(N) = 5N .
Let’s look at divisors. First, 3 | N . So if N is even, then 6 | N , so by

Fact 19.4.11,
σ−1(N) ≥ σ−1(6) = 2 >

5

3
,

which is impossible. If N is not even, then N is odd, so 3σ(N) = 5N is odd,
which implies σ(N) itself is odd.

Since 3 | N and using Lemma 19.5.3, we see that we must have that 32 | N .
Let’s return to the divisors. We know that 5 ∤ N , because otherwise

σ−1(N) ≥ σ−1

(
32 · 5

)
=

26

15
>

5

3

which is again impossible.
Now we can compute directly that

σ−1(5N) = σ−1(5)σ−1(N) =
6

5

5

3
= 2 !

19.5.3 Even more about odd perfect numbers, if they ex-
ist

Naturally, all of this is somewhat elementary; there are many more criteria.
They keep on getting more complicated, so I can’t list them all, but here is a
selection, including information from two big computer-assisted searches going
on right now.

Fact 19.5.5. An odd perfect number must (as of 2016):

• Be greater than 101500. (The most recent announcement says researchers
have ‘pushed the computation to 102000’.

• Have at least 101 prime factors (not necessarily distinct).

• Have at least 10 distinct prime factors. (This is new and relies on
heavy computation by Pace Nielsen in Odd perfect numbers, Diophantine
equations, and upper bounds in Mathematics of Computation.)

http://www.lirmm.fr/~ochem/opn/
http://oddperfect.org/index.html
http://www.lirmm.fr/~ochem/opn/

19.6. EXERCISES 271

• Have a largest prime factor at least 108.

• Have a second largest prime exceeding 10000.

• Have the sum of the reciprocals of the prime divisors of the number
between about 0.6 and 0.7.

• Have the sum of the reciprocals be finite (since the sum of the reciprocals
of all perfect numbers is finite!). In fact, the sum of the reciprocals must
be less than 2× 10−150 (see [C.6.6]), and that of all perfects is less than
about 0.0205.

• Obey the rule that if n is an odd perfect number, then n ≡ 1 mod 12 or
n ≡ 9 mod 36.

Finally, as an appropriate way to finish up this at times overwhelming
overview, since he finished the characterization of even perfect numbers, let
us present Euler’s own criterion – see also the linked article [C.6.19] by Euler
expert Ed Sandifer.

Proposition 19.5.6. An odd perfect number must be of the form pem2, where
m is odd, p is prime, and p and e are both ≡ 1 (mod 4).

19.6 Exercises
1. Review the proof of Fact 9.5.2 that ϕ(n) is multiplicative. Can you think
of a way to modify it directly to prove that σ or σ0 are multiplicative?
My students discovered various facts about the functions in this chapter on
their own; why not you?

Conjecture and prove a formula for the difference between σk(p) and
σk(p

2). (Thanks to Becca Brule and Olivia Gray.)
2.

Conjecture and prove a necessary (or even sufficient) criterion for when
5 | σ2(2k). (Thanks to Andrew Kwiatkowski and Daniel Brito.)

3.

Come up with some new (to you) conjecture about one of these func-
tions you observed from the data, and which isn’t mentioned in this
book. Tell what led you to this conjecture.

4.

5. Read Euclid’s original proof that certain even numbers are perfect and write
it down in modern notation.

6. Do you think these numbers should be called perfect, and why? Establish
a connection to GIMPS.

7. Can you find a number such that σ(n) = 3n?

8. Could there be a function g(n) which is multiplicative, where g(2n) = 0,
g(n) = a1 = 1 if n ≡ 1 (mod 8), g(n) = a2 if n ≡ 3 (mod 8), g(n) = a3 if
n ≡ 5 (mod 8), and g(n) = a4 if n ≡ 7 (mod 8)?

9. Let τo(n) and σo(n) be the same as τ and σ but where only odd divisors of
n are considered; let τe and σe be similar for even divisors of n. Evaluate these
functions for n = 1 to 12, and decide whether each of them is multiplicative or
not (either proving it, or showing not by counterexample).

10. Use the estimate toward the end of Section 19.3 for σ to find numbers for
which σ(n) > 5n and σ(n) > 6n. (Possibly long.)

http://eulerarchive.maa.org/hedi/HEDI-2006-11.pdf
http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX36.html

272 CHAPTER 19. COUNTING AND SUMMING DIVISORS

11. Discover and prove conditions for which τ(n) and σ(n) are even and odd
numbers.

12. Show that if n is odd then τ(n) and σ(n) have the same parity.

13. For which types of n is τ(n) = 4?

14. Prove that if n ≡ 7 (mod 8), then 8 | σ(n).
Here are facts about various definitions beyond perfect numbers in Subsec-
tion 19.4.2.

Show that every prime power is deficient.15.
Show that a multiple of an abundant number is abundant.16.
Find a 4-perfect number.17.
Compute “by hand” σ−1 for the numbers up to 30. Come up with and
prove a criterion for when σ−1 = 2.

18.

Find three pseudoperfect numbers less than 100.19.
Find a weird number less than 100.20.
In the proof of Algorithm 19.4.7, confirm that if pn, pn−1, and qn are
prime, then the numbers in question are amicable.

21.

22. Prove the first and second facts about the abundancy index in Fact 19.4.11.

23. Find five numbers that must be abundancy outlaws based on the facts
(don’t just copy from the list).

24. Fill in the details in the proof of Theorem 19.5.2 (that odd perfect numbers
need at least three prime divisors, and that 3 and 5 would need to be the first
two if there were exactly three).

25. Read the article linked right after Fact 19.5.5 about Euler and odd perfect
numbers, and restate and reprove his criterion in modern notation.

26. There are always more connections. Here are a few exercises about a
formula one would have likely never guessed.∑

d|n

τ(d)

2

=
∑
d|n

τ(d)3

First, test it out by hand with n = 6 and n = 8. Then try it with bigger
numbers below:

@interact
def _(n = 24):

divs = divisors(n)
pretty_print(html("The␣divisors␣of␣$%s$␣are␣

$%s$"%(n,divs)))
pretty_print(html("And␣$\\tau$␣of␣each␣of␣them␣is␣

$%s$"%([sigma(div ,0) for div in divs])))
pretty_print(html("The␣sums␣of␣the␣cubes␣and␣the␣

square␣of␣the␣sum␣are␣$%s$␣and␣$%s$,␣
respectively!"%(sum([sigma(div ,0)^3 for div in
divs]),sum([sigma(div ,0) for div in divs])^2)))

19.6. EXERCISES 273

Start a proof by noting that it’s clearly true for a prime power n = pe, for
which τ(pf) = f + 1, and all divisors of n look like such a power of p.
Continue the proof by examining the proof that σi is multiplicative for what
can be said about the divisors of mn, and how a sum over divisors d | mn can
be a product of two different sums over divisors of m and n.

274 CHAPTER 19. COUNTING AND SUMMING DIVISORS

Chapter 20

Long-Term Function
Behavior

We will now move on to think of these same functions in a different way from
the previous chapter. We will examine different limits in number theory, and
how integrals and calculus are inextricably bound up with this sort of question.

If, after this chapter, you are interested in more of this kind of material,
definitely check out1 Stopple’s excellent [C.3.5], to which I am indebted for
many of the ideas here, or the more challenging book [C.3.6] by Apostol.

Finally, note that some proficiency in calculus is helpful in understanding
the results in this chapter, though a proper course is not necessarily a prereq-
uisite.

20.1 Sums of Squares, Once More
Our motivational example will be the one we discussed in Section 18.1. Recall
that r(n) denotes the (total) number of ways to represent n as a sum of squares,
so that r(3) = 0 but r(9) = 4 and r(5) = 8. Then we saw in Fact 18.2.7, more
or less rigorously, that

lim
n→∞

1

n

n∑
k=1

r(k) = π .

20.1.1 Errors, not just limits
As it happens, we can say something far more specific than just this limit.
Recall one of the intermediate steps in our proof.

π

(
1−

√
2

n
+

1

2n

)
≤ 1

n

n∑
k=0

r(k) ≤ π

(
1 +

√
2

n
+

1

2n

)

Notice that if I subtract the limit, π, from the bounds, I can think of this in
terms of an error. Using absolute values, we get, for large enough n,∣∣∣∣∣ 1n

n∑
k=0

r(k)− π

∣∣∣∣∣ ≤ π

(√
2√
n
+

1

2n

)
≤ Cn−1/2

1Two other books with useful presentations are the terse one in [C.1.9] and the more
intuitive, if shorter, one in [C.1.11].

275

276 CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR

where the value of C is not just π
√
2, but something a little bigger because of

the 1
2n term.

In the next two cells we set up some functions and then plot the actual
number of representations compared with the upper and lower bound implied
by this analysis.

def r2(n):
n = prime_to_m_part(n,2)
F = factor(n)
ret = 4
for a,b in F:

if a%4==3:
if b%2==1:

return 0
else:

n = prime_to_m_part(n,a)
else:

ret = ret * (b+1)
return ret

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += r2(i)
ls.append ((i,out/i))

return ls

@interact
def _(n=100):

P = line(L(n))
P += plot(pi+pi*sqrt (2)/sqrt(x),x,3,n,color= ' red ')
P += plot(pi-pi*sqrt (2)/sqrt(x),x,3,n,color= ' red ')
P += plot(pi,x,3,n,color= ' red ' ,linestyle= ' -- ')
show(P)

Note that the actual number is well within the bounding curves given by
the red lines. This shows a general rule that, as often happens, the constant we
proved is a lot bigger than necessary. Often new research is about improving
such bounds.

20.1.2 Landau notation
It turns out there is a nice notation for how ‘big’ an error is.

Definition 20.1.1 (Big Oh). We say that f(x) is O(g(x)) (“eff of eks is Big
Oh of gee of eks”) if there is some constant C for which

|f(x)| ≤ Cg(x) for all large enough x .

This is known as Landau notation.

See Exercise Group 20.6.1–20.6.5 for some practice with this.

Example 20.1.2. The average number of representations of an integer as a
sum of squares is π, and if you do the average up to N , then the error will

20.2. AVERAGE OF TAU 277

be no worse than some constant times 1/
√
N . So the sum’s error is Big Oh of

1/
√
N .

It is unknown in this case just how small the error term really is. In 1906
it was shown that it is O(x−2/3); see the following graphic.

@interact
def _(n=100,C=pi):

P = line(L(n))
P += plot(pi+C/x^(2/3) ,x,3,n,color= ' red ')
P += plot(pi-C/x^(2/3) ,x,3,n,color= ' red ')
P += plot(pi,x,3,n,color= ' red ' ,linestyle= ' -- ')
show(P)

It is also known that the error is not O(x−3/4).

Now let’s apply these ideas to the τ and σ functions.

Question 20.1.3. What is the “average” number of divisors of a positive
integer? What is the “average” sum of divisors of a positive integer?

It turns out that clever combinations of many ideas from the course as well
as calculus ideas will help us solve these questions! And they will motivate us
to ask the (much harder) similar questions one can ask about prime numbers,
starting in Chapter 21.

20.2 Average of Tau
20.2.1 Beginnings
Let’s begin by observing the following graphic of the average for τ .

Sage note 20.2.1 (Try to be efficient). The first cell computes values of τ as
a list, so that we don’t recalculate the entire sum each time. Try being efficient
in your programming!

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += sigma(i,0)
ls.append ((i,out/i))

return ls

@interact
def _(n=100):

P = line(L(n))
show(P)

The graphic shows how the average value of τ up to n changes as we let
n get bigger. This isn’t enough data to tell whether there is a limiting value
for the average value of τ(n), even if you look out to the first 1000 integers,
but it’s suggestive. Part of the unpredictability is from primes; every prime
number contributes just 2 to the total (and so reduces the average value)!

278 CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR

Nonetheless, thinking about this might lead us to look a little deeper. For
example, the ‘trend’ is concave down. So let’s look at comparing it with various
concave down functions. (The following interact supports multiplied constants
with them as well.)

@interact
def _(n=100,C=.5,f=[x^(1/2) , x, x^(1/3) , x^(1/4) , log(x),

log(log(x)), x^(1.5) , x^2]):
f(x) = f
P = line(L(n),legend_label= ' average␣of␣$\\tau$ ')
P += plot(C*f,(x,1,n), color= ' black ' , linestyle= ' -- ' ,

legend_label= ' $%s%s$ ' %(RDF(C),latex(f(x))))
show(P)

At the very least I can tell that the average value is Big Oh of a certain
function. But how does it go on?

line(L(1000000))

Here, out to one million, is once again our graph of averages of τ(n) versus
n. Certainly this looks sort of like some kind of fractional exponent func-
tion, though a very slowly growing one – probably slower than

√
x, our initial

estimate in the interact.

20.2.2 Heuristics for tau
We’ll start with a heuristic, going right back to the sieve of Eratosthenes.

In that algorithm (6.2.2), we proved that in order to test whether n is
prime, you just have to check all numbers up through

√
n. This is because any

divisor
√
n < d < n implies the existence of a divisor n

d such that

1 =
n

n
<

n

d
<

n√
n
=

√
n .

So the absolute most number of divisors possible (for a given n) is if every
number d less than

√
n was a divisor, and then all the n

d >
√
n you get were

also divisors. That is a silly idea beyond very small n, but let’s go with it.
Even if all the divisors were there, you would have τ(n) ≤ 2

√
n so that τ(n)

is O(
√
n).

That estimate is very important! It means we can get a sense of a first
bound on the average value of τ . At the very least we have that

1

n

n∑
k=1

τ(k) ≤ 1

n

n∑
k=1

2
√
k =

n∑
k=1

1

n
2
√
n(k/n)

20.2.3 Using sums to get closer
Let’s rewrite this inequality in a more suggestive form.

1

n

n∑
k=1

τ(k) ≤
n∑

k=1

1

n
2
√
n(k/n)

20.2. AVERAGE OF TAU 279

This form looks an awful lot like a Riemann sum with ∆x = 1
n . To review,

recall writing a Riemann sum for
∫ 1

0
x2 dx in the form

1

n

(
1

n

)2

+
1

n

(
2

n

)2

+ · · ·+ 1

n

(n
n

)2
.

(If you need a calculus refresher, there are several great free calculus texts in
the American Institute of Mathematics list of approved textbooks.)

Doing the same type of summation for the function 2
√
nx would give

n∑
k=1

1

n
2
√
n(k/n) ≈

∫ 1

0

2
√
nxdx = 2

√
n

∫ 1

0

√
x dx =

4

3

√
n .

That certainly suggests that the average of τ might be O(
√
n) with C = 4/3.

To make this rigorous, we will need to make a slight change of point of view
in order to ensure it will be viewed as a left-hand sum of an increasing function
(and hence the Riemann sum is less than the actual value of the integral).

Namely, consider that

1

n

n∑
k=1

2
√
k =

n−1∑
k=0

(
1

n

)
2
√
k + 1 =

n−1∑
k=0

(
1

n

)
2
√
n(k/n) + 1 ≤

∫ 1

0

2
√
nx+ 1 dx

This integral evaluates to

4

3

√
n

[(
1 +

1

n

)3/2

−
(
1

n

)3/2
]

.

The big extra factor on the right can be shown to be decreasing (using deriva-
tives), and is always less than 2 for integers, so the entire expression will always
be less than 8

3

√
n.

Thus one can write

1

n

n∑
k=1

τ(k) ≤ 1

n

n∑
k=1

2
√
k ≤ 8

3

√
n

so that the average value is bounded by a constant times
√
n and is hence

O(
√
n). This implies, perhaps, that the average number of divisors goes steadily

up! (If so, it guarantees it’s concave down.)

20.2.4 But Big-Oh isn’t enough
However, we might also want to know what the average value of τ is. The
preceding subsections only tell us what it’s less than! Here, it seems that it’s
hard to find the “right” value of C so that the average value would be the same
order as

√
n.

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += sigma(i,0)
ls.append ((i,out/i))

return ls

P = line(L(1000000))

http://aimath.org/textbooks/approved-textbooks/

280 CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR

@interact
def _(a=.02,n=2):

show(P + plot(a*x^(1/n), (x,1 ,10^6),
color= ' red ' ,linestyle= ' -- '))

pretty_print(html("Blue␣is␣the␣average␣value␣of␣
$\\tau$$"))

pretty_print(html("Red␣is␣$%sx^{1/%s}$"%(a,n)))

Try x1/3 in the interact; it doesn’t seem to make matters any better.
In fact, one can show that τ(n) = O(3

√
n) as well. Here are the steps one

might take. We make fleshing out the details Exercise 20.6.8 (adapted from
[C.3.5]):

• First, note that τ is multiplicative.

• For a given prime p, note that τ (px) = x + 1 grows much more slowly
than (px)

1/3
= px/3, which is exponential in x.

◦ What value do each of these have at x = 0?
◦ Take derivatives of both functions at x = 0 to show that the growth

statement is definitely true for p ≥ 23.
◦ Show that for each prime p less than 23 there is an xp such that the

growth statement is true after xp.

• Put these pieces of information together to show that τ is O
(
x1/3

)
.

20.3 Digging Deeper and Finding Limits
So where does the number of divisors function go? To answer this, we will look
at a very different graph!

The fundamental observation that makes this graphic possible is that τ(n)
is precisely the same as the number of positive integers (x, y) such that xy = n.
Before going on, spend some time convincing yourself of this.

Then, if we translate xy = n to a graph of y = n/x and (x, y) to a lattice
point, we get the following.

n=10
viewsize=n+1
var('x,y ')
g(x)=1/x
P=Graphics ()
P += contour_plot(x*y,(x,0,viewsize),(y,0,viewsize),

cmap=[' black '],fill=False ,
contours =[2,3,8], labels=True ,
label_inline=True ,label_inline_spacing =5,
label_fmt="$n=%d$")

P += plot(n*g,(x,0,n+1))
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
P += points(lattice_pts , rgbcolor = (0,0,1),pointsize =20)
show(P,ymax=viewsize ,aspect_ratio =1)

20.3. DIGGING DEEPER AND FINDING LIMITS 281

20.3.1 Moving toward a proof
To be more in line with our previous notation, we will say that τ(n) is exactly
given by the number of positive integer points

(
d, n

d

)
with the property that

dn
d = n. Now we can interpert

∑n
k=1 τ(k) as the number of lattice points on

or under the hyperbola y = n/x.
This is a completely different way of thinking of the divisor function! We

can see it for various sizes below.
@interact
def _(n=(15, range (2,50))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
P += plot (2*g,(x,0,n+1), linestyle="--")
if n>7:

P += plot((n-5)*g,(x,0,n+1),linestyle="--")
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
P += points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
show(P,ymax=viewsize ,aspect_ratio =1)

So what we will do is try to look at the lattice points as approximating an
area! Just like with the sum of squares function (recall Subsection 18.2.3 and
Section 20.1), we will exploit the geometry. For each lattice point involved in∑n

k=1 τ(k), we put a unit square to the lower right.
@interact
def _(n=(8, range (2,25))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
P += plot(n*g,(x,1,n),fill=True ,fillalpha =.3)
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
P += points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
squares =[line ([[k,l], [k+1,l],[k+1,l-1],

[k,l-1],[k,l]], rgbcolor =(1,0,0)) for [k,l] in
lattice_pts]

for object in squares:
P += object

show(P,ymax=viewsize ,aspect_ratio =1)

In examining this graph, we will interpret the lattice points as two different
sums.

• We can think of it as
∑n

k=1 τ(k) – adding up the lattice points along each
hyperbola.

282 CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR

• We can think of it as
∑n

j=1

⌊
n
k

⌋
, or adding up the lattice points in each

vertical column.

The area of the squares can then be thought of as another Riemann-type
sum, similar to our summation of τ .

It should be clear that the area, an estimate for the sum, is “about”∫ n

1

n

x
dx = n log(x)

∣∣∣∣n
1

= n log(n)− n log(1) = n log(n)

where the logarithm is the ‘natural’ one. Why is this integral actually a good
estimate, though? The answer is in the error!

@interact
def _(n=(8, range (2,25))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,1,n))
P += plot(piecewise ([[(j,j+1),floor(n/j)] for j in

[1..n-1]]), (x,1,n), fill=n/x,fillalpha =.3,
linestyle= ' ') + plot(1,(x,n,n+1),fill=True ,
fillalpha =.3, linestyle= ' ')

grid_pts = [[i,j] for i in [1.. viewsize] for j in
[1.. viewsize]]

P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
P += points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
squares =[line ([[k,l],[k+1,l],[k+1,l-1],[k,l-1],[k,l]],

rgbcolor =(1,0,0)) for [k,l] in lattice_pts]
for object in squares:

P += object
show(P,ymax=viewsize ,aspect_ratio =1)
pretty_print(html("Error␣between␣$\\tau(%s)$␣and␣

$%s\log(%s)$"%(n,n,n)))

Look at the shaded difference between the area under the curve (which is
n log(n)) and the area of the red squares (which is the sum of all the τ values).

• All the areas where the red squares are above the hyperbola add up to
less than n, because they are all 1 in width or less, and do not intersect
vertically (they stack, as it were).

• Similarly, all the areas where the hyperbola is higher add up to less
than n, because they are all 1 in height or less, and are horizontally
non-intersecting.

(Actually, we would expect they would cancel quite a bit … and they do,
as we will see. We don’t need that yet.)

We can summarize this in the following three implications.

Fact 20.3.1.

• The error
∑n

k=1 τ(k) − n log(n) is a positive real number less than n
minus a (different positive real) number less than n.

• So the error is certainly O(n) (less than some multiple of n as n gets
huge).

20.3. DIGGING DEEPER AND FINDING LIMITS 283

• So, the error in the average is less than some constant as n gets huge!
i.e.,

1

n

n∑
k=1

τ(k)− log(n) = O(1)

(Again, throughout we use log(n) to mean the natural logarithm of base e.)

We can verify this graphically by plotting the average value against log(n).

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += sigma(i,0)
ls.append ((i,out/i))

return ls

line(L(10000)) + plot(log(x),(x,1 ,10000),
color= ' red ' ,linestyle= ' -- ')

Lookin’ good! There does seem to be some predictable error. What might
it be?

@interact
def _(pts=range_slider (0 ,5000 ,50 ,(0 ,200))):

show(point ([(a,b-log(a)) for a,b in
L(pts [1])[pts [0]:]] , pointsize=3,rgbcolor =(0,0,0)))

Keeping x = 0 in view, it seems to be somewhat less than 0.2, although
the error clearly bounces around. By zooming in, we see the error bouncing
around roughly between 0.15 and 0.16, more or less, as x gets large. So will
this give us something more precise?

20.3.2 Getting a handle on error
To answer this, we will try one more geometric trick.

@interact
def _(n=(8, range (2,25))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
P += plot (2*g,(x,0,n+1),linestyle="--")
if n>7:

P += plot((n-5)*g,(x,0,n+1),linestyle="--")
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts , rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
P += points(lattice_pts , rgbcolor =

(0,0,1),pointsize =20)
P += plot(x,(x,0,viewsize),

linestyle="--",rgbcolor =(0,0,0))
show(P,ymax=viewsize ,aspect_ratio =1)

284 CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR

Notice we have now divided the lattice points up into three parts, two of
which are ‘the same’:

• The ones on the line y = x.

• The lattice points above the line and below the hyperbola.

• The lattice points to the right of the line and below the hyperbola.

Let’s count how many there are of each.
First, there are exactly ⌊

√
n⌋ ≤

√
n points on the line. At each integer

y-value d up to y =
√
n, there are are ⌊n/d⌋ − d above the line and below the

hyperbola. Analogously, at each integer x-value d up to x =
√
n, there are are

⌊n/d⌋ − d points to the right of the line and below the hyperbola.
Combining these computations as sums over the divisors d less than n, and

noting the floor is less than the number by at most one for each d,
n∑

k=1

τ(k) =
∑

d≤
√
n

(⌊n/d⌋−d)+
∑

d≤
√
n

(⌊n/d⌋−d)+ ⌊
√
n⌋ ≤ 2

∑
d≤

√
n

(n/d−d)+
√
n

so the total error gained by this approximation is at most 2
√
n+ 1 = O(

√
n).

Next we rewrite this using the formula for the sum of the first ℓ integers:
n∑

k=1

τ(k) = 2n
∑

d≤
√
n

1

d
− 2

∑
d≤

√
n

d+O(
√
n)

= 2n
∑

d≤
√
n

1

d
− 2

(
⌊
√
n⌋(⌊

√
n⌋+ 1)

2

)
+O(

√
n) .

The difference between
(

⌊
√
n⌋(⌊

√
n⌋+1)

2

)
and n

2 is once again far less than O(
√
n)

(and negative to boot), so using some of the work in Exercise Group 20.6.1–
20.6.5 finally get that
n∑

k=1

τ(k) = 2n
∑

d≤
√
n

1

d
− n+O(

√
n) ⇒ 1

n

n∑
k=1

τ(k) = 2
∑

d≤
√
n

1

d
− 1 +O(1/

√
n) .

20.3.3 The end of the story
We’re almost at the end of the story! It’s been a while since we explored the
long-term average of τ in Subsection 20.2.1; at that point, you likely convinced
yourself that log(n) is close to the average value of τ .

So now we just need to relate the sum 2
∑

d≤
√
n

1
d − 1 to log(n). I wish to

emphasize just how small the error term O(1/
√
n) is!

@interact
def _(n=(8, range (2,25))):

viewsize=n+1
P=Graphics ()
P += plot (1/x,(x,1,n))
P += plot(piecewise ([[(j,j+1) ,1/j] for j in

[1..n-1]]), (x,1,n), fill =1/x,linestyle= ' ')
show(P)

20.3. DIGGING DEEPER AND FINDING LIMITS 285

This graphic shows the exact difference between
∑m−1

k=1
1
k and log(m). Clearly,

even as m → ∞, the total area is simply the sum of a bunch of nearly-triangles
with width exactly one and no intersection of height (again this idea), with
total height less than 1. So the difference between

∑m−1
k=1

1
k and log(m) will be

finite as m → ∞.
This number is very important! First of all, it clearly is related to the

archetypal divergent series from calculus, the harmonic series
∞∑
k=1

1

k

However, this constant has taken on a life of its own.

Definition 20.3.2. The number γ, or the Euler-Mascheroni constant, is de-
fined by

γ = lim
m→∞

(
m−1∑
k=1

1

k
− log(m)

)
You have almost certainly never heard of this number, but it is very impor-

tant. There is even an entire book, by Julian Havil [C.3.14] about this number.
It’s a pretty good book, in fact!

Remark 20.3.3. Among other crazy properties, it is the derivative of a gen-
eralization of the factorial function, called Gamma (Γ). I am not making this
up.

Consider the area corresponding to gamma compared to its finite approx-
imations. Notice that the “missing” part of the area (since we can’t actually
view all the way out to infinity) must be less than 1/m, since it will be the
part lower than all the pieces we can see in the graphic for any given m. So γ
is within O(1/n) of any given amount finite

∑m−1
k=1

1
k − log(m).

Now we put it all together! We know from above that

1

n

n∑
k=1

τ(k) = 2
∑

d≤
√
n

1

d
− 1 +O(1/

√
n) .

Further, we can now substitute in the following for
∑

d≤
√
n

1
d ;∑

d≤
√
n

1

d
= log(

√
n) + γ +O(1/

√
n) .

Once we do that, and take advantage of the log fact 2 log(z) = log
(
z2
)
, we get

1

n

n∑
k=1

τ(k) = log(n) + (2γ − 1) +O(1/
√
n) .

That is exactly the asymptote and type of error that I have depicted below!
@interact
def _(pts=range_slider (0 ,5000 ,50 ,(0 ,200))):

show(point ([(a,b-log(a)) for a,b in
L(pts [1])[pts [0]:]] , pointsize=3,rgbcolor =(0,0,0)) +
plot (2* euler_gamma -1,(x,0,pts [1])) +
plot (2* euler_gamma -1+.5/ sqrt(x),(x,0,pts [1]),
color= ' red ' ,linestyle= ' -- '),
xmin=pts[0],xmax=pts[1],
ymax =2* euler_gamma -1+.5/ sqrt(pts [0]+1))

286 CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR

It’s not hard to prove that τ grows at least as fast as log(n), so this is a
fairly sharp result. (It’s even possible to show that the error in the average is
O(1/ 3

√
x), but is not O(1/ 4

√
x).)

20.4 Heuristics for the Sum of Divisors
20.4.1 Numbers instead of points
Could this type of argument conceivably be used for σ = σ1?

The answer is yes! Consider the following rewrite of the sum of sigmas,
which are themselves the sum of divisors:∑

n≤x

σ(n) =
∑
n≤x

∑
q|n

q =
∑

q,d such that qd≤x

q =
∑
d≤x

∑
q≤ x

d

q .

We have changed from a sum of sums of divisors (which might not be con-
secutive, and makes σ annoying to compute) to a sum of sums of consecutive
integers.

We can think about this graphically again. Instead of comparing points on
a hyperbola with points in columns or rows, though, we will compare numbers
at points on a hyperbola with numbers at points in rows. We can think of it
as summing up a weighted set of points. The picture below tells it all.

@interact
def _(n=(6, range (2,50))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
for thing in lattice_pts:

P += text(thing[0],thing ,rgbcolor =(0,0,0))
show(P,ymax=viewsize ,aspect_ratio =1)

Example 20.4.1. In the first example that shows up in the interact, we see
that

6∑
k=1

σ(k) = 1 + (1 + 2) + (1 + 3) + (1 + 2 + 4) + (1 + 5) + (1 + 2 + 3 + 6) =

(1 + 2 + 3 + 4 + 5 + 6) + (1 + 2 + 3) + (1 + 2) + 1 ,

which means we can think of it as a sum of sums from 1 to the length of each
row.

Now let’s note three things about the general case.

• Each row is, of course,
⌊
n
k

⌋
in length, as with τ .

• Adding up the first j integers from one to j is of course

j(j + 1)

2
=

j2

2
+

j

2
,

which we used above.

20.4. HEURISTICS FOR THE SUM OF DIVISORS 287

• The most wrong ⌊x⌋(⌊x⌋+1)
2 can be from x(x+1)

2 is j + 1 = O(j) (this is
simple algebra).

So if we combine the information above with the formula, we get∑
n≤x

σ(n) =
∑
d≤x

∑
q≤ x

d

q =
∑
d≤x

[
1

2

⌊x
d

⌋2
+

1

2

⌊x
d

⌋]
=
∑
d≤x

[
1

2

(x
d

)2
+

1

2

(x
d

)
+O

(x
d

)]
.

20.4.2 Order calculations and more
But this is actually possible to analyze! First, some order calculations.

We already saw that
∑

d≤x
1
d = log(x) +O(1), so

∑
d≤x

1

2

(x
d

)
=

1

2
O(x log(x)) = O(x log(x)) .

(See 20.6.13.)Also,
∑

d≤x O
(
x
d

)
must be

O

x
∑
d≤x

1

d

 = O(x log(x)) .

Next, let’s get more information about
∑

d≤x

[
1
2

(
x
d

)2]. Recall that the
(convergent) improper integral

∫∞
x

dy
y2 approximates

∑
d>x

1
d2 .

Since both converge, and by the same pictures as above, the error is cer-
tainly O(1/x2). Then I can rewrite things as

∑
d≤x

1

d2
=

∞∑
d=1

1

d2
−
∑
d>x

1

d2
=

∞∑
d=1

1

d2
−
∫ ∞

x

1

y2
dy+O(1/x2) =

∞∑
d=1

(
1

d2

)
− 1

x
+O(1/x2) .

Thus the whole crazy double sum can be approximated as follows, quite
accurately: ∑

n≤x

σ(n) =
x2

2

∑
d≤x

(
1

d2

)
+

x

2

∑
d≤x

1

d
+O(x log(x))

=
x2

2

(∞∑
d=1

(
1

d2

)
− 1

x
+O(1/x2)

)
+O(x log(x)) = x2

2

∞∑
d=1

(
1

d2

)
−x

2
+O(x log(x)) .

And the average value of σ must be this divided by x, namely

1

x

∑
n≤x

σ(n) is x

2

∞∑
d=1

1

d2
+O(log(x)) .

Since we know that the series converges, this means the average value of σ
increases quite linearly, with an error (at most) increasing logarithmically! This
might be a shock – that one could actually get something fairly accurate like
this relatively easily using calculus ideas like improper integrals and (implicitly)
the integral test for infinite series. But check out the data!

def M(n):
ls = []
out = 0

288 CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR

for i in range(1,n+1):
out += sigma(i)
ls.append ((i,out/i))

return ls

@interact
def _(j = [10 ,100 ,1000 ,10000]):

show(line(M(j)))

Of course, one might ask what the slope of this line is! It would have to be
m = 1

2

∑∞
k=1

1
d2 . Have you seen this constant before? (In a calculus class, you

should have proved that it does converge.)

@interact
def _(j = [10 ,100 ,1000 ,10000]):

show(line(M(j)) + plot(x*zeta (2)/2,(x,0,j),
color= ' black ' ,linestyle="--"))

Finding a summation of this was the so-called Basel problem, which Euler
solved and showed is π2

6 . So the slope is π2

12 . Amazing! (See also Section 24.4.)

20.5 Looking Ahead
Let’s recap.

• The average value of τ(n) was log(n) + 2γ − 1.

• The average value of σ(n) was
(
1
2

∑∞
d=1

1
d2

)
n.

◦ Because of Euler’s amazing solution to the Basel problem, we know
that

∞∑
d=1

1

d2
=

π2

6

so the constant in question is π2

12 .

We end with the question of yet another average value. What might happen
with the ϕ function? You can try out various ideas below; a is the coefficient
and n is the power of a model axn.

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += euler_phi(i)
ls.append ((i,out/i))

return ls

LS = L(1000)
P = line(LS)
@interact
def _(a=.01,n=2,view =(50 ,[25 ,50 ,..500])):

show(P+plot(a*x^n,0,view ,
color= ' black ' ,linestyle="--"), xmin=1,xmax=view ,
ymax=LS[view][1])

http://en.wikipedia.org/wiki/Basel_problem

20.6. EXERCISES 289

pretty_print(html("Blue␣is␣the␣average␣value␣of␣
ϕ"))

pretty_print(html("Red␣is␣$%s␣x^{%s}$"%(latex(a),n)))

Hopefully you started finding something interesting. However, we aren’t
ready to prove anything about that quite yet.

20.6 Exercises
We start with some exercises testing understanding of Landau notation.

Show that σ(n) is O(n2) (compare to the sum of all integers).1.

Use the formula for the sum of the first n perfect squares (often en-
countered in a Transition to Proof course or when first doing definite
integrals in Calculus) and the previous exercise to show that the aver-
age value of σ(n) is Big Oh of n2. (This can be loosey-goosey.)

2.

Show that if g and h are both O(f) for some f , then g+h is also O(f).3.

Show that if g is O(f) for some f , then if c > 0 we have that g is O(cf)
and cg is O(f).

4.

Show that if g is O(f) for some f and if f(x) ≤ h(x) for x large enough,
then g is also O(h).

5.

6. Find a formula for the average value of the u and N functions (up through
n), where u(n) = 1 for all n and N(n) = n for all n (recall Definition 19.2.9).

7. Finish off all calculus details in the argument in 20.2.3.

8. Finish the details of the proof that τ is O(3
√
x)

9. Show that τ(n) is not O(1). (Hint: that means there is no constant C such
that τ(n) ≤ C always.)

10. Why would it not contradict our theorem above that 1
n

∑n
k=1 τ(k) =

O(log(n)) to say that τ(n) is not O(log(n))?

11. Show that τ(n) is not O(log(n)). (Hint: look at numbers of the form 6k,
and compare τ of these to any given multiple of the natural logarithm using
calculus.)

12. Finish all calculus details of the proof of σ’s average size in 20.4.

13. Finish the details of the first computation of Big Oh in 20.4.2.

14. Find absolute bounds for ϕ(n) (simple polynomial or log formulas in terms
of n).

15. Use data, graphs, whatever to conjecture what type of growth the aver-
age value of ϕ has up to n. Is it logarithmic, linear, quadratic, exponential,
something else? Bonus if you find a coefficient for the growth!

290 CHAPTER 20. LONG-TERM FUNCTION BEHAVIOR

Chapter 21

The Prime Counting
Function

Up to now, our examples of arithmetic functions f(n) have been clearly based
on some property of the number n itself, such as its divisors, the numbers
coprime to it, and so forth.

However, there is one function of prime importance which, as far as we yet
know, bears no particular obvious relation to the input – yet in the aggregate
bears amazing relations to the input! It is the most mysterious of all these
functions.

Definition 21.0.1. The prime counting function π(x) is defined, for all
positive numbers x, as the number of primes less than or equal to xk denoted

π(x) = #{p ≤ x | p is prime } .

21.1 First Steps
It might seem at first there is very little we can say about this function; after
all, thus far we’ve seen no particular pattern in the primes themselves (other
than that they are nearly all odd). You may wish to see what the function
looks like to confirm this sense. It is a not particularly smoothly increasing
function with no upper bound (recall Theorem 6.2.1).

plot(prime_pi ,2,100, color= ' black ' ,legend_label="$\pi(x)$")

Sage note 21.1.1 (Syntax for counting primes). The syntax for this function
is prime_pi(n).

21.1.1 A funky formula
Given the skepticism of the paragraphs so far this chapter, you may be sur-
prised to learn there are exact formulas for this function, as well as for the nth
prime. The following formula (for n > 3) is one of my favorites (see the Ap-
pendix of the exhaustive Hardy and Wright, [C.1.2], and also Exercise 21.5.1):

π(n) = −1 +
n∑

j=3

(
(j − 2)!− j

⌊
(j − 2)!

j

⌋)
.

291

http://mathworld.wolfram.com/PrimeFormulas.html
http://mathworld.wolfram.com/PrimeFormulas.html

292 CHAPTER 21. THE PRIME COUNTING FUNCTION

Can you see why this is not useful in practice? So there is plenty left for us to
discuss.

On the other hand, it works! We can confirm this by using the following
code.

def primeish(n):
if n==1:

return 0
elif n==2:

return 1
elif n==3:

return 2
else:

result = -1
fact = 1
for j in range(3,n+1):

fact = fact*(j-2)
result += (fact - j*floor(fact/j))

return result

import math
def plotprimeish(n):

n = int(math.floor(n))
return primeish(n)

pretty_print(html("The␣number␣of␣primes␣up␣to␣20000␣this␣
formula␣gives␣is␣$%s$"%primeish (20000)))

pretty_print(html("The␣real␣function␣in␣Sage␣gives␣
$%s$"%prime_pi (20000)))

pretty_print(html("And␣let ' s␣compare␣plots:"))
plot(lambda x:plotprimeish(x), (x,2 ,100)) +

plot(prime_pi ,2,100, color= ' black ')

Sage note 21.1.2 (Cython). It’s possible to significantly speed up many such
computations by converting to Cython, a way to take Python/Sage and turn
it into the much-faster compiled language C. For a project, try to speed this
function up using Cython!

Sage note 21.1.3 (Not all algorithms are equal). Don’t forget that just be-
cause an algorithm works, doesn’t guarantee it will be useful in practice! How-
ever, it’s often useful to get something correct first, and only then try to
optimize.

21.1.2 A very low bound
On a more computationally feasible note, one can find a very rudimentary
(lower) bound on this function. Recall that unadorned logarithms are the
natural log.

Fact 21.1.4. There are at least

log(log(x)/ log(2))
log(2) + 1 = log2(log2(x)) + 1

primes less than or equal to x.

http://www.cython.org

21.1. FIRST STEPS 293

Proof. In Saidak’s proof of the infinitude of the primes, he constructs the
sequence

2, (2 + 1), (2(2 + 1) + 1), (2(2 + 1)(2(2 + 1) + 1)) + 1 . . .

Then he shows, similarly to Euclid’s proof, that there is at least one new prime
divisor in each element of the sequence (even if not necessarily a larger one).
So the nth prime can be no bigger than the nth element of this sequence.

By induction, we see that this element is less than or equal to 22
n−1 .

• The case n = 1 is clear.

• The nth element is the previous elements multiplied together, plus 1,
which is less than

22
0

22
1

· · · 22
n−2

+ 1 = 21+2+4+···+2n−2

+ 1 = 22
n−1−1 + 1 ≤ 22

n−1

(this uses the same type of technique as in Subsection 4.5.2).

So the number of primes less than 22
n−1 can’t be less than n. Take two

logs of this to get

log(log(22
n−1

)) = log(2n−1 log(2)) = (n− 1) log(2) + log(log(2))

This yields the given statement.

As you can see below, this is not a very useful bound, considering there are
actually 25 primes less than 100, not 3!

plot(log(log(x)/log(2))/log(2)+1,(x,2 ,100)) +
plot(prime_pi ,2,100, color= ' black ')

21.1.3 Knowledge from nowhere
Finally, although it may not seem evident, you should know that it is not
necessary to actually find all the first n primes (even of a particular type) to
compute how many there are, at least not always.
Definition 21.1.5. Let ϕ(n, a) to be the number of positive integers less than
n which are not divisible by any of the first a primes

Now it is possible to develop the recursive formula

ϕ(n, a) = ϕ(n, a− 1)− ϕ

(⌊
n

pa

⌋
, a− 1

)
,

which allows use a type of inductive argument to compute ϕ(n, a) without
having to use many computational resources.

It is then not too hard to use a counting argument to prove that

π(n) = π(
√
n) + ϕ(n, π(

√
n))− 1

This is the typical way to count π without actually counting primes, and with
some speedups it can be quite efficient.

Interestingly, this is also how one finds the nth prime. You use an approx-
imation to the nth prime like n log(n) and then check values of π(n) near that
point to see where the value changes, which should lead you exactly to the
prime you seek. (Recall Sage note 4.2.1 about %time when using the following
cell.)

%time nth_prime (10^7)

https://primes.utm.edu/notes/proofs/infinite/Saidak.html

294 CHAPTER 21. THE PRIME COUNTING FUNCTION

21.2 Some History
Somewhat remarkably, given how long humans have been studying primes, the
first people we know of compiling substantial data about them are Gauss and
Legendre, around 1800.

Legendre first tried to estimate π(x). He said that π(x) ≈ x
log(x)−A , where

he fudges the constant A ≈ 1.08366. More precisely, he claimed that π(x) is
asymptotic to this function.

Definition 21.2.1. We say that two functions f(x) and g(x) are asymptotic
to each other when

lim
x→∞

f(x)

g(x)
= 1

Essentially, in the long run these functions get as close to each other as you
like, on a percentage basis.

Here is another way to think about this. Think of the average chance
of a number of size x being prime; Legendre guessed this was of the form

1
log(x)−A . This general notion was based on a lot of data he had collected, and
the constant A he finally settled on seemed to give the best match to the data.

Not long after this, Gauss came up with a solution that was more elegant
– and despite not being ‘fitted’ to the data in the same way, was correct. And
he didn’t tell anyone for over fifty years! Gauss’ conjecture was that

lim
x→∞

π(x)

x/ log(x) = 1

Or, using our new term, π(x) is asymptotic to x
log(x) .

21.2.1 The first really accurate estimate and errors
In fact, Gauss makes this estimate even more precise. Here is the general idea.

First, reinterpret the proportion as suggesting that 1/ log(x) integers near
x are prime. If we do that, then we can think of 1/ log(x) as a probability
density function. What do we do with such functions? We integrate the
function to get the cumulative amount!

That is, we should expect that π(x) ≈
∫ x

2
dt

log(t) or equivalently

lim
x→∞

π(x)∫ x

2
dt

log(t)
= 1 .

Definition 21.2.2. We give the name logarithmic integral1 to the (conver-
gent) integral Li(x) =

∫ x

2
dt

log(t) .

That a function as rigid as π would be close to an integral function should
sound like it has a 100% probability of being crazy! But Gauss was no fool,
and the accuracy is astounding.

@interact
def _(n=100):

1There is also a definition for this integral
∫ x
0

dt
log(t) , which has a properly defined value

(beyond the level of this course) despite the integrand going to negative infinity. The form
used for the prime counting function is traditionally this one, for reasons clear in the rest of
this text, and there are no divergence issues at stake.

21.2. SOME HISTORY 295

show(plot(prime_pi ,3,n,color= ' black ' ,
legend_label= ' $\pi(x)$ ') +
plot(x/log(x),3,n,color= ' red ' ,
legend_label= ' $x/\log(x)$ ') + plot(Li ,3,n,
color= ' green ' , legend_label= ' $Li(x)$ '))

Notice how much closer Li(x) is to the actual value of π(x) than the
x/ log(x) estimate. It’s usually closer by several orders of magnitude.

@interact
def _(n=[100 ,1000 ,1000000 ,1000000000]):

P = prime_pi(n)
pretty_print(html("$\pi(%s)=%s$"%(n,prime_pi(n))))
pretty_print(html("The␣error␣with␣$%s/\log(%s)$␣is␣

$\\ approx␣%s$"%(n,n,P-(n/log(n)).n())))
pretty_print(html("The␣error␣with␣$Li(%s)$␣is␣

$\\ approx␣%s$"%(n,(P-Li(n)).n())))

21.2.2 Exploring Li

Can we try for some more analysis? Since we saw that x/ log(x) didn’t seem to
be as good an approximation, we’ll leave it out for now. This graphic follows
one along a roughly 1000-wide stretch at a time.

@interact
def _(n=100):

P = plot(prime_pi ,3,n,
color= ' black ' ,legend_label= ' $\pi(x)$ ')

P += plot(Li ,3,n, color= ' green ' ,legend_label= ' $Li(x)$ ')
show(P, xmin=max(n-1000 ,0),

ymin=prime_pi(max(n-1000 ,0)))

Based on this evidence, it seems clear that Li(x), even if it’s a good ap-
proximation, should not ever be less than the actual count of primes. And yet,
the English mathematician Littlewood proved the following result.

Fact 21.2.3. For any number x, there is an x′ > x such that

Li(x′) < π(x′) .

As remarkable as this seems, his student Skewes proved the following even
more amazing fact.

Fact 21.2.4. The first time this happens is no higher than

1010
1010

1000

.

In the original paper, this bound had a 34 instead of 1000 in the last expo-
nent, but that result relied upon a special assumption (the so-called Riemann
Hypothesis, see Chapter 25).

Today we know that the first time this “switch” happens is no higher than
1.4×10316. There is still no explicit number known for which this is true, how-
ever, and we haven’t even gotten remotely near those bounds with computers.

This sounds terrible, but actually is good news. After all, if π beats Li once
in a while, then Li must be a great approximation indeed! So, just how great
is it?

296 CHAPTER 21. THE PRIME COUNTING FUNCTION

21.3 The Prime Number Theorem
It turns out Li(x) is a pretty good approximation indeed.

21.3.1 Stating the theorem
Theorem 21.3.1 (Prime Number Theorem). If π(x) is the number of primes
p ≤ x, then

lim
x→∞

π(x)

Li(x)
= 1 .

In fact, the first bound also has this property (see Exercise 21.5.4):

lim
x→∞

π(x)

x/ log(x) = 1 .

This result, conjectured by Riemann, was proved about 100 years after
the initial investigations of Gauss by the French and Belgian mathematicians
Jacques Hadamard and Charles-Jean de la Vallée-Poussin. They made good
use of the analytic methods we are slowly approaching.

Any proof is this is well beyond the bounds of this text. One of several
modern versions is in the analytic number theory text [C.3.6] by Apostol; see
also [C.1.9]. Additionally, as a series of exercises (!) in that book, one can also
explore a proof due to Selberg and Erdős that is “elementary”, in the sense of
not using complex-valued integrals. There is a well-known exposition of a very
similar proof in [C.1.2], and another in [C.3.4].

Later, we’ll see that many better approximations to π(x) exist which come
out of this sort of thinking. Notice how the approximations in the next cell take
the logarithmic integral and subtract various correction factors in the attempt
to get closer.

@interact
def _(n=100):

P = plot(prime_pi ,3,n,
color= ' black ' ,legend_label= ' $\pi(x)$ ')

P += plot(Li ,3,n, color= ' green ' ,legend_label= ' $Li(x)$ ')
P += plot(lambda x: Li(x) - sqrt(prime_pi(x)),3,n,

color= ' orange ' , legend_label= ' $Li(x)-\sqrt{\pi(x)}$ ')
P += plot(lambda x: Li(x) - .5*Li(sqrt(x)),3,n,

color= ' red ' ,
legend_label= ' $Li(x) -\\frac {1}{2} Li(\sqrt{x})$ ')

P += plot(lambda x: Li(x) - sqrt(x)/log(x),3,n,
color= ' purple ' ,
legend_label= ' $Li(x)-\sqrt{x}/\log(x)$ ')

show(P, xmin=max(n-1000 ,0),
ymin=prime_pi(max(n-1000 ,0)))

21.3.2 Chebyshev’s contributions
Although we cannot explore the theorem itself in depth, we can understand
some of the steps one must take on the way there. It is a good place to high-
light the number-theoretic contributions of the great Russian mathematician
Chebyshev (�������), who made fundamental advances in this type of number
theory as well as in statistics.

He was the first person to prove a conjecture known (even today!) as
Bertrand’s Postulate, after the French mathematician who first proposed it.

http://www-history.mcs.st-and.ac.uk/Biographies/Chebyshev.html

21.3. THE PRIME NUMBER THEOREM 297

Theorem 21.3.2 (Bertrand’s Postulate). For any integer n ≥ 2, there is a
prime between n and 2n.

Proof. It is actually quite possible to prove this at the level we have reached,
but any proof is long enough to take us a little far afield.

Try testing it yourself below!

@interact
def _(n=25):

pretty_print(html("$%s$␣is␣a␣prime␣between␣$%s$␣and␣
$%s$"%(next_prime(n),n,2*n)))

On a related note, although this proves you can’t have too long of stretches
without prime numbers, you can certainly have arbitrary stretches of composite
numbers. Paul Nahin, in [C.6.13], describes the following cute result of Louis
A. Graham.

Fact 21.3.3. Multiply all the primes p from 2 to n+1 to get N =
∏

2≤p≤n+1 p.
Then we have n consecutive composite integers from N − (n+ 1) to N − 2.

Proof. We know that N is a multiple of a prime factor1 of each number x from
2 to n+ 1. For each such x and prime factor px, Proposition 1.2.6 guarantees
that N − x is also a multiple of px.

Try testing it yourself below!

@interact
def _(n=5):

N = prod(prime_range(n+2))
pretty_print(html("The␣numbers␣between␣$%s$␣and␣$%s$␣

are␣all␣composite"%(N-(n+1),N-2)))
L = [N-(n+1)..N-2]
print [N-(n+1)..N-2]
pretty_print(html("have␣factors"))
print [l.divisors ()[1] for l in L]
pretty_print(html("and␣there␣are␣$%s$␣of␣

them"%(len(L))))

More immediately germane to our task of looking at π(x) and its value,
Chebyshev proved the first substantial result on the way to the Prime Number
Theorem, validating Legendre’s intuition.

Theorem 21.3.4 (Big Oh of Prime Pi). It is true both that:

• π(x) is O
(

x
log(x)

)
and

• x
log(x) is O(π(x)).

Interestingly, this is not the same as the Prime Number Theorem; see Ex-
ercise 21.5.6.

What we will show here is the gist of a smaller piece of this theorem.

Proposition 21.3.5. For big enough x, π(x) < 2 x
log(x) .

1In fact, all such factors.

https://en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

298 CHAPTER 21. THE PRIME COUNTING FUNCTION

Proof. We follow Stopple’s presentation in Section 5.2 of [C.3.5] closely in
sketching out most of a proof of this below; see also [C.1.11]. It is a little
longer than some of our other proofs. It uses some very basic combinatorial
ideas and calculus facts, however, so it is a great example of several parts of
mathematics coming together.

First, it’s not hard to verify this for x < 1000.

plot(prime_pi ,1 ,1000)+plot (2*x/log(x) ,1,1000,color= ' black ')

Now we’ll proceed by induction, in an unusual way. We’ll assume it is
true for n, and prove it is true for 2n. This needs a little massaging for odd
numbers, but is a legitimate induction method.

With this in mind, we first assume that π(n) < 2 n
log(n) . Now what?

Below, in Lemma 21.3.6 we look at the product of all the primes (if any)
between n and 2n, which we write as

P =
∏

n<p<2n

p .

In that result some combinatorial thinking leads to the following estimate:

nπ(2n)−π(n) < P ≤ (2n)!

n!n!
< 22n

These bounds show that P is between a certain power of n and a certain power
of 2.

Now we will manipulate this to get the final result. Begin by taking log of
both ends to get

(π(2n)− π(n)) log(n) < 2n log(2)
Now divide out and isolate to get

π(2n) <
2n log(2)

log(n) + π(n) <
2n log(2)

log(n) + 2
n

log(n) = (log(2) + 1)
2n

log(n) .

In Exercise 21.5.8 you will show that, as long as n > 1000, we have the
inequality

log(2) + 1

log(n) <
2

log(2) + log(n) =
2

log(2n)
Now we can put it all together to see that

π(2n) < (log(2) + 1)
2n

log(n) < 2
2n

log(2n) ,

which is exactly what the proposition would predict.
To rescue this for 2n+1, we need another calculus comparison. First, from

above we have

π(2n+ 1) ≤ π(2n) + 1 <
2n log(2)

log(n) + π(n) + 1

<
2n log(2)

log(n) + 2
n

log(n) + 1

Since 2n+1
log(2n+1) >

2n
log(2n+1) , it will suffice then to show

(2 + 2 log(2)) n

log(n) + 1 <
2n

log(2n+ 1)
.

21.4. A SLICE OF THE PRIME NUMBER THEOREM 299

Since n > 1000,

(2 + 2 log(2)) n

log(n) + 1 < 3.386
n

log(n) + 1 < 3.394
n

log(n)

so it suffices to show

3.394
n

log(n) <
2n

log(2n+ 1)
.

Showing this is Exercise 21.5.9.

Lemma 21.3.6. Let the product of all the primes between n and 2n be written

P =
∏

n<p<2n

p

Then we can bound it as

nπ(2n)−π(n) < P ≤ (2n)!

n!n!
< 22n

Proof. Think of all the primes in question. On the one hand, each of these
primes p is greater than n, and there are π(2n)− π(n) of them. So

nπ(2n)−π(n) < P .

On the other hand, each of these primes is greater than n but they are all
in the list of numbers from n to 2n, so their product divides

(2n) · (2n− 1) · (2n− 2) · · · (n+ 1)

n · (n− 1) · (n− 2) · · · 1

That is to say P is a factor of a binomial coefficient

P | (2n) · (2n− 1) · (2n− 2) · · · (n+ 1)

n · (n− 1) · (n− 2) · · · 1
=

(2n)!

n!n!

and in particular,

P ≤ (2n)!

n!n!

Now here is the conceptual key of the proof. We reinterpret this factorial
fraction as the number of ways to choose n things from a collection of 2n things!
And the number of ways to choose n things is certainly less than the number
of ways to pick any old collection out of 2n things, which is 22n (because you
either pick it or you don’t).

Since we showed both bounds, this concludes the proof.

21.4 A Slice of the Prime Number Theorem
We end this chapter with a substantial piece of a real proof in the direction
of the Prime Number Theorem, courtesy of a function also first introduced
by Chebyshev. The argument is dense, but requires nothing beyond calculus
and a willingness to allow a lot of algebraic and integral manipulation for the
purposes of estimation.

300 CHAPTER 21. THE PRIME COUNTING FUNCTION

21.4.1 Functions to know
First, we’ll review the main function. Think of the prime counting function π
as a so-called step function, where every time you hit a new prime you add
1.

@interact
def _(n=100):

show(plot(prime_pi ,1,n))

Let’s define a new function. Instead of adding 1 each time x hits a prime,
we will add log(p) (recall that this is the natural logarithm) each time we hit
a prime p. Of course, this value we add will get bigger as p gets bigger.

def theta(x): return sum(math.log(p) for p in
prime_range (1,floor(x)+1))

@interact
def _(n=100):

show(plot(theta ,1,n))

Definition 21.4.1. We call the function given by this formula Chebyshev’s
theta function:

Θ(x) =
∑
p≤x

log(p) .

Earlier in this chapter we noted that the Prime Number Theorem is logically
equivalent to the limit limx→∞

π(x)
x/ log(x) = 1. There are actually many such

logical equivalences. One of them involves Θ:

lim
x→∞

Θ(x)

x
= 1

This is certainly numerically plausible. Here is a plot of both limits, along with
the constant function 1.

def theta(x): return sum(math.log(p) for p in
prime_range (1,floor(x)+1))

def pnt(n): return prime_pi(n)*log(n)/n
def thox(n): return theta(n)/n
@interact
def _(end =100000):

show(plot(1,(1,end),color= ' black ') +
plot(pnt ,(1,end),color= ' red ' ,legend_label= ' Prime␣
Number␣Theorem ') +
plot(thox ,(1,end),legend_label= ' Chebyshev␣Theta '))

As usual, proving such things completely is beyond the level of this course,
but we can prove the following partial implication.

Proposition 21.4.2. If the Prime Number Theorem is true, then it is also
true that Θ(x)/x approaches 1.

Proof. The rest of this section is the proof.

21.4. A SLICE OF THE PRIME NUMBER THEOREM 301

21.4.2 Getting a formula with sleights of hand
In order to prove this implication, we will first need a formula telling us more
about Θ(x). Our strategy will be to first turn Θ(x) into an even more hopelessly
complicated sum, but then use calculus to trickily get something usable by
summing up integrals.

In order to do this, we need two subsidiary functions. First recall the
notation m = ⌊x⌋ for the greatest integer less than x. Secondly:

Definition 21.4.3. We let a(n) be the prime number indicator function de-
fined by

a(n) =

{
1 if n is prime
0 otherwise

. Another way to say this is

a(n) = π(n)− π(n− 1) .

@interact
def _(end =10):

show(plot(prime_pi ,1,end ,color= ' black ')+plot(lambda
x:prime_pi(x)-prime_pi(x-1) ,1,end))

Then we can rewrite these step functions as weighted sums of a(n):

π(x) =

m∑
n=1

a(n) and Θ(x) =

m∑
n=1

a(n) log(n) .

Our goal is to rearrange Θ to be a sum of something involved π. First we
turn it into a difference of sums by rearranging (and using log(1) = 0):

Θ(x) =
∑

1≤n≤x

a(n) log(n) =
m∑

n=1

a(n) log(n) =

m∑
n=2

[π(n)− π(n− 1)] log(n) =
m∑

n=2

π(n) log(n)−
m−1∑
n=1

π(n) log(n+ 1)

This difference of sums can be combined into a single sum, with just two left
over terms, the second of which is equal to 0.

Θ(x) =
m−1∑
n=2

π(n)[log(n)− log(n+ 1)] + π(m) log(m)− π(1) log(1) .

To continue, we will rewrite this as an integral. We use a few key facts:

• The difference which appears in the last Θ formula is an integral, log(n+
1)− log(n) =

∫ n+1

n
dt
t .

• We have that π(x) = π(m) is constant on [m,x], so it may be factored
out of any integral of a unit distance.

• We can rearrange and add sums and integrals as usual.

302 CHAPTER 21. THE PRIME COUNTING FUNCTION

This yields the following rewrite.

Θ(x) = −
m−1∑
n=2

[
π(n)

∫ n+1

n

dt

t

]
+ π(m) log(m)

= −
m−1∑
n=2

[
π(n)

∫ n+1

n

dt

t

]
+ π(m) log(m)− π(x) log(x) + π(x) log(x)

= −
∫ m

2

π(t)dt

t
+ π(x) log(x)−

∫ x

m

π(t)dt

t
= π(x) log(x)−

∫ x

2

π(t)dt

t
.

Now we have a formula for Θ which will allow us to prove something.

21.4.3 Finish the proof
We can divide the formula Θ(x) = π(x) log(x)−

∫ x

2
π(t)dt

t by x:

Θ(x)

x
=

π(x) log(x)
x

−
∫ x

2
π(t)
t dt

x
,

Given that the Prime Number Theorem says that limx→∞ of the fraction with
π(x) in it is 1, proving that limx→∞ of Θ(x)

x is also 1 is equivalent to proving

lim
x→∞

1

x

∫ x

2

π(t)

t
dt = 0 .

Now, the Prime Number Theorem also implies that π(t)
t and 1

log(t) are
asymptotic, so that their integrals also are,

1

x

∫ x

2

π(t)

t
dt and 1

x

∫ x

2

dt

log(t) .

This reduces our proof to showing that the average value of 1/ log(t) tends
to zero. Since integral have a graphical interpretation, we now use the following
graph of the integral limit to finish the proof!

Consider that one possible upper sum for the integral of 1/ log(t) between 2
and 9 is the area of the two rectangles shown below, one with area 1

log(2) (
√
9−2)

and the other with area 1
log(

√
9)
(9 −

√
9). (Of course

√
9 = 3 but this form is

more useful here.)

@interact
def _(top=(16,[n^2 for n in [2..10]])):

f(x)=1/log(x)
P=plot(f,1,top+1)
P += line ([(2 ,0) ,(2,f(2)),

(math.sqrt(top),f(2)),(math.sqrt(top) ,0)],
rgbcolor= ' black ')

P += line ([(math.sqrt(top), f(math.sqrt(top))),
(top ,f(math.sqrt(top))),(top ,0)], rgbcolor= ' black ')

P.show(ymax =2)

In general, the same argument should hold, so a possible overestimate of∫ x

2
dt/ log(t) is

1

log(2)(
√
x− 2) +

1

log(
√
x)

(x−
√
x)

21.5. EXERCISES 303

and we want the limit as x → ∞ of 1
x times that quantity.

Now is the time to recklessly use logarithmic identities:

1

x

(
1

log(2)(
√
x− 2) +

1

log(
√
x)

(x−
√
x)

)
=

1

log(2)x1/2
− 2

x log(2)+
1

log(
√
x)

− 1

log(
√
x)x1/2

=
1

log(2)x1/2
− 2

x log(2) +
2

log(x) −
2

log(x)x1/2

This last expression has positive powers of x and their logs in the denominators,
so it pretty clearly goes to zero as x → ∞.

If the algebra doesn’t convince you, perhaps the graphs will. Below, black
is the overestimate to the integral and red is 1/x times the integral.

@interact
def _(top=(16,[n^2 for n in [2..10]])):

f(x)=1/ log(x)
P=plot(f,1,top+1)
P += line ([(2 ,0) ,(2,f(2)),(math.sqrt(top),f(2)),

(math.sqrt(top) ,0)],
rgbcolor= ' black ')

P += line ([(math.sqrt(top),f(math.sqrt(top))),
(top ,f(math.sqrt(top))),(top ,0)], rgbcolor= ' black ')

P +=
line ([(2 ,0) ,(2,f(2)) ,(2+(math.sqrt(top) -2)/top ,f(2)),
(2+(math.sqrt(top) -2)/top ,0)], rgbcolor= ' red ')

P += line ([(math.sqrt(top),f(math.sqrt(top))),
(math.sqrt(top)+(top -math.sqrt(top))/top ,
f(math.sqrt(top))), (math.sqrt(top) +
(top -math.sqrt(top))/top ,0)], rgbcolor= ' red ')

P.show(ymax =2)

The picture confirms our analytic proof that the limit of θ(x)
x is the same

as that of π(x)
x/ log(x) , which is what we desired!

21.5 Exercises
1. Consider Wilson’s Theorem and consider what will happen to (j−2)! mod-
ulo primes and composites (this is Exercise 7.7.6). Use this to prove the bizarre
formula in Section 21.1.

2. Come up with two functions f(x) and g(x) that both go to infinity as
x → ∞, such that f(x) is always ahead of g(x), but f and g are asymptotic
(to each other).

3. Come up with two functions f(x) and g(x) that both go to infinity as
x → ∞, but that switch the lead infinitely often and f and g are asymptotic.

4. Show that the two limits in the Prime Number Theorem are really equiva-
lent. That is, show that if limπ(x)/Li(x) = 1, then the other limit is 1, and
vice versa.

5. Find an arbitrarily long sequence of consecutive composite numbers using
factorials.

6. Come up with two functions f(x) and g(x) such that f(x) is O(g(x)) and
g(x) is O(f(x)), but are not asymptotic.

304 CHAPTER 21. THE PRIME COUNTING FUNCTION

7. Use Proposition 21.3.5 to show that limx→∞ π(x)/x = 0.

8. Show that if n > 1000 then

log(2) + 1

log(n) <
2

log(2) + log(n) =
2

log(2n)

To do this, you should compare 2 log(n) and log(2)(log(2) + log(n)) and their
derivatives for n = 1000 and up, then divide the two expressions appropriately.
You will need to show that if f(x0) > g(x0) and f ′ > g′ for x ≥ x0, then f > g
as well.

9. Verify that 3.394 n
log(n) < 2n

log(2n+1) for n > 1000. You will need to verify
that the derivative of log(n)

log(2n+1) is positive there.

Chapter 22

More on Prime Numbers

This chapter serves two purposes. First, there are all kinds of interesting facts
ahout prime numbers, and this chapter collates some of the ones I personally
find amazing. What are your favorites?

Secondly, exploring the wonderful world of primes will start us heading back
toward other arithmetic functions, especially toward developing the language
we’ll need to explore π(x) more rigorously.

There are lots of resources beyond this for exploring primes! One interesting
resource is Numberphile’s YouTube channel for prime videos. Paulo Ribenboim
has several well-known books about them, such as The Little Book of Bigger
Primes [C.3.16].

But for usability, I have to mention one of the best web sites about primes.
This is the Prime Pages, hosted at the University of Tennessee, Martin. It’s
just amazingly full of useful information, but also quite user-friendly and usable
for a large variety of backgrounds. In particular, the top twenty page has links
to the top twenty of just about every prime type you can imagine, a cornucopia
of information. My personal favorite is the prediction of when the first billion
digit prime will surface.

22.1 Prime Races
One of Chebyshev’s more interesting observations was that our familiar cate-
gories of primes – the classes 4k + 1 and 4k + 3 – don’t always seem to have
the ‘same size’. Before moving on, try solving the next question by hand.

Question 22.1.1. How many primes of each type there are up to n = 10,
n = 20, and n = 50? Try making a table.

We can, as always, use computational power to try to see more.

@interact
def _(n=7):

L = map(None ,[p for p in prime_range(n+1) if
p%4==1] ,[p for p in prime_range(n+1) if p%4==3])

L = [[' ' ,l[1]] if l[0] is None else l for l in L]
T = [[' $p\equiv␣1\\ text{␣(mod␣}4)$ ' , ' $p\equiv␣3\\ text{␣

(mod␣}4)$ ']]
pretty_print(html(table(T+L,header_row=True ,

frame=True)))

305

http://bit.ly/primevids
http://primes.utm.edu/
http://primes.utm.edu/top20/index.php
http://primes.utm.edu/notes/by_year.html#3
http://primes.utm.edu/notes/by_year.html#3

306 CHAPTER 22. MORE ON PRIME NUMBERS

@interact
def _(k=100):

p1 = 0
p3 = 0
for i in prime_range(k):

if i%4==1:
p1 += 1

if i%4==3:
p3 += 1

pretty_print(html("Up␣to␣$k=%s$,␣there␣are"%k))
pretty_print(html("%s␣primes␣$p\equiv␣1\\ text{␣(mod␣

}4)$␣and␣"%p1))
pretty_print(html("%s␣primes␣$p\equiv␣3\\ text{␣(mod␣

}4)$."%p3))

Question 22.1.2. Do you detect the bias Chebyshev did? Do you think it
will persist?

22.1.1 Infinitude of types of primes
Of course, for this question to make sense, we need to make sure this ‘prime
race’ won’t suddenly run out of gas. We know there are infinitely many primes,
but what about each type of prime?

Fact 22.1.3. There are infinitely many primes congruent to 3 modulo 4 and
there are infinitely many primes congruent to 1 modulo 4.

Proof. See the following two Propositions 22.1.4 and 22.1.5.

It turns out that proving the first part of the proposition is nearly as easy
as proving the Infinitude of Primes. But the second part seems to requires
something equivalent to the idea of a square root of −1 existing modulo some
primes but not modulo others (recall Fact 16.1.2).

Proposition 22.1.4 (Infinitude of primes 3 mod 4). There is no largest prime
congruent to 3 modulo 4.

Proof. We’ll prove this by contradiction. Let p1, p2, . . . , pk be the (finite) set
of primes congruent to 3 modulo 4.

Further define the product of all these primes with four, then subtracting
one:

m = 4p1p2 · · · pk − 1

What are the prime divisors of this number?

• Clearly none of the pi can be a prime divisor, since m is congruent to −1
modulo all the pi.

• Yet m is not even, so it’s not just a power of 2.

• But if m is a product only of primes congruent to 1 modulo 4, then it
would have to be 1 modulo 4 itself (since any product of 1s is 1).

• This is false, so there must be another prime congruent to 3 modulo 4
which divides it.

This contradicts our assumption of having the full set of such primes, so
that assumption must have been wrong.

22.1. PRIME RACES 307

Proposition 22.1.5 (Infinitude of primes 1 mod 4). There is no largest prime
congruent to 1 modulo 4.

Proof. As usual, suppose there are finitely many primes pi which are congruent
to 1 modulo 4. Let’s form the modified product

m = (2p1p2 . . . pk)
2 + 1 .

What are its prime divisors? It is again clear that m is odd and that it is
not divisible by any of the pi, for the same reasons as above in the proof of
Proposition 22.1.4.

It would be nice to directly use the same argument to show that one of the
primes p which divides m is 1 modulo 4. Unfortunately, both 32 and 12 are
congruent to 1 modulo 4, so this doesn’t tell us anything about m.

However, we can use an indirect argument. For any prime divisor p of m
and for x = 2p1p2 . . . pk . . ., m = x2 + 1 ≡ 0 (mod p). So by definition −1 is
a quadratic residue modulo p! Because of Fact 13.3.2, this can only happen if
p ≡ 1 (mod 4).

Since that wouldn’t be one of the pi, this contradicts that we already had
all such primes.

22.1.2 Back to bias
Now, from what we’ve seen it looks like the 4k+3 ones will always stay ahead.
But that’s not quite right. Here’s one place where they fall behind.

def prime_race_up_to_n(n):
p1 = 0
p3 = 0
for i in prime_range(n):

if i%4==1:
p1 += 1

if i%4==3:
p3 += 1

pretty_print(html("Up␣to␣$n=%s$,␣there␣are:%s␣
primes␣$p\equiv␣1\\ text{␣(mod␣}4)$%s␣
primes␣$p\equiv␣3\\ text{␣(mod␣
}4)$."%(n,p1,p3)))

prime_race_up_to_n (26860); prime_race_up_to_n (26862);
prime_race_up_to_n (26864); prime_race_up_to_n (26880)

There are other n for which we have such an ‘inversion’ as well, and it can
be fun to look for them. The next such time is over six hundred thousand, for
a little while; after that, you have to look at n over twelve million. Indeed,
there is a theorem that there are infinitely many times where this will happen,
and that the ‘wrong’ team will get ahead by at least a specified amount.

Fact 22.1.6. No matter how far out you go, there exists an n where the 4k+1
team is ahead at x by

1

2

√
n

log(n) log(log(log(n))) .

You may not be surprised to learn that this result is due to Littlewood,
who was also one of the first contributors in studying the race between π and
Li. That his result is highly nontrivial is seen in the following interact.

308 CHAPTER 22. MORE ON PRIME NUMBERS

@interact
def _(n=26862):

L = []
p1 = 0
p3 = 0
for i in prime_range(n):

if i%4==1:
p1 += 1
L.append ([i,p1-p3])

if i%4==3:
p3 += 1
L.append ([i,p1-p3])

P = plot (1/2* sqrt(x)/log(x)*log(log(log(x))),
(x,10,n+10))

P += plot_step_function(L)
show(P)

Even though we can see the difference surge to become positive a few times,
it seems hopeless to ever reach even the extremely slow log(log(log(x))). But
it does.

22.1.3 Other prime races
There are many races we can check out, and mathematicians have. (Indeed,
this section is indebted to the excellent expository article [C.6.3], which has a
host of recent references.) What is the pattern here, for modulus eight?

@interact
def _(n=100):

p1,p3,p5,p7=0,0,0,0
L1 = []
L3 = []
L5 = []
L7 = []
for i in prime_range(n):

if i%8==1:
p1 += 1
L1.append ([i,p1])

elif i%8==3:
p3 += 1
L3.append ([i,p3])

elif i%8==5:
p5 += 1
L5.append ([i,p5])

elif i%8==7:
p7 += 1
L7.append ([i,p7])

L1.append ([n,p1])
L3.append ([n,p3])
L5.append ([n,p5])
L7.append ([n,p7])
P = Graphics ()
P += plot_step_function(L1,color= ' red ' ,legend_label= ' 1␣

(mod␣8) ')
P +=

plot_step_function(L3,color= ' green ' ,legend_label= ' 3␣
(mod␣8) ')

22.2. SEQUENCES AND PRIMES 309

P +=
plot_step_function(L5,color= ' blue ' ,legend_label= ' 5␣
(mod␣8) ')

P +=
plot_step_function(L7,color= ' orange ' ,legend_label= ' 7␣
(mod␣8) ')

show(P,xmin=max(0,n -1000) ,ymin=max(0,L1[-1][1] -100))

It turns out there are several types of theorems/conjectures one can make
about such races. The key observation (which we will not explain here) is that
the ‘slow’ teams are the residue classes [a] such that nk + a can be a perfect
square (see Exercise 22.4.2). In our cases, only 4k+1 and 8k+1, respectively,
are possible perfect (odd) squares. See also Exercise 22.4.3.

Nonetheless, for any a, b coprime to each other and to n,

lim
x→∞

Number of p ≡ a (mod n) less than x

Number of p ≡ b (mod n) less than x
= 1

so the teams can’t get too far away from each other, at least not on a percentage
basis. The more specific result that the numerator and denominator are both
asymptotic to Li(x)

ϕ(n) is often called the prime number theorem for arithmetic
progressions, and it was also proved by Vallée-Poussin. (See the next section
as well.)

With such a close connection to Chapter 21, at this point you won’t be
surprised to learn that, even though some teams are usually ahead, that just
like with π and Li, each team does get ahead in the race infinitely often. But if
you “count right” (and assume some other technical but important hypotheses),
the proportion of the time the ‘wrong’ teams are ahead in the race is very small.
(See the [C.6.3] for more details.)

22.2 Sequences and Primes
22.2.1 Primes in sequences
There is an interesting question implicit in the prime races. To legitimize
doing the first prime race, we proved that there are infinitely many primes of
the forms 4k + 1 and 4k + 3. However, we then proceeded to do prime races
for several other such forms. Is it legitimate to do so?

The answer is yes, as proved in this major theorem that introduced limiting
and calculus methods to the study of number theory.

Theorem 22.2.1 (Dirichlet’s Theorem on Primes in an Arithmetic Progres-
sion). If gcd(a, b) = 1, then there are infinitely many primes of the form ax+b
for x an integer.

Proof. The proof of this theorem is far beyond the level of this text, but [C.3.6]
is a standard resource for this.

That is, ax + b defines a progression of numbers separated always by a,
and this theorem says there are infinitely many primes in any such progression
that makes sense in terms of relative primeness. It is a weak version of a prime
race; it just says that it makes sense to do them, though (as we saw) there is
much more information one can glean from them.

310 CHAPTER 22. MORE ON PRIME NUMBERS

@interact
def _(a=8,b=7,n=100):

if gcd(a,b)!=1:
pretty_print(html("Oops!␣␣The␣progression␣won ' t␣

have␣many␣primes␣if"))
pretty_print(html("a␣and␣b␣share␣a␣common␣

factor!"))
else:

pretty_print(html("Primes␣of␣the␣form␣$%sx+%s$␣up␣
to␣$%s$:"%(a,b,n)))

for x in prime_range(n):
if x%a==b:

print x

We have already proved this for a = 4. It is easy to prove for a = 2! (See
Exercise 22.4.4.)

It is also possible to prove the theorem for b = 1, or b = −1, without devel-
oping much bigger tools. In the article [C.6.1] a lot of factoring and expanding
is used, and a much more recent article by Xianzu Lin [C.6.7] is similarly ele-
mentary. One can even prove Dirichlet’s theorem without Dirichlet’s methods
for any b such that b2 ≡ 1(mod a), but doing so involves some high-level details
about polynomial factorization (see Murty and Thain’s paper for details).

22.2.2 Sequences in primes
We can also look at the opposite question. Instead of considering whether
primes exist in a given arithmetic progression, are there arithmetic progressions
made of solely of primes?

Question 22.2.2. Can you get a (finite) sequence of the form

ak + b, k = 0, 1, 2, 3, . . . n

where all entries are prime?

It’s easy to find short arithmetic progressions in the primes. We say such
a progression has length n+ 1 in the above notation.

• 3, 5, 7 is an arithmetic progression of length 3, where a = 2.

• 41, 47, 53, and 59 is an arithmetic progression of length 4, where a = 6.

Longer ones get harder to find. Can you find a progression of length 5?
(This is Exercise 22.4.5; there is a small one where the differences and starting
number are both less than 10. See also Exercise 22.4.6.)

@interact
def _(p = prime_range (200), n=110):

L = [p,p+n,..p+4*n]
for z in L:

if is_prime(z):
print z

else:
print factor(z)
break

https://projecteuclid.org/download/pdf_1/euclid.facm/1229442627

22.2. SEQUENCES AND PRIMES 311

Fact 22.2.3. There is such a sequence of length 10 starting at 199, with
differences of 210.

Question 22.2.4. Can find arbitrarily long such sequences in the primes?

The answer is yes! This is a theorem of Ben Green and Terry Tao, which
was a significant piece of Tao’s 2006 Fields Medal (though he probably would
have won it even without this, remarkable as it may seem). How might one
prove this? That might seem mysterious, so we give the gist of the approach
to it.

Remember how there seem to be fewer primes the further out we go, even
in an arithmetic subsequence (e.g. prime mod 4 or mod 8)? That isn’t a
coincidence. There is a technical way to measure this:

lim
n→∞

π(n)

n
= 0 .

This follows from Chebyshev’s estimate in Theorem 21.3.4, and is called having
zero density. We can try this for π with specific numbers:

• π(100)/100 = 1/4 = 0.25

• π(200)/200 = 0.23

• π(1000)/1000 = 0.168, or under 17%.

• π(1000000)/1000000 ≈ 0.0785, or under 8%.

Now, if you have a collection of numbers which has positive density (i.e.
the limit is positive, not zero), it is a theorem from 1974 (by Endre Szemerédi)
that you can get arithmetic progressions of arbitrary length in such sets. Sadly,
even our data suggests the primes are indeed approaching zero density.

But Green and Tao managed to show this type of method still works for the
primes! You can’t get arithmetic progressions in any old set with zero density;
but somehow, although there are not many primes, there are just enough for
things to work.

If you are interested in the current status of really long sequences, see the
primerecords.dk website. The following example, the first of length 26, was
found quite recently, on April 10, 2010.

difference =23681770*2*3*5*7*11*13*17*19*23
start =43142746595714191
for n in [0..25]:

print start+n*difference ,is_prime(start+n*difference)

There are currently only six known 26-length sequences, as of this writing
(including one found just days before). Currently, there are no known 27-
length sequences (though they must exist, by the Green/Tao theorem). They
must even obey the following ridiculous bound.

Fact 22.2.5. A sequence of length k must occur before

22
22

22
2100k

How do people find such lists? For that, we need a new notation.

http://primerecords.dk/aprecords.htm
http://primerecords.dk/aprecords.htm
http://www.primegrid.com/forum_thread.php?id=7012&nowrap=true#102090

312 CHAPTER 22. MORE ON PRIME NUMBERS

Definition 22.2.6. For a prime p, we call the primorial the number

p# =
∏

q≤p, q prime
q

where the “p sharp” or “p hash”1 denotes p primorial.

Armed with primorials, one usually finds such lists by the following method.

• First, for some fixed p, compute a large set of primes of the form a·p#+1,
keeping track of the a values in question.

• Next, find arithmetic progressions among the values of a from your list
(not the values of a · p# + 1).

• If you find a bunch of a values in a progression of the form k+ ℓ ·n, then
you’ve also found a progression of primes of the form (k·q#+1)+(ℓ·q#)n.

If you want to, you can even sign up to find a length 27 sequence at the
PrimeGrid distributed search!

22.3 Types of Primes
There are many types of primes we have encountered up to this point. For
instance:

• Germain (Subsection 11.6.4)

• Mersenne (Subsection 12.1.3)

• repunit (Exercise 6.6.1)

Notice that for many of these types, we don’t know if there are finitely
many or not! Are there any conjectures for how often certain types of primes
might appear?

22.3.1 Twin primes
Consider primes in an arithmetic progression ax + b. Can one say anything
about the constants involved in these progressions? Since b is pretty arbitrary,
we would focus on a. Here are some natural questions to consider for small
values of a.

Question 22.3.1.

• Find some primes that look like 2x+b for some b and several consecutive
x. How many x in a row can you do?

• How about for 3x+ b?

• What about 4x+ b?

• Are the primes you get in these cases ever consecutive?

Hopefully it’s pretty clear that you can’t do every possible combination of
b and a, nor can every such progression go on indefinitely! Why?

Thinking about this and the Sieve of Eratosthenes led the French mathe-
matician Alphonse de Polignac to the following.

1Officially, this should be called an octothorp(e).

http://www.primegrid.com/forum_thread.php?id=7022
http://www.primegrid.com/forum_thread.php?id=7022

22.3. TYPES OF PRIMES 313

Conjecture 22.3.2 (Polignac’s Conjecture). Every even number is the differ-
ence between consecutive primes in infinitely many ways.

We have no proof of this. In fact, even the most basic case of Polignac’s
conjecture is one of the most celebrated open questions in number theory – cel-
ebrated enough that well-known comedian Stephen Colbert interviewed Fields
medalist Tao about it.

Conjecture 22.3.3 (Twin prime conjecture). There are infinitely many con-
secutive odd prime numbers.

Definition 22.3.4. Pairs of primes p and q such that p + 2 = q are called
twin primes.

There are lots of twin primes. The following cell computes twin prime pairs,
numbered by which twin prime pair it is. The pair 17 and 19 is the fourth
pair, for example.

def twin_primes_upto(n):
v = prime_range(n+1)
L = []
counter = 0
for i in range(len(v) -1):

if v[i+1]-v[i]==2:
counter += 1
L.append ((v[i],v[i+1], counter))

return L

twin_primes_upto (100)

We can use similar searching to try to see whether there are enough that
there are infinitely many

def twin_primes_upto(n):
v = prime_range(n+1)
L = []
counter = 0
for i in range(len(v) -1):

if v[i+1]-v[i]==2:
counter += 1
L.append ((v[i+1], counter))

return L

var(' t ')
plot_step_function(twin_primes_upto (1000000) ,

legend_label= ' twin␣prime ') +
plot (2* twinprime*x/log(x)^2,(x ,1 ,1000000) ,
color= ' black ' ,legend_label= ' $C_2␣x/log(x)$ ') +
plot(lambda t:
2* twinprime*numerical_integral (1/log(x)^2,2,t)[0],
(t ,1 ,1000000) , color= ' red ' ,legend_label= ' $C_2␣Li_2(x)$ ')

You can see in the preceding graphic that it’s certainly possible to approxi-
mate the twin prime counting function in a similar way to how we approximated
the prime counting function π. There is a mysterious constant I’ve used; it
will be explained below.

http://www.cc.com/video-clips/6wtwlg/the-colbert-report-terence-tao
http://www.cc.com/video-clips/6wtwlg/the-colbert-report-terence-tao

314 CHAPTER 22. MORE ON PRIME NUMBERS

22.3.2 Heuristics for twin primes
To explain how to get to twin primes, there is a nice little rule of thumb; see
e.g. [C.3.5] for what follows. Even though we definitely do not have a proof,
we can still give you a good idea of how these ideas come about.

First, one might want to estimate how many primes there are up to a certain
point to start. The problem is we should use a different idea than just looking
at tables! What can we say that is a little smarter?

• About half the numbers less than n are not divisible by 2.

• About 2/3 the numbers less than n are not divisible by 3.

• About 4/5 the numbers less than n are not divisible by 5.

• Etc. for each prime less than
√
n . . .

If we take this thinking to its logical extreme, you might even expect that

∏
p<

√
x

(
1− 1

p

)

is a good approximation of the probability that a given number x is prime.
Unfortunately, it isn’t. In fact, this product turns out to be asymptotic to
2e−γ/ log(x) (recall that γ from Definition 20.3.2).

Still, this kind of thinking is still helpful, and might help us make ideas
for how many twin primes there are – especially if we keep in mind this isn’t
really a probability. After all, if p > 2 is prime, then with one hundred percent
probability the next number is not prime! And for p and p + 2 to be both
prime, they must also both be odd; so if p is odd, then p + 2 is much more
likely than a random number to be prime.

So we do the following analysis instead. (See Exercises 22.4.11 and 22.4.12.)

• Although one would expect for 1/4 of all pairs separated by two to both
be odd, n+2 has the same parity as n so we should expect 1/2 the pairs
to both be odd.

• The chances that n and n+ 2 are both not divisible by three is 1/3.

• The chances that n and n+ 2 are both not divisible by five is 3/5.

• And so forth.

So, having gotten a little more sophisticated, we might expect that

1

2

∏
p<

√
x,p>2

(
1− 2

p

)

is a decent approximation of the probability that a given pair of consecutive
odd numbers are both prime.

This doesn’t look so recognizable yet, but we can do some algebra to turn
this into something that looks better and has logarithms, just like in the prime
number theorem. If we substitute(

1− 2

p

)
=

(
1− 1

(p− 1)2

)(
1− 1

p

)2

22.3. TYPES OF PRIMES 315

then the approximation of the number of twin primes less than x looks more
like this:

1

2

∏
p<

√
x,p>2

(
1− 1

(p− 1)2

) ∏
p prime

(
1− 1

p

)2

Finally, if we now use the earlier suggestion about the right-hand side being
more or less the square of the number of primes, we come up with a reasonable
suggestion that looks more familiar.

1

2

∏
p<

√
x,p>2

(
1− 1

(p− 1)2

)(
x

log(x)

)2

Remark 22.3.5. The constant part of this formula is finite, and known as the
twin prime constant :

C2 = 2
∏
p>2

(
1− 1

p− 1

2)
.

The graphs in Subsection 22.3.1 use this constant (which is built-in in Sage)
as well as a logarithmic integral version of the preceding analysis.

There is some inconsistency in the literature about whether the 2 in front
of the formula for C2 is part of the twin prime constant or not.

This also leads to a conjecture of Hardy and Littlewood.

Conjecture 22.3.6. The number of ways to write an even number 2k as a
sum of primes is also asymptotic to 1

2

∏
p<

√
x,p>2

(
1− 1

(p−1)2

)(
x

log(x)

)2
.

This would provide a very overwhelming proof of the following old sugges-
tion, going back to correspondence between Euler and Goldbach.

Conjecture 22.3.7 (Goldbach Conjecture). Any even number can be written
in at least one way as a sum of two primes.

In fact, there are two such conjectures, with the other one suggesting that
any positive integer may be written as a sum of three primes.

Returning to the twin prime constant, computing it (as in the Sage cell
below) led to a very interesting real-life application.

2* twinprime.n()

Computing this constant to arbitrary precision led to the discovery of the
infamous Pentium chip bug, where some floating-point calculations would be
incorrect in high decimal places. This is a quite surprising ‘application’ of num-
ber theory! (It turns out manufacturers do use number-theoretic computations
to stress-test their products.)

It is still unknown whether there are infinitely many twin prime pairs. In a
2013 result that shocked the mathematics world, (then) unknown mathemati-
cian Yitang Zhang proved that there exists some N less than seventy million
such that there are infinitely many pairs of primes separated by exactly N .
This was a huge improvement over previous results, and further work of an
unusually collaborative nature have now reduced this bound to N ≤ 246.

As we finish this subsection, we must mention another constant affiliated
with twin primes. Although there may really be infinitely many pairs, the sum
of their reciprocals ∑

p,p+2 both prime

1

p
+

1

p+ 2

http://www.trnicely.net/pentbug/pentbug.html
https://www.quantamagazine.org/20130519-unheralded-mathematician-bridges-the-prime-gap/
https://www.quantamagazine.org/20130519-unheralded-mathematician-bridges-the-prime-gap/
http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes

316 CHAPTER 22. MORE ON PRIME NUMBERS

is still a finite constant. At the very least means twin primes must be pretty
rare. This (possibly infinite) sum is called Brun’s constant, and is also in
Sage.

brun.n(digits =5)

22.3.3 Other types of primes
In the quest toward Polignac’s Conjecture, researchers have dubbed primes
(not necessarily consecutive) with spacing N = 4 cousin primes and those
N = 6 apart sexy primes. In another result of similar vintage to Zhang’s
(and also collaborative like its refinement), we know (conditional upon the
so-called “generalized Elliott-Halberstam conjecture”, which is closely related
to our investigations in Subsection 22.2.2) that at least one of the classes of
twin, cousin, or sexy primes is infinite1. This is a very special case of exploring
something called prime constellations; see Exercise 22.4.13.

In addition, there are many other heuristics like the ones above. Here is a
sampling of those we don’t have space or expertise in this text to dig further
into.

• As one example, consider the chance that n and 2n + 1 are both not
divisible by a given prime p. Probabilistically, this is basically the same
chance as that n and n + 2 are both not divisible by p, so it turns out
that Germain primes might also be distributed in the same fashion as
twin primes.

• Using similar ideas, one can get a heuristic that Mersenne primes are
distributed as

eγ log(log(x))/ log(2)
This is known as Wagstaff’s conjecture.

• Bizarrely, one can use the same idea to get a heuristic for factorial
primes. These are primes of the form n!± 1, like 5, 7, 23, and 719. It’s
conjectured that there are eγ log(n) such primes less than n.

• These rules of thumb even seem to apply to the so-called primorial
primes – primes of the form p# ± 1, like 3, 5, 7, 29, 31, 211, etc. It’s
truly weird, yet also cool.

There is so much to explore! There is never a lack of questions for mathe-
maticians to explore when it comes to prime numbers.

22.4 Exercises
1. Explain why, to show that any number can be written as a sum of three
primes, it suffices to prove Conjecture 22.3.7.

2. In Subsection 22.1.3 a statement is made about residue classes [a] such that
nk + a can be a perfect square. What is another name for such a?
Also, the claim is made that, “In our case, only 4k+1 and 8k+1 are possible
perfect (odd) squares.” Either prove this claim or find the reference for when
that is proved in the book.

1Go to the video of Tao’s interview with Colbert again to see his reaction to this; it’s
quite amusing.

https://en.wikipedia.org/wiki/Elliott–Halberstam_conjecture
http://resmathsci.springeropen.com/articles/10.1186/s40687-014-0012-7
http://resmathsci.springeropen.com/articles/10.1186/s40687-014-0012-7

22.4. EXERCISES 317

3. What ‘teams’ would you expect to be in the lead long-term for a modulo
ten prime race? Why? Compute a value where the ‘wrong’ team is in the lead,
if you can!

4. Prove Dirichlet’s Theorem on Primes in an Arithmetic Progression for the
case a = 2.

5. Find an arithmetic progression of primes of length five with less than ten
between primes.

6. Find an arithmetic progression of primes of length six or seven, starting at
a number less than ten.

7. Prove that there can be only one set of “triple primes” – that is, three
consecutive odd primes.

8. Find the value of 23#.

9. Compute some twin primes greater than one thousand.

10. Show that
(
1− 2

p

)
=
(
1− 1

(p−1)2

)(
1− 1

p

)2
.

11. What form must n have for n and n+2 to both not be divisible by three?

12. Which residues modulo five must n avoid for n and n+ 2 to both not be
divisible by five?

13. Search a few resources to learn about “prime constellations” and write
a report. The Prime Pages or Tomás Oliveira e Silva’s very nice graphs of
“admissible” constellations are a good place to start.

14. Let D(N) =
∏

p<N

(
1− 1

p

)
. Compute D(N) by hand for all N between

10 and 20, without adding the fractions (just “FOIL” it out). What patterns
do you notice in the denominators? The numerators?

15. Search a good book (see the general C.1 or specialized C.3 references)
or the internet for an amazing fact about primes. Describe it in a way your
classmates (or peers, if you’re not in a course) will understand.

http://primes.utm.edu/glossary/xpage/PrimeConstellation.html
http://sweet.ua.pt/tos/apc.html

318 CHAPTER 22. MORE ON PRIME NUMBERS

Chapter 23

New Functions from Old

We are heading toward the end of the text. There are even more interesting
functions out there; just as important, there are more interesting ways to start
connecting these functions to calculus.

In the previous section’s exercises, we introduced an interesting function.
Letting p be running just over primes, we let

D(N) =
∏
p<N

(
1− 1

p

)
As an example,

D(3) = (1− 1/2)(1− 1/3) =

(
1− 1

2
− 1

3
+

1

6

)
Before starting this chapter, try expanding the expression D for bigger and

bigger N (as above, without adding the fractions). What patterns do you find?
• What denominators show up?

• Which ones don’t?

• For the ones that do, what are the values of the numerator?

• Can you predict the value of the numerator for some types of denomina-
tors? (E.g., primes, perfect squares, prime powers, etc.)

The function unveiled by this is quite important in expanding our roster
of arithmetic functions and unlocking their secrets, as well as in connecting to
calculus.

23.1 The Moebius Function
23.1.1 Möbius mu
Let’s define the function which gives the numerator associated with denomi-
nator n in the products above.
Definition 23.1.1 (Moebius mu). Let N = 2 · 3 · 5 · · · q be the product of the
first few primes, up to q. Then we define µ(n) as follows:∏

p|N

(
1− 1

p

)
=
∑
d|N

µ(d)

d

The product is over prime factors of N but the sum is over all factors of N .

319

320 CHAPTER 23. NEW FUNCTIONS FROM OLD

Yes, this is the same Moebius (or Möbius) as the Moebius strip.

Example 23.1.2. Using the example in the chapter introduction,

D(3) = (1− 1/2)(1− 1/3) =

(
1− 1

2
− 1

3
+

1

6

)
implies that µ(2) = −1 while µ(6) = 1.

There is no product of (1− 1/p) that will yield a four in the denominator,
since (1−1/2) only occurs once in such a product. So µ(4) = 0, as the example
above already implies.

23.1.2 A formula
Before describing this function further, let’s think more about the product∏

p<N

(
1− 1

p

)
.

• First, as the comment at the end of the last subsection points out, it seems
to create denominators with each prime factor to just the first power. We
couldn’t get a square or cube of any given p in the denominator.

• Similarly, the numerators really can only be products of 1 and −1. For
a moment, think about why there are no other numerators available.

• Finally, the number of prime factors in the denominator should be the
same as the number of times −1 is part of the product in the numerator.

This essentially proves the following proposition.

Proposition 23.1.3. If n = pe11 pe22 · · · pekk then a nice formula for µ(n) is

µ(n) =

{
0 any ei > 1

(−1)k otherwise

Proof. See above.

23.1.3 Another definition
The µ function is so important that we will want several more approaches as
well. It is the mark of an important concept that there are ways to define it
from many directions.

One important way that µ is often defined is via a recurrence relation. That
is, one defines

µ(1) = 1, and
∑
d|n

µ(d) = 0 .

Now, we haven’t proved this identity yet, and probably the reader hasn’t even
noticed it. But if we can prove the identity works for µ, then since µ(1) = 1 is
true, this would give an alternate definition.

Proposition 23.1.4 (Recursive definition of µ).∑
d|n

µ(d) = 0

23.1. THE MOEBIUS FUNCTION 321

Proof. Let’s rewrite the sum
∑

d|n µ(d) = 0 by trying to omit the ones that
are zero anyway. If we do this, the sum reduces to the long, but correct,∑

d|n

µ(d) =
∑

all divisors d with just one or zero
of each prime factor pi of n

(−1)the number of primes dividing d .

Now let’s set up a little notation. First, let k be the total number of (distinct)
prime divisors of n. Next, let’s borrow from Definition 23.3.3 the notation ω(d)
for the number of distinct prime divisors of a divisor d of n.

Then the crazy sum
∑

d|n µ(d) becomes easier to write:

∑
all divisors d with just one or zero

of each prime factor pi of n

(−1)ω(d) =
∑

d that work
(1)k−ω(d)(−1)ω(d)

You should be asking yourself why I bothered introducing k. You may want
to think about that briefly, noting that (k − ω(d)) + ω(d) = k.

The rationale is that we can think of each of the divisors d that have no
square factors (the ones in question) as having ω(d) of the prime factors of n
picked, and the other k − ω(d) factors omitted. So, in some sense, for each d
we are really picking a subset of the primes dividing n, of size ω(d), and then
multiplying by 1 for each prime picked and −1 for each one not picked.

But if instead we consider just picking a subset of {1, 2, . . . , k} and assigning
±1, that would be the same thing, with the difference that we know this is the
same as the result of expanding

(1 + (−1))k = (1 + (−1))(1 + (−1)) · · · (1 + (−1)) (k times)

So the sum is ∑
d that work

(−1)ω(d) = (1 + (−1))k = 0 .

This finishes the proof.

Sage note 23.1.5 (Check your work again). We can always check things like
this by computing.

moebius (30) + moebius (15) + moebius (10) + moebius (6) +
moebius (5) + moebius (3) + moebius (2) + moebius (1)

Fact 23.1.6. The function µ is multiplicative.

Proof. We will postpone a formal proof of this to a much bigger theorem, from
which this result (Corollary 23.4.13) will fall “for free”.

Let’s check it:

print gcd (111 ,41)
print moebius (111)*moebius (41)== moebius (41*111)

322 CHAPTER 23. NEW FUNCTIONS FROM OLD

23.2 Inverting Functions
The main point of the Moebius function is the following famous theorem.

Theorem 23.2.1 (Möbius Inversion Formula). If f(n) =
∑

d|n g(d), then

g(n) =
∑
d|n

µ(d)f
(n
d

)
.

Proof. The proof is delayed to Subsection 23.2.2.

We can interpret this result briefly as follows. Suppose you sum an arith-
metic function over the set of its (positive) divisors to create a new function.
Then summing that function over divisors, along with µ, gives you back the
original function.

The reason we care about this is that we are able to use the µ function to
get new, useful, arithmetic functions via this theorem. In particular, we can
“invert” all of our usual arithmetic functions, and this will lead to some very
powerful applications.

23.2.1 Some useful notation
In order to better understand what this theorem is saying, let’s introduce some
notation.

Definition 23.2.2 (Dirichlet product). Let f and g be arithmetic functions.
Then we define the new function f ⋆g, the Dirichlet product, via the formula

(f ⋆ g)(n) =
∑
de=n

f(d)g(e) =
∑
d|n

f(d)g
(n
d

)
.

Example 23.2.3. For example, if u(n) = 1 and N(n) = n, then

(ϕ ⋆ u)(n) =
∑
d|n

ϕ(d)u
(n
d

)
=
∑
d|n

ϕ(d) = n = N(n) .

We saw this originally in Fact 9.5.4, but now we can write it concisely as
ϕ ⋆ u = N and see it is part of a bigger context. (See also Fact 23.3.2.)

This notation, like all the best notation, practically demands that we restate
the inversion theorem in a very insightful way:

If f = g ⋆ u, then g = f ⋆ µ .

23.2.2 Proof of Moebius inversion
Now we are ready to prove the Möbius Inversion Formula, following [C.1.1].

Let’s expand the formula for g(n) the theorem would give, in terms of g
itself. ∑

d|n

µ(d)f
(n
d

)
=
∑
d|n

µ(d)

∑
e|nd

g(e)

 .

Each time g(e) appears in this sum, it has a coefficient of µ(d). How often
does this happen, and what is d anyway?

23.3. MAKING NEW FUNCTIONS 323

If e | n
d , then e | n, which means n

e is an integer. However, this integer
must have at least a factor of d “left” in it (after division by e). Why? Since
e divides n

d , we have ed | n, in which case certainly d | n
e .

So g(e) shows up once for each d | n
e , with coefficient µ(d). Thus,

∑
d|n

µ(d)f
(n
d

)
=
∑
e|n

∑
d|ne

µ(d)

 g(e) .

Here comes the final step. Unless n
e = 1, we have

∑
µ(d) = 0. So the only

subsum in this double sum that sticks around is the term for n
e = 1, or when

e = n.
Thus the whole sum collapses to g(n), as desired!

23.3 Making New Functions
23.3.1 First new functions
In order to see what good this does, let’s see what happens when we mess
around and make Dirichlet products with functions we know. We already
know two of these functions, and I give you a third.

Definition 23.3.1. We define a new simple arithmetic function to go along
with those from Definition 19.2.9.

• u(n) = 1 for all n

• N(n) = n for all n

• I(n) =

{
1 n = 1

0 n > 1

In the next computational cell, we define these, as well as a Dirichlet prod-
uct function. Now let’s see what we get!

def u(n): return 1
def N(n): return n
def I(n): return floor (1/n)
def DirichletProduct(f,g,n): return sum(f(d)*g(n/d) for d

in divisors(n))

For instance, what happens if we look for the inverse of N?

@interact
def _(n=10):

H = [[' i ' , ' $(N\star␣\mu)(i)$ ']]
T = [(i,DirichletProduct(N,moebius ,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True ,

frame=True)))

Maybe this is a surprise! But this makes sense, if you remember Exam-
ple 23.2.3 just previously about N = ϕ⋆u. Let’s confirm that fact numerically
as well.

324 CHAPTER 23. NEW FUNCTIONS FROM OLD

@interact
def _(n=10):

H = [[' i ' , ' $(\\phi\star␣u)(i)$ ']]
T = [(i,DirichletProduct(u,euler_phi ,i)) for i in

[1..n]]
pretty_print(html(table(H+T, header_row=True ,

frame=True)))

We summarize these explanations as follows.

Fact 23.3.2. We may identify the following Dirichlet products as known func-
tions.

• ϕ ⋆ u = N

• N ⋆ µ = ϕ

The second part of Fact 23.3.2 gives an alternate proof for our formula for
ϕ from Exercise 9.6.9.

ϕ(n) = N ⋆ µ(n) =
∑
d|n

N
(n
d

)
µ(d) = n

∑
d|n

µ(d)

d
= n

∏
p|n

(
1− 1

p

)

The last step follows from our initial definition of µ in Definition 23.1.1.

23.3.2 More new functions
Next, please try computing the Moebius inversions of our old friends, σ and τ ,
by hand for several values. (Hint: try primes and perfect powers first, as they
don’t have many divisors!)

You can try something out here in Sage as well.

Here one can try this interactively. (You’ll need to evaluate the earlier cell
after Definition 23.3.1 if you get an error.)

@interact
def _(n=10):

H = [[' i ' , ' $(\\tau\star␣\mu)(i)$ ']]
T = [(i,DirichletProduct(lambda y:

sigma(y,0),moebius ,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True ,

frame=True)))

@interact
def _(n=10):

H = [[' i ' , ' $(\sigma\star␣\mu)(i)$ ']]
T = [(i,DirichletProduct(sigma ,moebius ,i)) for i in

[1..n]]
pretty_print(html(table(H+T, header_row=True ,

frame=True)))

There is loads of fun to be had here. We could try to see what µ ⋆ µ is, or
u ⋆ u. Could there be a formula for |µ|, or could we calculate |µ| ⋆ u?

23.3. MAKING NEW FUNCTIONS 325

@interact
def _(n=10):

H = [[' i ' , ' $(\mu\star␣\mu)(i)$ ']]
T = [(i,DirichletProduct(moebius ,moebius ,i)) for i in

[1..n]]
pretty_print(html(table(H+T, header_row=True ,

frame=True)))

@interact
def _(n=10):

H = [[' i ' , ' $(u\star␣u)(i)$ ']]
T = [(i,DirichletProduct(u,u,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True ,

frame=True)))

It turns out there are all kinds of other functions you can define. We already
saw the first of these informally in our discussion of the Moebius function in
Proposition 23.1.4.

Definition 23.3.3. If

n =

k∏
i=1

peii

then we call give the name ω(n) = k. This is the number of unique prime
divisors of an integer. (This is sometimes called ν(n) in the literature.)

Definition 23.3.4. If n =
∏k

i=1 p
ei
i , we summarize the parity of the total

powers of primes dividing a number as

λ(n) = (−1)e1+e2+···+ek .

This is called Liouville’s function.

In both cases, you might want to try a few values to see what these functions
look like. See Exercise 23.5.1, or pursue these ideas:

• What is the value for primes?

• What is the ⋆ product of this with something – say, u?

Finally, although we provide some Sage cells to try things out, you should
try them not just with Sage, but also by hand; this is part of the allure of
number theory. The sky’s the limit. Enjoy!

def u(n): return 1
def N(n): return n
def I(n): return floor (1/n)
def omega(n): return len(n.prime_divisors ())
def liouville(n): return (-1)^sum([z[1] for z in

n.factor ()])
def DirichletProduct(f,g,n): return

sum(f(d)*g(Integer(n/d)) for d in divisors(n))

326 CHAPTER 23. NEW FUNCTIONS FROM OLD

@interact
def _(n=10,f=[liouville ,u,N,moebius ,omega ,I],

g=[liouville ,u,N,moebius ,omega ,I]):
H = [[' i ' , ' $(%s\star␣%s)(i)$ ' %(f,g)]]
T = [(i,DirichletProduct(f,g,i)) for i in [1..n]]
pretty_print(html(table(H+T, header_row=True ,

frame=True)))

23.4 Generalizing Moebius
There is a more serious side to the panoply of new functions, though. This
is our key to arithmetic functions. We will now turn to algebra again, with a
goal of generalizing the Moebius result.

23.4.1 The monoid of arithmetic functions
Definition 23.4.1. A commutative monoid is a set with multiplication (an
operation) that has an identity, is associative and commutative.

You can think of a commutative monoid as an Abelian group without re-
quiring inverses. (That means it’s not necessarily a group, though it could
be.)

Theorem 23.4.2. Let A be the set of all arithmetic functions. Then ⋆ turns
the set A into a commutative monoid.

Proof. The function I(n), which is equal to zero except when n = 1, plays the
role of identity. Then one would need to prove the following three statements.

• f ⋆ g = g ⋆ f

• (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)

• f ⋆ I = f = I ⋆ f

We include one of the proofs. The others are similar – see Exercise 23.5.2.
Note that for the second one, one can use the fact that dc = n, ab = d implies
abc = n.

Proof of commutativity:

f ⋆ g =
∑
d|n

f(d)g
(n
d

)
=
∑
de=n

f(d)g(e)

=
∑
de=n

g(e)f(d) =
∑
e|n

g(e)f
(n
e

)
= g ⋆ f

Can you think of other commutative monoids? What sets have an operation
and an identity, but no inverse?

23.4. GENERALIZING MOEBIUS 327

23.4.2 Bringing in group structure
Let’s get deeper in the algebraic structure behind the ⋆ operation. Remember,
f ⋆ g is defined by

(f ⋆ g)(n) =
∑
de=n

f(d)g(e) .

This structure is so neat is because it actually allows us to generalize the
idea behind the Moebius function!

Theorem 23.4.3. If f is an arithmetic function and f(1) ̸= 0, then f has
an inverse in the set A under the operation ⋆. We call this inverse f−1. It is
given by the following recursive definition:{

f−1(1) = 1
f(1) n = 1∑

d|n f
−1(d)f

(
n
d

)
=
∑

de=n f
−1(d)f(e) = 0 n > 1

Proof. As in all the best theorems, there is really nothing to prove. We can
always get the next value of f−1(n) by knowledge of f−1(d) for d | n, and that
is enough for an induction proof, since we do have a formula given for f−1(1).
(See Exercise 23.5.9)

Corollary 23.4.4. This says exactly that the Moebius function µ is µ = u−1.

This is a good time to try to figure out what the inverse of N or ϕ is with
paper and pencil. See Exercises Exercise 23.5.4 and Exercise 23.5.5.

In general, we can also say that

f ⋆ f−1 = I = f−1 ⋆ f

There is another, more theoretical, implication too.

Corollary 23.4.5. The subset of A which consists of all arithmetic functions
with f(1) ̸= 0 is actually a group.

23.4.3 More dividends from structure
This new way of looking at things yields an immediate slew of information
about arithmetic functions. The following results will yield dividends about
number theory and analysis/calculus (no, we haven’t forgotten that!) in the
next chapter on Infinite Sums and Products.

Fact 23.4.6. The Moebius inversion formula that if f = g ⋆ u then g = f ⋆ µ
can be proved concisely by

g = g ⋆ I = g ⋆ u ⋆ µ = f ⋆ µ

(We need no parentheses, since ⋆ is associative).

Fact 23.4.7. Conversely, if g = f ⋆ µ, then

f = f ⋆ I = f ⋆ µ ⋆ u = g ⋆ u

so the inversion formula is true in both directions.

Proposition 23.4.8. If g and h are multiplicative, then f = g ⋆ h is also
multiplicative.

Proof. See Exercise 23.5.8.

328 CHAPTER 23. NEW FUNCTIONS FROM OLD

The next result has a long proof, but most of it is following the definitions
and keeping careful track of indices.

Proposition 23.4.9. If f is multiplicative and f(1) ̸= 0, then f−1 is also
multiplicative.

Proof. This basically can be done by induction, but each step is somewhat
involved so we will break this into several lemmata. Throughout, recall that
the inverse is defined by

f−1(1) =
1

f(1)

and, for n > 1, the condition∑
d|n

f−1(d)f
(n
d

)
=
∑
de=n

f−1(d)f(e) = 0 .

First, in Lemma 23.4.10 we will show that f−1(1) behaves well.
Then, assuming as an inductive hypothesis that f−1 is multiplicative for

inputs less than mn, with gcd(m,n) = 1, we will show in Lemma 23.4.11 that

f−1(mn) = −
∑

(ac)(bd)=(m)(n), ab<mn

f−1(a)f−1(b)f(c)f(d)

Finally, in Lemma 23.4.12 we will show how to rewrite this as

f−1(mn) = f−1(m)f−1(n)

which finishes the induction argument.

Lemma 23.4.10. We know that both f−1(1) = 1
f(1) and f(1) = 1 = f−1(1)

Proof. Left to the reader in Exercise 23.5.10; use everything you know about
f .

Lemma 23.4.11. Assume as above that f−1 is multiplicative for inputs less
than mn, with gcd(m,n) = 1. Then

f−1(mn) = −
∑

(ac)(bd)=(m)(n), ab<mn

f−1(a)f−1(b)f(c)f(d)

Proof. Assume that m,n > 1 and coprime. By the definition of inverse, we
have

0 = (f−1 ⋆ f)(mn) =

[∑
x<mn, xy=mn

(
f−1(x)f(y)

)]
+ f−1(mn)f(1) .

By assumption, every function in this expression (both f and f−1) is multi-
plicative on the values in question, with the possible exception of f−1(mn).
Further, each summand is over xy, each of which is itself, by coprimeness of
m and n, itself a product of things that are coprime.

So let x = ab and y = cd, where a, c | m and b, d | n. Then, as everything
is multiplicative, f−1(x)f(y) = f−1(a)f−1(b)f(c)f(d).

Since by the previous lemma f(1) = 1, we can subtract the summation
from both sides of the equation whose left-hand side is zero at the beginning
of this lemma’s proof, yielding

f−1(mn) = −
∑

(ac)(bd)=(m)(n), ab<mn

f−1(a)f−1(b)f(c)f(d)

23.5. EXERCISES 329

Lemma 23.4.12. Under the same hypotheses as before, f−1(mn) = f−1(m)f−1(n).

Proof. We now write all this in terms of things we already can evaluate.
If the sum in question were summed over every ab ≤ mn instead of ab < mn,

it would easily simplify as a product:∑
(ac)(bd)=(m)(n)

f−1(a)f−1(b)f(c)f(d) =
∑
ac=m

f−1(a)f(c)
∑
bd=n

f−1(b)f(d)

The sum in Lemma 23.4.11 only lacks the term with a = m, b = n, in fact. So∑
(ac)(bd)=(m)(n), ab<mn

f−1(a)f−1(b)f(c)f(d) =

[∑
ac=m

f−1(a)f(c)
∑
bd=n

f−1(b)f(d)

]
−
(
f−1(m)f−1(n)f(1)f(1)

)
Now we can plug this back into the previous characterization of f−1(mn):

f−1(mn) = −

[∑
ac=m

f−1(a)f(c)
∑
bd=n

f−1(b)f(d)− f−1(m)f−1(n)f(1)f(1)

]

Since m,n > 1, the individual sums may be rewritten as

(f−1 ⋆ f)(m) = I(m) = 0 = I(n) = (f−1 ⋆ f)(n)

That means we achieve the desired result

f−1(mn) = f−1(m)f−1(n)f(1)f(1) = f−1(m)f−1(n)

Finally, we get the following promised corollary from the beginning of the
chapter, Fact 23.1.6.

Corollary 23.4.13. The function µ is multiplicative.

Proof. This follows since u is multiplicative (trivially) and µ = u−1.

23.5 Exercises
1. Factoring by hand, compute the first 24 values of λ and ω.

2. Finish the proof that the set of arithmetic functions is a commutative
monoid in Theorem 23.4.2.

3. Show that if f = g ⋆ u (equivalently, if g = f ⋆ µ), then f and g are either
both multiplicative or both not. Strategy hint: Use Proposition 23.4.9.

4. Do enough calculations the old-fashioned way to discover a name for the
inverse of N .

5. Do enough calculations the old-fashioned way to discover a name for the
inverse of ϕ.

6. Show that the inverse of λ(n) from Definition 23.3.4 is a variant of another
of our new functions.

330 CHAPTER 23. NEW FUNCTIONS FROM OLD

7. Can you identify ω ⋆ µ as anything familiar? (Recall Definition 23.3.3.) If
yes, then try to prove it; if not, explain why you think it is new to us.

8. Prove Proposition 23.4.8 that using the Dirichlet product on two multi-
plicative functions stays multiplicative.

9. Complete all details of the proof of Theorem 23.4.3 defining inverses under
the ⋆ product.

10. Prove Lemma 23.4.10.

11. Come up with another good exercise for this chapter and have a friend try
it!

Chapter 24

Infinite Sums and Products

We are almost at the very frontiers of serious number theory research now. In
order to start to understand this, we will need to introduce two final concepts:

• Euler products

• Dirichlet series
These concepts both deeply involve infinitely applied operations, and are

what this chapter is about. If you wish, think of this chapter as the ‘infinite’
version of the previous chapter on new functions.

24.1 Products and Sums
In order to motivate bringing infinite processes to this part of number theory,
let’s step back a bit. Many functions we have already seen may be thought of
in two ways – either as a product or as a sum.

24.1.1 Products
Let p | n as an indexing tool denote the set of primes which divide n. Then we
have the following product representation of two familiar arithmetic functions.
(Recall Theorem 19.2.5 and Fact 18.1.2.)

σ(n) =
∏
p|n

(
pe+1 − 1

p− 1

)
=
∏
p|n

(
1 + p+ p2 + · · ·+ pe

)
ϕ(n) = n

∏
p|n

(
1− 1

p

)
Both of these functions therefore may be thought of as (finite) products.

As a related example, we explicitly wrote out the product for the abundancy
index in Section 19.3.

σ(n)

n
=

∏
p|n

(
pe+1−1
p−1

)
∏

p|n p
e

=
∏
p|n

p− (1/pe)

p− 1

Alternately, to avoid fractions:

σ(n)

n
=

∏
p|n
(
1 + p+ p2 + · · ·+ pe

)∏
p|n p

e
=
∏
p|n

(
1 + p−1 + p−2 + · · ·+ p−e

)
Note that ϕ(n)

n =
∏

p|n

(
1− 1

p

)
.

331

332 CHAPTER 24. INFINITE SUMS AND PRODUCTS

24.1.2 Products that are sums
On the other hand, these products over primes are also sums over divisors; this
is true either by definition or by theorem, depending on how you look at it.

It’s clear with σ that this is the case, since we defined (in Definition 19.1.1)

σ(n) =
∑
d|n

d

We can even cleverly add up the divisors in the opposite order to get the
slightly more felicitous

σ(n) =
∑
d|n

n

d
= n

∑
d|n

1

d

This leads us directly to writing σ(n)
n =

∑
d|n

1
d .

With ϕ we have something to prove to make this connection, but not much.
In Fact 23.3.2 we saw that ϕ ⋆ u = N ⇒ ϕ = N ⋆ µ. Equivalently, we have
Möbius-inverted Fact 9.5.4 to obtain, from

∑
d|n ϕ(d) = n, the formula∑

d|n

dµ
(n
d

)
= ϕ(n)

By adding the divisors in the opposite order (alternately, by noting ⋆ is com-
mutative) we can write

ϕ(n) = µ ⋆ N =
∑
d|n

µ(d)
(n
d

)
= n

∑
d|n

µ(d)

d
,

which allows us to also write the fraction as
ϕ(n)

n
=
∑
d|n

µ(d)

d

Now, in some sense we already knew all this. Great, some arithmetic func-
tions can be represented either as a sum over divisors or as a product over
primes, depending on what you need from them. So what?

The genius of Euler was to directly connect these ideas.
Fact 24.1.1. We can equate sums over divisors and products over primes for
special formulas.

ϕ(n)

n
=
∑
d|n

µ(d)

d
=
∏
p|n

(
1− 1

p

)
σ(n)

n
=
∏
p|n

(
1 +

1

p
+

1

p2
+ · · ·+ 1

pe

)
=
∑
d|n

1

d

Well, almost; his real genius was to take them to the limit!
One can’t really take these expressions to infinity as they stand – one would

get massive divergence. So what can we do? To analyze this, we will define new,
related functions which preserve the summation, but allow for convergence.

24.2 The Riemann Zeta Function
24.2.1 A fundamental function
The most important such infinite process is the following fundamental func-
tion. It is one of the most studied, yet most mysterious functions in all of
mathematics.

24.2. THE RIEMANN ZETA FUNCTION 333

Definition 24.2.1 (Riemann zeta function). We define the zeta function
(denoted ζ) as the sum of the infinite series

ζ(s) =
∞∑

n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · ·

as a function of s.
For now we’ll keep the domain of ζ to be only the s where this series

converges. Later, in Subsection 25.3.1, we’ll see that it will be useful to think
about what ζ might mean for other values of s.

Here we plot the function for a few positive values of s.
plot(zeta ,0,4,ymin=-1,ymax =10)

Riemann, the quietly devout son of a Lutheran pastor, made ground-
breaking contributions in nearly every area of mathematics. He did it in analy-
sis (Riemann sums), in geometry (Riemannian metrics, later used by Einstein),
in function theory (Riemann surfaces) – and in one paper that changed the
course of number theory. He died quite young (around 40).

24.2.2 Motivating the Zeta function
The motivation for this definition comes from this function with the case s = 1.

We begin with the second formula in Fact 24.1.1:∏
p|n

(
1 +

1

p
+

1

p2
+ · · ·+ 1

pe

)
=
∑
d|n

1

d

Try computing both sides of this and seeing how they come together for a few
fairly composite n, like 12, 16, 18, 20, or 30.

@interact
def _(n=[30 ,20 ,18 ,24 ,12 ,16]):

str = ' $$ ' + ' ␣+␣ ' .join([' \\frac {1}{%s} ' %d for d in
divisors(n)])+ ' =%s$$ ' %sum ([1/d for d in
divisors(n)])

str2 = ' $$ ' +
' ' .join([' \left(' + ' + ' .join([' \\frac {1}{%s^{%s}} ' %(p,
k) for k in [0..e]])+ ' \\right) ' for (p,e) in
factor(n)]) + ' =%s$$ ' %prod([sum([p^(-k) for k in
[0..e]]) for (p,e) in factor(n)])

pretty_print(html(str))
pretty_print(html("compare␣to␣"+str2))

Notice how every integer d formable by a product of the prime powers
dividing n shows up precisely once (as a reciprocal) in the sum. This gives us
a way into introducing limits.

What would happen if we introduced infinity in each term of the product,
for instance?(

1 +
1

2
+

1

22
+

1

23
+ · · ·

)(
1 +

1

3
+

1

32
+

1

33
+ · · ·

)
By analogy, we should get a sum with exactly one copy of the reciprocal of
each number divisible by only 2 and 3, e.g.∑

2|n or 3|n

1

n
.

334 CHAPTER 24. INFINITE SUMS AND PRODUCTS

@interact
def _(e=(1 ,[0..6]) ,f=(2 ,[0..6])):

n = 2^e*3^f
pretty_print(html("You␣picked␣

$%s=2^{%s}3^{%s}$"%(n,e,f)))
str = ' $$ ' + ' ␣+␣ ' .join([' \\frac {1}{%s} ' %d for d in

divisors(n)])+ ' =%s$$ ' %sum ([1/d for d in
divisors(n)])

str2 = ' $$ ' + ' ' .join([' \left(' + ' ␣+␣
' .join([' \\frac {1}{%s^{%s}} ' %(p,k) for k in
[0..e]])+ ' \\ right) ' for (p,e) in factor(n)]) +
' =%s$$ ' %prod([sum([p^(-k) for k in [0..e]]) for
(p,e) in factor(n)])

pretty_print(html(str))
pretty_print(html("compare␣to␣"+str2))

There is no reason this wouldn’t continue to work for many prime factors.
Because every integer is uniquely represented as a product of prime powers

(Fundamental Theorem of Arithmetic), this implies that we might multiply
out the left-hand side of an infinite product of infinite sums to get

∏
p

(
1 +

1

p
+

1

p2
+

1

p3
+ · · ·

)
=

∞∑
n=1

1

n
.

Since each of the multiplied terms on the left is a geometric series, we can
simplify the product slighlty to write

∏
p

(
1

1− 1/p

)
=

∞∑
n=1

1

n
.

24.2.3 Being careful
So much for Euler’s contribution, a very impressive one. The only problem
with all this is that both of these things clearly diverge!

Thus we cannot use a simple equality (=) for this discussion. Nonetheless,
Euler’s intuition is spot on, and we will be able to fix this issue quite satisfac-
torily. For now, we can say is that, in some sense, the harmonic series is also
an infinite product:

ζ(1) =
∞∑

n=1

1

n
“=”

∏
p

(
1

1− 1/p

)
=
∏
p

(
1

1− p−1

)
.

To make this rigorous, we should start talking about convergence. Recall
this informal version of the integral test for series.

Proposition 24.2.2 (Integral test for series convergence). Assume f is a
positive decreasing function going to zero as x → ∞. Then the series

∑n
i=1 f(i)

converges if and only if the integral
∫∞
1

f(x)dx converges.

How does this apply to our situation? The improper integral in this case is∫ ∞

1

x−s dx

24.3. FROM RIEMANN TO DIRICHLET AND EULER 335

which evaluates to

−x−s+1

1− s

∣∣∣∣∞
1

=
1

1− s

(
1− lim

x→∞

1

xs−1

)
.

For s a real number, this converges precisely when s > 1 (since that keeps x
in the denominator).

Fact 24.2.3. The infinite sum ζ(s) converges for all s > 1.

But why is the (infinite) product equal to this infinite sum too? Is this
product even meaningful? After all, it is not true in general that if a partial
product equals a partial sum, then the ‘full’ sum is the ‘full’ product.

One has to carefully set up the convergence. If we can show that the
product converges to the sum, then both will converge. Then it will make sense
to say that

ζ(s) =
∞∑

n=1

1

ns
=
∏
p

(
1

1− p−s

)

24.3 From Riemann to Dirichlet and Euler
In order to see this (the convergence of the infinite product), let’s instead
observe our other main example of a sum over divisors equalling a product
over primes working. When we compared them for ϕ above, we got∑

d|n

µ(d)

d
=
∏
p|n

(
1− 1

p

)

@interact
def _(e=(1 ,[0..3]) ,f=(2 ,[0..3]) ,g=(0 ,[0..3])):

n = 2^e*3^f*5^g
pretty_print(html("You␣picked␣

$%s=2^{%s}3^{%s}5^{%s}$"%(n,e,f,g)))
str = ' $$ ' + ' + ' .join([' \\frac{%s}{%s} ' %(moebius(d),d)

for d in divisors(n)])+ ' =%s$$ ' %sum([moebius(d)/d
for d in divisors(n)])

str2 = ' $$ ' + ' ' .join([' \left (1-\\ frac {1}{%s}\\ right) ' %p
for (p,e) in factor(n)])+ ' =%s$$ ' %prod ([1-1/p for
(p,e) in factor(n)])

pretty_print(html(str))
pretty_print(html("compare␣to␣"+str2))

We could make the powers far higher, or include more primes, and it would
still work. Going to both limits, this would lead to the series

∞∑
n=1

µ(n)

ns
.

24.3.1 Dirichlet series
We give such series a name. The following definition is formally, considered
irrespective of things like convergence.

336 CHAPTER 24. INFINITE SUMS AND PRODUCTS

Definition 24.3.1. In general, for an arithmetic function f(n), its Dirichlet
series is

F (s) =

∞∑
n=1

f(n)

ns
.

Answer the following three questions to see if you understand this definition.
(See Exercise 24.7.1.)

• For what arithmetic function is the Riemann zeta function the Dirichlet
series?

• What would the Dirichlet series of N be?

• What about the Dirichlet series of I?
Note that this already indicates some level of connection between arithmetic

functions. These are connections which may not have been evident otherwise.

24.3.2 Euler products
For our purposes, the very important thing to note about such series is that
they often can be expanded as infinite products.
Definition 24.3.2. In general, for an arithmetic function f(n), its Dirichlet
series has an Euler product the series can be written as an infinite product
in the following manner.

∞∑
n=1

f(n)

ns
=
∏
p

(a formula involving f(p) and ps)

Example 24.3.3 (Euler product for Riemann zeta function). We have already
suggested one for the zeta function:

ζ(s) =
∞∑

n=1

1

ns
=
∏
p

(
1

1− p−s

)
Based on the logic of this section, we have a potential new Euler product

for the Dirichlet series of the Moebius function:
∞∑

n=1

µ(n)

ns
=
∏
p

(
1− 1

ps

)
=
∏
p

(1− p−s)

At least, we can consider this wherever it makes sense.
In the next section, we justify more of this discussion, and connect our

wonderful results about Dirichlet products of finite arithmetic functions to
deep properties of their Dirichlet series.

24.4 Multiplication
24.4.1 Some coincidences
One surprising thing about end of the previous subsection is that the Euler
products for the Riemann ζ function and the Dirichlet series of the Möbius
function are multiplicative inverses of each other. That is,∏

p

1

1− p−s
= 1/

(∏
p

1− p−s

)
.

We can check this numerically as well; in the following examples, we use s = 2.

24.4. MULTIPLICATION 337

sum([moebius(n)/n^2 for n in [1..10000]]).n()

1/zeta (2).n()

They agree up to quite a few digits when we approximate it, so that is a
start at reasonability!

Remark 24.4.1. Zeta has interesting values at integers. Recall from our ex-
ploration of the average value of σ in Section 20.4 that ζ(2) = π2

6 (though there
we just used this as a sum, and didn’t call it ζ(2)). Compare this computation.

1/(pi^2/6).n()

Euler calculated many even values of ζ, which all look like π2n times a ratio-
nal number (see any description of the so-called Bernoulli numbers). However,
it was only in 1978 that ζ(3) was shown to be irrational. It was then named
Apéry’s constant after the man who proved this, Roger Apéry.

To compare with the situation for even n, as of this writing it is still only
known that at least one of the next four odd values (ζ(5), ζ(7), ζ(9), ζ(11)) is
irrational1 . See Wadim Zudilin’s website for many links, though this page
hasn’t been updated for some time.

24.4.2 Multiplication of both kinds
Let’s reinterpret this just a little bit. Assuming we can prove that all this makes
sense (which we haven’t, yet), we have the following two analogous facts.

Fact 24.4.2. The arithmetic functions u and µ are inverses as arithmetic
functions; that is, u ⋆ µ = I.

The Dirichlet series of these functions are also inverses, as ordinary func-
tions: ∏

p

1

1− p−s
= 1/

(∏
p

1− p−s

)

Alternately,
∑∞

n=1
µ(n)
ns = 1/ζ(s)

This analogy is not a coincidence.

Theorem 24.4.3. Use the following notation:

• Take f(n) and g(n) to be two arithmetic functions.

• Let h = f ⋆ g be their Dirichlet product.

• Let F,G,H be the corresponding Dirichlet series (in the variable s).

Then if the series F and G converge absolutely for any particular s, then
H converges and H = FG for that s as well.

1And various other similar facts.

https://en.wikipedia.org/wiki/Bernoulli_number
http://wain.mi.ras.ru/zw/

338 CHAPTER 24. INFINITE SUMS AND PRODUCTS

Proof. First, we need there is a key fact you may or may not have seen in
calculus. Roughly speaking, when series converge absolutely, you can mess
around with them with a lot with impunity. (See, for instance, Mertens’ The-
orem on convergence of Cauchy products; even [C.3.6] doesn’t say any more
than this in discussing this proof.) Since F and G converge absolutely, we will
mess around a lot with the product

F (s)G(s) =

∞∑
n=1

f(n)

ns

∞∑
m=1

g(m)

ms

In particular, we can group the products by the terms f(n)g(m)
nsms (the same way

we did in proving things about ⋆ in Subsection 23.4.3), without loss of equality.
We can further group by when n and m are complementary divisors of the

same number. This gives

F (s)G(s) =
∞∑
d=1

∑
nm=d

f(m)g(n)

ds
.

Notice that the inner sum is precisely the Dirichlet ⋆ product (except di-
vided by ds). So we may rewrite this as

F (s)G(s) =
∞∑
d=1

(f ⋆ g)(d)

ds
.

The numerators are the definition of h, so this is just H(s), as desired.

This is a quite remarkable and deep connection between the discrete/al-
gebraic point of view and the analytic/calculus point of view. It is a shame
that this is not exploited more in the standard calculus curriculum, though see
[C.5.8] for a very good resource for those who wish to do so.

24.5 Multiplication and Inverses
24.5.1 A series for Euler phi
We can now feel confident applying these amazing facts to calculate the Dirich-
let series of ϕ in terms of the Riemann ζ function. We’ll see a few facts along
the way which could serve as templates for many such investigations.

Fact 24.5.1. Call P the Dirichlet series for ϕ; it converges for s > 2.

Proof. From Fact 23.3.2, we recall that ϕ ⋆ u = N . Also, we know from earlier
in this chapter that ζ is absolutely convergent for s > 1.

Then the Dirichlet series of ϕ is absolutely convergent as well, as

0 <
∞∑

n=1

ϕ(n)

ns
≤

∞∑
n=1

n

ns
=

∞∑
n=1

1

ns−1

which converges by the integral test if s > 2.
Apply Theorem 24.4.3 to the series for ϕ and u; then they multiply to the

series for N and it all converges.

Remark 24.5.2. The series for N may also be written as ζ(s− 1).

We can do even better than this, though, to get a single formula for the
series P .

24.5. MULTIPLICATION AND INVERSES 339

Fact 24.5.3. The series for ϕ, P (s), evaluates as

P (s) =

∞∑
n=1

ϕ(n)

ns
=

ζ(s− 1)

ζ(s)

Proof. Recall that the Riemann zeta function is just the Dirichlet series for u,
and that the series for N (see the previous remark) is ζ(s− 1).

Then the previous proof can be expanded to state P (s)ζ(s) = ζ(s− 1) for
s > 2, which suffices to prove the fact.

We can check this with Sage at any particular point if we wish.

sum([euler_phi(n)/n^3 for n in [1..10000]]).n()

(zeta (2)/zeta (3)).n()

24.5.2 A general theorem
It turns out that such Euler products (and hence nice computations like this)
show up quite frequently.

Theorem 24.5.4. If
∑∞

n=1
f(n)
ns converges absolutely and f is multiplicative,

then
∞∑

n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+

f(p2)

p2s
+ · · ·

)
.

Proof. Doing this is Exercise 24.7.2. We have a proof that Moebius µ’s Dirich-
let series converges to its Euler product in the next subsection; the proof of
this is very similar, just more general.

24.5.3 A missing step: convergence of Dirichlet series
Before we start using this in the next section, we have to acknowledge there
is a missing step thus far. Namely, we haven’t demonstrated much about
convergence of these series or products, much less that they converge to each
other. Although it is fun to play around, and numerical experimentation will
convince you they are very likely, we need more to really use these tools with
abandon.

Our goal in this subsection is to prove for the Moebius µ function that
its Dirichlet series converges to the Euler product. Proofs for most other such
functions (such as the Riemann zeta function) are similar enough to leave more
general proofs to a graduate course.

Fact 24.5.5. For s > 1 we have
∞∑

n=1

µ(n)

ns
=
∏
p

(
1− 1

ps

)
=
∏
p

(1− p−s)

Proof. This proof follows [C.1.1] closely. First we will come up with a way to
write a partial product as a specific sum. Then we will use this to get a precise
error between partial products and the infinite sum, and finally bound said
error by something going to zero, the final step of which we separate out as an
independent claim.

340 CHAPTER 24. INFINITE SUMS AND PRODUCTS

We will begin with the identity we already know as defining µ in Defini-
tion 23.1.1: ∑

d|n

µ(d)

d
=
∏
p|n

(1− p−1) .

Assuming we multiply these products out through the kth prime, we get
k∏

i=1

(
1− 1

pi

)
=

1− 1

p1
− 1

p2
− · · ·+ 1

p1p2
+

1

p1p3
+ · · · − 1

p1p2p3
− 1

p1p2p4
− · · · =

∑
n squarefree and only pi|n,1≤i≤k

µ(n)

n
.

This certainly suggests the entire fact is true.
Next, let’s introduce the set

Ak = {n | n = pe11 pe22 · · · pekk , ei ≥ 0}

This is the set of all integers built out of the first k primes. Since µ(n) = 0
unless it has no higher prime powers, then in this notation the big right hand
side sum is equal to

k∏
i=1

(
1− 1

pi

)
=

∑
n squarefree and only pi|n,1≤i≤k

µ(n)

n
=
∑
n∈Ak

µ(n)

n
.

Since the Fundamental Theorem of Arithmetic gives all these relations, I can
replace pi with psi with no harm and write

k∏
i=1

(1− p−s
i) =

∑
n∈Ak

µ(n)

ns
.

Our next step is to get a bound on the difference between the infinite
product and infinite series,

k∏
i=1

(1− p−s
i)−

∞∑
n=1

µ(n)

ns

By the work we just did, this is
∑

n/∈Ak

µ(n)
ns . This is the difference between the

infinite sum and the partial product through the kth prime. Further, we know
this error is finite for any given allowable s, because it’s bounded by ±ζ, and
ζ converges absolutely for s > 1 (recall the comparison test for infinite series).

Let’s put absolute values on this error bound:∣∣∣∣∣
k∏

i=1

(1− p−s
i)−

∞∑
n=1

µ(n)

ns

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n/∈Ak

µ(n)

ns

∣∣∣∣∣∣
To get a more explicit bound, we now deduce that any n /∈ Ak must be n > pk,
since n cannot have any of the first k primes as factors. Armed with this, the
following Claim 24.5.6 will finish the proof:∣∣∣∣∣∣

∑
n/∈Ak

µ(n)

ns

∣∣∣∣∣∣ ≤
∑
n>pk

1

ns

24.6. FOUR FACTS 341

The latter error
∑

n>pk

1
ns must go to zero as k → ∞, since this is the tail

of a convergent infinite series. That means that the partial products converge
to the series; we know that is finite, so everything converges and we have our
Euler product for this Dirichlet series!

Claim 24.5.6. With all notation as in Fact 24.5.5, we have∣∣∣∣∣∣
∑
n/∈Ak

µ(n)

ns

∣∣∣∣∣∣ ≤
∑
n/∈Ak

∣∣∣∣µ(n)ns

∣∣∣∣ ≤ ∑
n>pk

∣∣∣∣µ(n)ns

∣∣∣∣ ≤ ∑
n>pk

1

ns

Proof. The first inequality follows if we can put the absolute value inside the
summation. This is an extended triangle inequality, which is only legitimate
if the final thing converges; however, we already showed this at the end of the
proof of the main fact.

The second inequality is due to the fact that any n /∈ Ak must be bigger
than pk, so the set of all integers above pk would just yield a bigger sum (since
all terms are now positive after the first step).

The final inequality uses that µ = 0, 1,−1 always.

24.6 Four Facts
We are now ready to work with four applied facts which we can prove, using
these tools. Some have other types of proofs, but number theory combined with
calculus really provides a unified framework for a huge number of problems.

• In Subsection 24.6.1, we will show that the probability that a random
integer lattice point is ‘visible’ from the origin is 6

π2 ; this is Proposi-
tion 24.6.1.

• In Subsection 24.6.2, we see that the Dirichlet series for f(n) = |µ(n)| is
ζ(s)/ζ(2s); this is Proposition 24.6.2.

• In Subsection 24.6.4, we compute the average value of ϕ(n) to be 3n
π2 ; this

is Proposition 24.6.4.

• In Subsection 24.6.3, we see that the prime harmonic series sum∑∞
n=1

1
pn

diverges, with pn the nth prime; this is Proposition 24.6.3.

24.6.1 Random integer lattice points
The following graphic will indicate what it means to have a point visible from
the origin; is there a point directly between it and the origin or not? To
rephrase, what is the probability that a point in the integer lattice has a line
connecting the point to the origin that does not hit any other point? (We will
explicitly avoid any discussion of why such infinitary probabilities are defined
in this introductory text.)

Note that the probabilities estimated will vary wildly. Especially at a prime
distance one should expect the computed probability to be higher than the
theoretical one; why?

@interact
def _(viewsize =(5 ,[3..25])):

var('x,y ')
P=Graphics ()

342 CHAPTER 24. INFINITE SUMS AND PRODUCTS

grid_pts = [[i,j] for i in [-viewsize .. viewsize] for j
in [-viewsize .. viewsize]]

P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(gcd(coords [0], coords [1]) ==1)]
P += points(lattice_pts , rgbcolor = (0,0,1),

pointsize =10)
linesegs =[line ([[0,0],[spot[0],spot [1]]],

rgbcolor =(1,0,0), linestyle="--",thickness =.5) for
spot in lattice_pts]

for object in linesegs:
P += object

show(P, figsize = [5,5], xmin = -viewsize , xmax =
viewsize , ymin = -viewsize , ymax = viewsize ,
aspect_ratio =1)

pretty_print(html("Probability␣in␣view␣is␣$\\ approx␣
%s$"%(Integer(len(lattice_pts)) /
Integer(len(grid_pts))).n()))

pretty_print(html("Theoretical␣probability␣is␣
$1/\zeta (2)\\ approx␣%s$"%(1/ zeta (2)).n()))

It should be pretty clear from the picture that if x and y have a nontrivial
common divisor d then,

(
x
d ,

y
d

)
is right on the line of sight from the origin to

(x, y) so that it is blocked off. This is most clearly so for d = gcd(x, y), so the
following fact is the same thing as asking for the probability that two randomly
chosen integers are relatively prime.

Proposition 24.6.1. The chances that a random integer lattice point is visible
from the origin is 6

π2 .

Proof. We will prove the statement about coprime random integers, or at least
we will prove as much of it as we can without discussing infinite combinations
of independent chances. We will also make an assumption about distribution
of primes to simplify the proof; one can consider this a sketch, if necessary.

First, we know that gcd(x, y) = 1 is true precisely if x and y are never
simultaneously congruent to zero modulo p, for any prime p. (If there were
such a p, of course it would be a divisor; by the Fundamental Theorem of
Arithmetic we need only consider primes.)

For any given prime p, the chances that two integers will both be congruent
to zero is (

1

p

)(
1

p

)
.

This works because the probabilities are independent, since p is fixed, so we
can just multiply probabilities.

Hence the probability that at least one of x or y will not be divisible by p
is

1−
(
1

p

)(
1

p

)
= 1− 1

p2
= 1− p−2 .

(This may remind you of the so-called birthday problem in probability.)
Now comes our assumption. We will suppose that if p ̸= q are both prime,

then the probability that any given integer is divisible by p has nothing to do
with whether it is divisible by q. (Such properties are not true in general; if n
is divisible by 4 it has a 100% likelihood of being divisible by 2, while if n is
prime, it has almost no chance of being even.)

24.6. FOUR FACTS 343

In such a case the probabilities are independent, so that (even in this in-
finitary case)

∏
p

(1− p−2) = 1/
∏
p

1

1− p−2
= 1/ζ(2) =

6

π2
.

This implies that a random pair of integers, selected from a large enough
bound, will be relatively prime about 61% of the time.

(6/pi^2).n()

24.6.2 Dirichlet for the absolute Moebius
Proposition 24.6.2. The Dirichlet series for |µ(n)| is ζ(s)/ζ(2s).

Proof. With all the tools we’ve gained, the proof is nearly completely symbolic
at this point!

First, we have the following from the definition of Moebius in Defini-
tion 23.1.1, or from Fact 24.5.5:

∞∑
n=1

|µ(n)|
ns

=
∏
p

(
1 +

1

ps

)
.

Next, let us write x = 1
ps ; then we can use the basic identity (1+x) = 1−x2

1−x
to rewrite the right-hand side as

∏
p

(
1 +

1

ps

)
=

∏
p

(
1− 1

p2s

)
∏

p

(
1− 1

ps

) .

Now we just invert both numerator and denominator to get familiar friends:

∏
p

(
1− 1

p2s

)
∏

p

(
1− 1

ps

) =

∏
p 1/(1−

1
ps)∏

p 1/(1−
1

p2s)

which means the sum will be ζ(s)/ζ(2s).

Let’s try this out computationally.

@interact
def _(s=[2,3,4,5]):

S = sum([abs(moebius(n))/n^s for n in [1..10000]]).n()
S2 = zeta(RR(s))/zeta (2*RR(s))
pretty_print(html("The␣approximation␣is␣$%s$␣while␣the␣

zeta␣computation␣is␣$%s$."%(S,S2)))

344 CHAPTER 24. INFINITE SUMS AND PRODUCTS

24.6.3 The prime harmonic series
The divergence of the series created from the reciprocals of prime numbers is
not necessarily a particularly obvious fact. Certainly it diverges much, much
slower than the harmonic series (recalled before Definition 20.3.2), which al-
ready diverges very slowly.

@interact
def _(n=[10 ,100 ,1000 ,10000 ,100000 ,1000000]):

out = sum([RealField (100) (1/p) for p in
primes_first_n(n)])

pretty_print(html("The␣sum␣of␣the␣reciprocals␣of␣the␣
first␣$%s$␣primes␣is␣$\\ approx␣%s$"%(n,out)))

This proof doesn’t actually use Dirichlet series, but has in common with
them themes of convergence and estimation, so it is appropriate to include
here.

Proposition 24.6.3 (Prime harmonic series diverges). Let pn be the nth
prime. Then the following series, which we call the prime harmonic se-
ries, diverges:

∞∑
n=1

1

pn

Proof. This is a fairly expanded form of the proofs in [C.1.1, Theorem 9.2] and
[C.3.6, Theorem 1.13].

As with many other occasions to prove series divergence, we will focus on
the ‘tail’s beyond a point that keeps getting further out. In this case, we’ll
choose the ‘tail’ beyond the first k primes,

T =
∑
n>k

1

pn
.

By examining certain terms in this, and assuming (falsely) that it can be made
finite, we will obtain a contradiction.

First, let’s consider numbers of the form

p1p2p3 · · · pkr + 1 = pk# · r + 1

(Recall the primorial notation from Definition 22.2.6.) Such a number cannot
be divisible by any of those first k primes, so by the Fundamental Theorem of
Arithmetic any number like pk# · r + 1 may be factored as

pn1pn2 · · · pnℓ
,

where all ni > k (some may be repeated).
Return to the ‘tail’. Since this pk# · r + 1 factors with ℓ factors, then

somewhere in the ℓth power of the ‘tail’ we have the following term:

T ℓ =

(∑
n>k

1

pn

)ℓ

=
1

p1p2p3 · · · pkr + 1
+ · · · .

Now assume that in fact the prime harmonic series converges; we will derive
a contradiction.

24.6. FOUR FACTS 345

First, for some k, the ‘tail’ T is less than 1
2 , i.e. T =

∑
n>k

1
pn

< 1
2 . Since

each term is positive, T > 0 and a geometric series involving the ℓth powers of
T is very precisely bounded:

0 ≤
∞∑
ℓ=1

T ℓ =

∞∑
ℓ=1

(∑
n>k

1

pn

)ℓ

≤
∞∑
ℓ=1

1

2ℓ
= 2 .

Now we bring in the first discussion in this proof; every single term of the
form 1

p1p2p3···pkr+1 will appear somewhere within this sum of the ℓth powers,
though naturally ℓ in each case will depend heavily upon r.

So the series of reciprocals of just these special terms is bounded.

0 <
∞∑
r=1

1

p1p2p3 · · · pkr + 1
≤

∞∑
ℓ=1

(∑
n>k

1

pn

)ℓ

≤ 2 .

A bounded series of all positive number should converge (e.g. by comparison).
Here comes the contradiction. The same series is bounded below as follows,

for each integer k.
∞∑
r=1

1

p1p2p3 · · · pkr + 1
>

∞∑
r=1

1

p1p2p3 · · · pkr + p1p2p3 · · · pk

=
1

p1p2p3 · · · pk

∞∑
r=1

1

r + 1

This series certainly diverges, as a multiple of the tail of the harmonic series!
Since no matter how big k is (and hence how far out in the ‘tail’ we go) we

report that a certain series both converges and diverges, we have a contradic-
tion. Hence our original assumption that we could choose k to make T finite
was false, and the prime harmonic series must diverge!

24.6.4 The average value of Euler phi
Finally, here is a really nice result to end with. Thinking about the average
value of ϕ will put together many themes from this text.

You may recall Exercise 20.6.15 where you were asked to conjecture regard-
ing this question. As there, it’s useful here to try to graph the average values
first; here I have incuded the correct long-term average as well.

def L(n):
ls = []
out = 0
for i in range(1,n+1):

out += euler_phi(i)
ls.append ((i,out/i))

return ls

@interact
def _(n=100):

P = line(L(n))
show(P+plot (3/pi^2*x,(x,0,n), color= ' black ' ,

linestyle="--"))
pretty_print(html("Blue␣is␣the␣average␣value␣of␣

$\phi$$"))
pretty_print(html("Black␣is␣$\\frac {3}{\pi^2}␣x$"))

346 CHAPTER 24. INFINITE SUMS AND PRODUCTS

Before formally proving this, let’s look at a significant picture for concep-
tualizing the proof. This is similar to what we used for the average of τ and σ
in Chapter 24.

@interact
def _(n=(6, range (2,50))):

viewsize=n+1
g(x)=1/x
P=Graphics ()
P += plot(n*g,(x,0,n+1))
grid_pts = [[i,j] for i in [1.. viewsize] for j in

[1.. viewsize]]
P += points(grid_pts ,rgbcolor =(0,0,0),pointsize =2)
lattice_pts = [coords for coords in grid_pts if

(coords [0]* coords [1]<=n)]
for thing in lattice_pts:

P += text(moebius(thing [1])*thing[0],
thing ,rgbcolor =(0,0,0))

show(P,ymax=viewsize ,aspect_ratio =1)

The text at each lattice point is the value of horizontal coordinate, multi-
plied by a factor of Moebius of the vertical coordinate.

We will crucially use these two facts in the proof, based loosely on [C.3.6];
see it or [C.1.8] for much more related material – the latter is unusual in starting
its discussion of averages with this example!

• From above (e.g. Fact 24.4.2),
∞∑

n=1

µ(n)

n2
=

1

ζ(2)
=

6

π2

• From the previous chapter (e.g. Fact 23.3.2),

ϕ = µ ⋆ N ⇒ ϕ(n) =
∑
d|n

µ(d)
n

d

Proposition 24.6.4. The long-term average value of ϕ is given by

lim
n→∞

1
n

∑n
k=1 ϕ(k)
3
π2n

= 1

Proof. Consider the summation function for ϕ,
∑n

k=1 ϕ(n). As in Chapter 20,
we will think of it as summing things up in two different ways.

In particular, look at the summation once we have replaced with the Moe-
bius sum inside:

n∑
k=1

ϕ(k) =
n∑

k=1

∑
d|k

µ(d)
k

d

Now instead of considering it as a sum over divisors for each k, we can think of
it as summing for each divisor over the various hyperbolas xy = k. This yields

n∑
k=1

∑
d|k

µ(d)
k

d
=

n∑
d=1

µ(d)

⌊n
d ⌋∑

k=1

k

Now let’s examine the terms of this sum. We will several times use Landau

notation as in Definition 20.1.1.

24.7. EXERCISES 347

Knowing about the sum of the first few consecutive integers (also used at
the end of Subsection 20.3.2), we see that⌊n

d ⌋∑
k=1

k

 =
1

2

(n
d

)2
+O

(n
d

)
.

If we plug that in the double sum, we get
n∑

k=1

ϕ(n) =
1

2
n2

n∑
d=1

µ(d)

d2
+ nO

(
n∑

d=1

µ(d)

d

)
.

Let’s examine this.

• The first term goes to 6
π2 as n → ∞. Further, its error is O(1/n), because

µ(n)/n2 < 1/n2 and
∫
x−2 dx = −x−1.

• The second term is certainly O(n log(n)), since it is n times a sum which
is less than something O(log(n)) (namely, ζ).

Plugging everything in, we get that
n∑

k=1

ϕ(n) =
1

2
n2 6

π2
+O(stuff less than n2)

Dividing by n and taking the limit, we get the asymptotic result.

lim
n→∞

1
n

∑n
k=1 ϕ(n)
3
π2n

= lim
n→∞

1
2
n2

n
6
π2 + 1

nO(stuff less than n2)
3
π2n

= lim
n→∞

3
π2n+O(stuff less than n)

3
π2n

= 1 .

24.7 Exercises
1. Write down your answers to the three questions about the definition of
Dirichlet series after Definition 24.3.1.

2. Prove Theorem 24.5.4 in full generality, following that of Fact 24.5.5. (This
is a good technical exercise in convergence.)

3. Learn more about the notion of zero density (recall Subsection 22.2.2).
Then find other sets like P = { primes } such that the sum of the reciprocals
diverges, but the set has zero density in the integers.

Use Sage or other computational tools to conjecture the rate of growth
of the function

f(x) =
∑
p≤x

1

p

where p is of course prime. Hint: Typically one needs lumber to print
a book, such as [C.3.5] (but don’t peek there until you’re really stuck!).

4.

348 CHAPTER 24. INFINITE SUMS AND PRODUCTS

Recall ω from Definition 23.3.3 and f(x) from the previous question.
Confirm numerically that the average value to x (in the sense of Chap-
ter 20) of ω is about the same as the size of f(x). Give a reason why∑

p≤x
1
p should be related to

∑
n≤x ω(n).

5.

Chapter 25

Further Up and Further In

If you survived this book, hooray! You made it. You did a great job making
it through a whole arc of number theory accessible at the undergraduate level.

Although we really did see a lot of the problems out there, there are many
we did not see all the way through. We were able to prove some things about
them. Here are just a few problems we started touching on.

• Solving higher-degree polynomial congruences, like x3 ≡ a (mod n). (Chap-
ter 7)

• Knowing how to find the first integer point on hard things like the Pell
(hyperbola) equation x2 − ny2 = 1. (Chapter 15)

• Writing a number not just in terms of a sum of squares, but a sum of
cubes, or a sum like x2 + 7y2. (Chapter 14)

• The Prime Number Theorem, and finding ever better approximations to
π(x). (Chapter 21)

It’s this last one we will focus on in this extended postscript, for it takes
us to the very frontiers of the deepest questions about numbers.

25.1 Taking the PNT Further
Recall Gauss’ approximating function for π(x), the logarithmic integral func-
tion (Definition 21.2.2). Let’s remind ourselves how it did.

@interact
def _(n=(1000 ,(1000 ,10^6))):

P = plot(prime_pi ,n-1000,n, color= ' black ' ,
legend_label= ' $\pi(x)$ ')

P += plot(Li,n-1000,n, color= ' green ' ,
legend_label= ' $Li(x)$ ')

show(P)

It wasn’t too bad of an estimate. But, as mathematicians, we hope we
could get a little closer. At that time, among several other things, we tried
this fairly weird amended function:

Li(x)− 1

2
Li(

√
x) .

And this was indeed a better approximation.

349

350 CHAPTER 25. FURTHER UP AND FURTHER IN

@interact
def _(n=(1000 ,(1000 ,10^6))):

P = plot(prime_pi ,n-1000,n, color= ' black ' ,
legend_label= ' $\pi(x)$ ')

P += plot(Li,n-1000,n, color= ' green ' ,
legend_label= ' $Li(x)$ ')

P += plot(lambda x: Li(x) - .5*Li(sqrt(x)), n-1000,n,
color= ' red ' ,
legend_label= ' $Li(x) -\\frac {1}{2} Li(\sqrt{x})$ ')

show(P)

So one might think one could keep adding and subtracting

1

n
Li(x1/n)

to get even closer, with this start to the pattern.
As it turns out, that is not quite the right pattern. In fact, the minus sign

comes from µ(2), not from (−1)2+1, as usually is the case in series which begin
by alternating!

@interact
def _(n=(1000 ,(1000 ,10^6)),k=(3 ,[1..10])):

P = plot(prime_pi ,n-1000,n, color= ' black ' ,
legend_label= ' $\pi(x)$ ')

P += plot(Li,n-1000,n, color= ' green ' ,
legend_label= ' $Li(x)$ ')

F = lambda x: sum([Li(x^(1/j))*moebius(j)/j for j in
[1..k]])

P += plot(lambda x: Li(x) - .5*Li(sqrt(x)),n-1000,n,
color= ' red ' ,
legend_label= ' $Li(x) -\\frac {1}{2} Li(\sqrt{x})$ ')

P += plot(F,n-1000,n, color= ' blue ' ,
legend_label= ' $\sum_{j=1}^{%s}␣\\frac{\mu(j)}{j}␣
Li(x^{1/j})$ ' %k)

show(P)

This set of approximations doesn’t really add a lot of accuracy beyond
k = 3. In fact, at x = 1000000, taking the approximation with the sum∑3

j=1
µ(j)
j Li(x1/j) is essentially the same as going all the way to infinity in∑∞

j=1
µ(j)
j Li(x1/j), and both of these are clearly not integers. This alone will

not yield a computable, exact formula for π(x). So here are some questions we
might raise.

• So where does the Moebius µ in that approximation come from anyway?

• What else is there to the error

|π(x)− Li(x)|

since this one wasn’t enough?

• Are there connections with things other than just π(x)?

• What does this have to do with winning a million dollars?

25.2. IMPROVING THE PNT 351

25.2 Improving the PNT
Let’s look at a table of some of these results.

@interact
def _(k=(3 ,[2..11])):

F = lambda x: sum([Li(x^(1/j))*moebius(j)/j for j in
[1..k]])

T = [[' i ' , ' $\pi(i)$ ' , ' $Li(i)$ ' , ' $\pi(i)-Li(i)$ ' ,
' $\pi(i)-\sum_{j=1}^{%s}␣\\frac{\mu(j)}{j}␣
Li(x^{1/j})$ ' %k]]

for i in [100000 ,200000..1000000]:
T.append ([i, prime_pi(i), Li(i).n(digits =7),

(prime_pi(i)-Li(i)).n(digits =4),
(prime_pi(i)-F(i)).n(digits =4)])

pretty_print(html(table(T,header_row = True , frame =
True)))

This table shows the errors in Gauss’ and our new estimates for every
hundred thousand up to a million. Clearly Gauss is not exact, but the other
error is not always perfect either.

After the Prime Number Theorem was proved, mathematicians wanted
to get a better handle on the remaining error between the log integral and
π(x). In particular, the Swedish mathematician Helge Von Koch made a very
interesting contribution in 1901.

Conjecture 25.2.1. The error in the PNT is less than

1

8π

√
x log(x) .

This seems to work, broadly speaking.

@interact
def _(n=(1000 ,(1000 ,10^6))):

P = plot(prime_pi ,n-1000,n, color= ' black ' ,
legend_label= ' $\pi(x)$ ')

P += plot(Li,n-1000,n, color= ' green ' ,
legend_label= ' $Li(x)$ ')

P += plot(lambda x: Li(x) -
1/(8*pi)*sqrt(x)*log(x),n-1000,n,
color= ' blue ' ,linestyle= ' -- ' , legend_label="Von␣Koch␣
error␣estimate")

show(P)

Given the data in this graphic, the conjecture seems plausible, if not even
improvable (though remember that Li and π switch places infinitely often, see
Fact 21.2.3!). Of course, a conjecture is not a theorem, but luckily Von Koch
had one of those as well.

Theorem 25.2.2. The truth of the error estimate

|π(x)− Li(x)| ≤ 1

8π

√
x log(x)

for the prime number theorem is equivalent to saying that ζ(s) equals zero pre-
cisely where Riemann thought it would be zero in 1859 (see Conjecture 25.3.2).

http://www-history.mcs.st-andrews.ac.uk/Biographies/Koch.html

352 CHAPTER 25. FURTHER UP AND FURTHER IN

This may seem like an odd statement. After all, ζ is just about reciprocals
of all numbers, and can’t directly measure primes. (And what do I mean by
“thought it would be”?) But in fact, the original proofs of the PNT also used
the ζ function in essential ways. So Von Koch was just formalizing the exact
estimate it could give us on the error.

25.3 Toward the Riemann Hypothesis
Riemann, though, was after bigger fish. He didn’t just want an error term. He
wanted an exact formula for π(x), one that could be computed. Computed by
hand, or by machine, if such a machine came along, as close as one pleased. And
this is where ζ(s) becomes important, because of the Euler product formula:

∞∑
n=1

1

ns
=
∏
p

1

1− p−s

Somehow ζ does encode everything we want to know about prime numbers.
And Riemann’s paper, “On the Number of Primes Less Than a Given Mag-
nitude”, is the place where this magic really does happen. (The paper is also
available in translation in the appendix of [C.3.4].) Seeing just how it happens
is our goal to close the book.

We’ll begin by plotting ζ, to see what’s going on. As you can see, ζ(s)
doesn’t seem to hit zero very often. Maybe for negative s …

plot(zeta ,-10,10,ymax=10,ymin=-1)

25.3.1 Zeta beyond the series
Wait a minute! What was that plot? Shouldn’t ζ diverge if you put negative
numbers in for s? (Recall our definition in Definition 24.2.1.) After all, then
for s = −1 we’d get things like

∞∑
i=1

n

and somehow I don’t think that converges.
But it turns out that we can evaluate ζ(s) for nearly any complex number

s we desire. The first graphic below color-codes where each complex number
lands by matching it to the color in the second graphic.

graphics_array ([complex_plot(zeta , (-20,20),
(-20,20)),complex_plot(lambda z: z,
(-3,3) ,(-3,3))]).show(figsize =[8 ,8])

The important point isn’t the picture itself, but that there is a picture.
To wit, ζ can be defined for (nearly) any complex number as input. Why
would that be the case? One way to see that we could define this function
for complex values comes by trying to define each term 1

ns in ζ(s) =
∑∞

n=1
1
ns

more precisely.
Suppose we let s be a complex number, using the long-standing notational

convention
s = σ + it

http://www.claymath.org/publications/riemanns-1859-manuscript
http://www.claymath.org/publications/riemanns-1859-manuscript

25.3. TOWARD THE RIEMANN HYPOTHESIS 353

Then we can rewrite this term as
1

ns
= n−s = e−s log(n) = e−(σ+it) log(n) = e−σ log(n)e−it log(n)

Now we use a fact you may remember from calculus, which is very easy to
prove with Taylor series. (See Exercise 25.9.1):

eix = cos(x) + i sin(x)

Applying this, we get

1

ns
= e−σ log(n)e−it log(n) = n−σ (cos(t log(n))− i sin(t log(n)))

Using this analysis, if σ > 1, since cos and sin always have absolute value
less than or equal to one, we still have the same convergence properties as with
regular series. So if we take the imaginary and real parts separately, we can
rewrite

ζ(s) =

∞∑
n=1

1

ns
=

∞∑
n=1

cos(t log(n))
ns

+ i

∞∑
n=1

sin(t log(n))
ns

That doesn’t explain the part of the complex plane to the left of σ = 1 of
the picture above. All I will say is that it is possible to extend ζ there, and
Riemann did it. (In fact, Riemann is largely responsible for advanced complex
analysis.) As an example, ζ(−1) = − 1

12 , which is very close to saying that

ζ(−1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + · · · = − 1

12

zeta(-1)

-1/12

Investigate further whether this has any meaning in Exercise 25.9.2.

25.3.2 Zeta on some lines
Let’s get a sense for what the ζ function looks like. First, observe a three-
dimensional plot of its absolute value for σ between 0 and 1 (which will turn
out to be all that is important for our purposes).

plot3d(lambda x,y: abs(zeta(x+i*y)) ,(0,1) ,(-20,20),
plot_points =100)+plot3d (0,(0,1) ,(-20,20),
color= ' green ' ,alpha =.5)

To get a better idea of what happens, we compare two plots. One is a
one-dimensional plot of |ζ| for different inputs with the same σ. On the other
side is the two-dimensional colored complex plot of ζ(σ + it), where σ is the
real part, chosen by you, and then we plot t out as far as requested. The line
which we are viewing on the complex plane in the first graphic is dashed in
the second one.

Remark 25.3.1. It is not really possible to fully visualize a complex function
of complex input. So we often pick some line in the complex plane, such as
where the real part equals 1 (sort of like x = 1) or where the imaginary part
equals 1 (sort of like y = 1); then we either treat this as input to a parametric
curve, or similarly look at the output and in one way or another reduce it to
one real number, and plot this as normal.

354 CHAPTER 25. FURTHER UP AND FURTHER IN

@interact
def _(sig=slider (.01, .99, .01, 0.5, label= ' \(\ sigma\) '),

end=slider (2,100,1,40, label= ' end␣of␣\(t\) ')):
p = plot(lambda t: abs(zeta(sig+t*i)), -end ,end ,

rgbcolor=hue (0.7))
q = complex_plot(zeta ,(0 ,.99) ,(-end ,end),

aspect_ratio =1/end) + line ([(sig ,-end),(sig ,end)],
linestyle= ' -- ')

show(graphics_array ([p,q]),figsize =[5 ,3])

You’ll notice that the only places the function has absolute value zero
(which means the only places it hits zero) are when σ = 1/2.

Another way to visualize ζ in a useful way is with the parametric graph
of each vertical line in the complex plane as mapped to the complex plane.
You can think of this as where an infinitely thin slice of the complex plane is
“wrapped” to.

@interact
def _(sig=slider (.01, .99, .01, 0.5, label= ' \(\ sigma\) ')):

end=30
p = parametric_plot ((lambda t: zeta(sig+t*i).real(),

lambda t: zeta(sig+t*i).imag()), (0,end),
rgbcolor=hue (0.7),plot_points =300)

q = complex_plot(zeta ,(0 ,.99) ,(0,end),
aspect_ratio =1/end) + line ([(sig ,0) ,(sig ,end)],
linestyle= ' -- ')

show(graphics_array ([p,q]), figsize =[5 ,3])

This image is reasonably famous, because the only time the curve seems to
hit the origin at all is precisely at σ = 1/2, and at σ = 1/2 the curve seems to
hit the origin lots of times. For any other σ the curve just misses the origin,
somehow.

Now it’s true that ζ is also zero at negative even integer input, but these
are well understood. The pictures demonstrate the mysterious part. And so
we have the following crucial question – where is ζ(s) = 0?

Conjecture 25.3.2 (Riemann Hypothesis). All the zeros of ζ(s) = ζ(σ + it)
where t ̸= 0 are on σ = 1/2.

The importance of this problem is evidenced by it having been selected
as one of the seven Millennium Prize problems by the Clay Math Institute
(each holding a million-dollar award), as well as having many recent popular
books devoted to it. In what follows we will loosely follow the very interesting
exposition of Prime Obsession by John Derbyshire, [C.3.1].

25.4 Connecting to the Primes
The last few sections of this final chapter are devoted to seeing why the Rie-
mann Hypothesis might be related to the distribution of prime numbers. For
motivation, think of Von Koch’s result Theorem 25.2.2 connecting the RH to
a bound on the error between π(x) and the log integral. Our goal is more
detailed, however.

We’ll pursue this connection in three steps.

1. Our first step is to see the connection between π(x) and µ(n) (25.4.1).

http://claymath.org/millennium/

25.4. CONNECTING TO THE PRIMES 355

2. Then we’ll see the connection between these and ζ (25.5).

3. Finally, we’ll see how the zeros of ζ come into play (25.6).

25.4.1 Connecting to Moebius
Let’s begin by defining a new function.

def J(x):
end = floor(log(x)/log(2))
out = 0
for j in [1.. end]:

out += 1/j*prime_pi(x^(1/j))
return out

L1 = [(n,J(n)) for n in [1..20]]
L2 = [(n,J(n)) for n in [1..150]]
graphics_array ([plot_step_function(L1),

plot_step_function(L2)]).show(figsize =[10 ,5])

Riemann called the function above f . Following [C.3.4] and [C.3.1], we will
call it J(x). It is very similar to π(x) in its definition, so it’s not surprising
that it looks similar.

Definition 25.4.1. We define

J(x) = π(x) +
1

2
π(
√
x) +

1

3
π(3

√
x) +

1

4
π(4

√
x) + · · · =

∞∑
n=1

1

n
π
(
x1/n

)
This looks like it’s an infinite sum, but for any given x, it is finite. For

instance, let’s calculate J(20):

J(20) = π(20) +
1

2
π(
√
20) +

1

3
π(

3
√
20) +

1

4
π(

4
√
20) = 8 +

2

2
+

1

3
+

1

4
= 9

7

12

because 5
√
20 ≈ 1.8 and π(5

√
20) ≈ π(1.8) = 0, so the sum ends there, and we

can see that on the graph.
Okay, so we have this new function. Yet another arithmetic function. So

what?
Ah, but what have we been doing to all our arithmetic functions to see

what they can do, to get formulas for them? We’ve been Moebius inverting
them, naturally! (Recall Section 23.2.) In this case, Moebius inversion could
be really great, since it would give us information about the thing being added,
which is the all-important π(x).

The only thing standing in our way is that

J(x) =
∞∑

n=1

1

n
π
(
x1/n

)
is not a sum over divisors. But it turns out that, just like when we took the
limits of the sum over divisors

∑
d|n

1
d , we got

∑∞
n=1

1
n , we can do the same

thing with Moebius inversion.

Fact 25.4.2. If
∑∞

n=1 f(x/n) and
∑∞

n=1 g(x/n) both converge absolutely, then

g(x) =
∞∑

n=1

f(x/n) ⇐⇒ f(x) =
∞∑

n=1

µ(n)g(x/n) .

356 CHAPTER 25. FURTHER UP AND FURTHER IN

We can use this by setting g = J with f(x/n) = 1
nπ
(
x1/n

)
. Applying this,

we achieve a very important result writing π(x) in terms of J .

π(x) =
∞∑

n=1

µ(n)
J(x1/n)

n
= J(x)− 1

2
J(

√
x)− 1

3
J(3

√
x)− 1

5
J(5

√
x)+

1

6
J(6

√
x)+· · ·

(25.4.1)

Remark 25.4.3. If that last use of Moebius inversion looked a little sketchy,
it does to me too, but I cannot find a single source where it’s complained about
that f(x/n) = 1

nπ
(
x1/n

)
is really a function of x and n, not just x/n. In any

case, the result is correct, via a somewhat different explanation of this version
of inversion in a footnote in Edwards’ discussion of this matter in [C.3.4].

25.5 Connecting to Zeta
25.5.1 Turning the golden key
Now, this looks just as hopeless as before. How is J going to help us calculate
π, if we can only calculate J in terms of π anyway?

Here is where Riemann “turns the Golden Key”, as Derbyshire puts it.
Because ζ has an Euler product over the set of primes, we can just possibly
connect it to each prime. It turns out this will in fact connect ζ to J . This is
the goal of the rest of the current section.

In the next section, we will see how the zeros of ζ give us an exact formula
for J ; then we will finally plug J back into the Moebius-inverted formula for
π to get an exact formula for π in Section 25.7. Here is a plot of that formula,
as a foretaste.

var(' y ')
import mpmath
L = lcalc.zeros_in_interval (10 ,150 ,0.1)
n=100
P = plot(prime_pi ,n-50,n, color= ' black ' ,

legend_label= ' $\pi(x)$ ')
P += plot(Li,n-50,n, color= ' green ' , legend_label= ' $Li(x)$ ')
G = lambda x: sum([mpmath.li(x^(1/j))*moebius(j)/j for j

in [1..3]])
P += plot(G,n-50,n,color= ' red ' , legend_label =

' $\sum_{j=1}^{%s}␣\\frac{\mu(j)}{j}␣Li(x^{1/j})$ ' %3)
F = lambda x: sum ([(mpmath.li(x^(1/j))-log(2) +

numerical_integral(1/(y*(y^2-1)*log(y)),
x^(1/j),oo)[0])*moebius(j)/j for j in [1..3]]) -
sum ([(mpmath.ei(log(x)*((0.5+l[0]*i)/j)) +
mpmath.ei(log(x)*((0.5 -l[0]*i)/j))).real for l in L for
j in [1..3]])

P += plot(F,n-50,n,color= ' blue ' , legend_label= ' Really␣good␣
estimate ' ,plot_points =50)

show(P)

We can see above that this has the potential to be a very good approxi-
mation, even given that I did limited calculations here. The most interesting
thing is the gentle waves you should see; this is quite different from the other
types of approximations we had, and seems to have the potential to mimic the
more abrupt nature of the actual π(x) function much better in the long run.
(See [C.3.3] for more details along these lines, connecting to Fourier series,
which we will not pursue.)

25.5. CONNECTING TO ZETA 357

25.5.2 Detailing the connections
Now let’s connect J and ζ. Recall the Euler product for ζ again:

ζ(s) =
∏
p

1

1− p−s

The trick to getting information about primes out of this, as well as con-
necting to J , is to take the logarithm of the whole thing. This will turn the
product into a sum, something we can work with much more easily1.

log(ζ(s)) =
∑
p

log
(

1

1− p−s

)
=
∑
p

− log
(
1− p−s

)
(25.5.1)

Adding just fractions would have perhaps allowed using a geometric series
to make this a sum, but what could we do with a sum of logarithms?

Question 25.5.1. What can we do with − log() of some sum, not a product?

Solution. We can use its Taylor series!

− log(1− x) =

∞∑
k=1

xk

k

So we plug it in:

log(ζ(s)) =
∑
p

∞∑
k=1

(p−s)k

k
(25.5.2)

Now we will manipulate this in two big steps. First we’ll rewrite the fraction
as an integral, and then we will try to somehow add up the integrals.

Standard improper integral work from second-semester calculus (Exercise 25.9.3)
shows that

(p−s)k

k
=

s

k

∫ ∞

pk

x−s−1dx

That means we can rewrite the logarithm of ζ as

log(ζ(s)) =
∑
p

∞∑
k=1

(p−s)k

k

=
∑
p

∞∑
k=1

s

k

∫ ∞

pk

x−s−1dx = s
∑
p

∞∑
k=1

∫ ∞

pk

1

k
x−s−1dx

This is a very large sum of integrals. We can rewrite this as a single integral,
but we will need to pay close attention.

First, we can unify all these integrals from pk to ∞ by making them all
have the same endpoints. This is done somewhat artificially, by writing∫ ∞

pk

1

k
x−s−1dx =

∫ pk

1

1

k
· 0 · x−s−1 dx+

∫ ∞

pk

1

k
x−s−1dx

1This reminds me of the old joke about Noah’s ark and logarithms. So, after the ark
lands, all the animals are … having baby animals, let’s say. Except the snakes. No baby
snakes. Noah asks what the problem is – they seem to be missing the point. Snakes say, no
worries, just give us a wooden bench or sawhorse or something. Noah wonders what’s up,
but gives it to them. Next morning, tons of baby snakes! Naturally Noah has to ask where
the magic was. “Simple; adders need a log table to multiply.”

358 CHAPTER 25. FURTHER UP AND FURTHER IN

This yields the integral of a piecewise-defined function, but it for every k and
p it is defined from 1 to ∞.

Now comes the most surprising part. What function would I get if I added
up all those integrals in the double sum (originally at (25.5.2))? To see this,
let us add up all of the piecewise integrands, organizing by the powers k for
any given prime p.

• Whenever x reaches p1 = p, the sum of all those functions would add
1
1x

−s−1. Adding up all of these for all p means the total function would
include

π(x)x−s−1 . . .

• Whenever x reaches p2, the sum of all those functions would add 1
2x

−s−1.
This, however, is the same thing as when

√
x hits a prime, so we can add

it to the previous point. The total function would include would include

1

2
π(
√
x)x−s−1 . . .

• When x reaches a cube of a prime, the sum adds 1
3x

−s−1. This is the
same thing as adding a new part when 3

√
x hits a prime, that is adding

1

3
π(3

√
x)x−s−1

• And so forth for each k.

In short, adding up all these piecewise integrands seems to give a big inte-
grand (

π(x) +
1

2
π(
√
x) +

1

3
π(3

√
x) + · · ·

)
x−s−1

But this sum of all the piecewise integrands is J(x), multiplied by x−s−1.
Hence

log(ζ(s)) = s
∑
p

∞∑
k=1

∫ ∞

pk

1

k
x−s−1dx = s

∫ ∞

1

J(x)x−s−1dx (25.5.3)

This completes our connection of ζ and J .

25.6 Connecting to Zeros
25.6.1 Where are the zeros?
Our next goal is to see how this connection

log(ζ(s)) = s

∫ ∞

1

J(x)x−s−1dx

relates to the zeros of the ζ function (and hence the Riemann Hypothesis).

L = lcalc.zeros_in_interval (10 ,100 ,0.1)
[l[0] for l in L]

25.6. CONNECTING TO ZEROS 359

We see all the zeros for σ = 1/2 between 0 and 100; there are 29 of them.
We will connect to ζ by means of a very powerful analogy, the one which

Euler used to prove ζ(2) = π2

6 (see the end of Subsection 20.4.2) and which,
correctly done, does yield the right answer.

Begin the analogy by recalling basic algebra. The Fundamental Theorem
of Algebra states that every polynomial factors over the complex numbers. For
instance,

f(x) = 5x3 − 5x = 5(x− 0)(x− 1)(x+ 1) .

If we take the logarithm of such a factorization, we can say things like

log(f(x)) = log(5) + log(x− 0) + log(x− 1) + log(x+ 1)

Then if it turned out that log(f(x)) was useful to us for some other reason R,
it would be reasonable to say that we can get information about the otherwise-
mysterious R from adding up information about the zeros of f (and the con-
stant 5), because of the addition of log(x− r) for all the roots r.

You can’t really do this with arbitrary functions, of course. Disappointingly,
ζ is definitely a function where this doesn’t work, mostly because ζ(1) diverges
so badly, no matter how you define the complex version of ζ.

But it so happens that ζ is very close to a function you can analyze this
way, (s − 1)ζ(s). Applying the logarithm factoring idea to (s − 1)ζ(s) (and
doing lots of relatively hard complex integrals, or some other formal business
with difficult convergence considerations) allows us to essentially invert the
equation

log(ζ(s)) = s

∫ ∞

1

J(x)x−s−1dx

to the even more surprising formula

J(x) = Li(x)−
∑
ρ

Li(xρ)− log(2) +
∫ ∞

x

dt

t(t2 − 1) log(t) (25.6.1)

25.6.2 Analyzing the connection
It is hard to overestimate the importance of the formula (25.6.1). Each piece
comes from something inside ζ itself, inverted in this special way.

• First, Li(x) comes from the fact that we needed (s− 1)ζ(s) to apply this
inversion, not just ζ(s). In fact, this particular inversion can be seen by
integrating, as it’s true that

s

∫ ∞

1

Li(x)x−s−1dx = − log(s− 1)

so one can see that s− 1 and Li seem to correspond.

• Second, each Li(xρ) comes from each of the zeros of ζ on the line σ = 1/2
in the complex plane. This is the part which most closely corresponds to
the factoring.

• The constant term log(2) comes from the constant when you do the
factoring, similarly to the 5 in the example above using f(x) = 5x3− 5x.

• Finally, the integral in (25.6.1) comes from the zeros of ζ at −2n we
mentioned just before the statement of 25.3.2.

360 CHAPTER 25. FURTHER UP AND FURTHER IN

To give you a sense of how complicated (25.6.1) really is, here is a plot of
just one small piece of it.

import mpmath
parametric_plot ((lambda t:

mpmath.ei(log (20) *(0.5+i*RR(t))).real , lambda t:
mpmath.ei(log (20) *(0.5+i*RR(t))).imag), (0 ,14.1),
rgbcolor=hue (0.7), plot_points =300) +
point((mpmath.ei(log (20) *(0.5+i*14.1)).real ,
mpmath.ei(log (20) *(0.5+i*14.1)).imag),
color= ' red ' ,size =20)

This is the plot of
Li(201/2+it)

up through the first zero of ζ above the real axis. It’s beautiful, but also
forbidding. After all, if takes that much twisting and turning to get to Li of
the first zero, what is in store if we have to add up over all infinitely many of
them to calculate J(20)?

So at the very least, it would be helpful to know where all of those myste-
rious zeros live! This is why the Riemann Hypothesis is so important; it pins
them down quite dramatically.

25.7 The Riemann Explicit Formula
Now we are finally ready to see Riemann’s result, by plugging in this formula
for J into the Moebius inverted formula for π given by

π(x) = J(x)− 1

2
J(

√
x)− 1

3
J(3

√
x)− 1

5
J(5

√
x) +

1

6
J(6

√
x) + · · ·

It is true that Riemann did not prove the following formula fully rigorously,
and indeed one of the provers of the Prime Number Theorem mentioned taking
decades as part of that effort just to prove all the statements Riemann made
in this one paper. Nonetheless, it is certainly Riemann’s formula for π(x), and
an amazing one:

Fact 25.7.1 (Riemann explicit formula).

π(x) =
∞∑

n=1

µ(n)

n

[
Li(x1/n)−

∑
ρ

(
Li(xρ/n) + Li(xρ̄/n)

)
+

∫ ∞

x1/n

dt

t(t2 − 1) log(t)

]

It is worth making two points about the transition to this formula. First,
if you’re wondering where the log(2) at the end of the previous section went, it
went to 0 because

∑∞
n=1

µ(n)
n = 0, though this is very hard to prove. (In fact,

it is a consequence of the Prime Number Theorem; see Exercise 25.9.5.)
Secondly, each ρ is a zero above the real axis, and then ρ̄ is the correspond-

ing one below the real axis. The summation is over every single zero not on the
real axis. In particular, these ρ are conjectured by the Riemann Hypothesis to
all have real part equal to 1/2, which would make things particularly tidy.

Now let’s see this formula in action.

import mpmath
var(' y ')
L = lcalc.zeros_in_interval (10 ,50 ,0.1)
@interact

25.7. THE RIEMANN EXPLICIT FORMULA 361

def _(n=(100 ,(60 ,10^3))):
P = plot(prime_pi ,n-50,n, color= ' black ' ,

legend_label= ' $\pi(x)$ ')
P += plot(Li,n-50,n, color= ' green ' ,

legend_label= ' $Li(x)$ ')
G = lambda x: sum([mpmath.li(x^(1/j)) * moebius(j)/j

for j in [1..3]])
P += plot(G,n-50,n, color= ' red ' , legend_label =

' $\sum_{j=1}^{%s}␣\\frac{\mu(j)}{j}␣Li(x^{1/j})$ ' %3)
F = lambda x: sum ([(mpmath.li(x^(1/j))-log(2) +

numerical_integral(1/(y*(y^2-1)*log(y)),
x^(1/j),oo)[0])*moebius(j)/j for j in [1..3]]) -
sum ([(mpmath.ei(log(x)*((0.5+l[0]*i)/j)) +
mpmath.ei(log(x)*((0.5 -l[0]*i)/j))).real for l in L
for j in [1..3]])

P += plot(F,n-50,n,color= ' blue ' , legend_label= ' Really␣
good␣estimate ' ,plot_points =50)

show(P)

This graphic shows just how good it can get. Again, notice the waviness,
which allows it to approximate π(x) not just once per “step” of the function,
but along the steps.

We can also just check out some numerical values.
var(' y ')
L = lcalc.zeros_in_interval (10 ,300 ,0.1)
F = lambda x: sum ([(mpmath.li(x^(1/j))-log(2) +

numerical_integral (1/(y*(y^2-1)*log(y)),x^(1/j),oo)[0]
)*moebius(j)/j for j in [1..3]]) -
sum ([(mpmath.ei(log(x)*((0.5+l[0]*i)/j)) +
mpmath.ei(log(x)*((0.5 -l[0]*i)/j))).real for l in L for
j in [1..3]])

var(' y ')
L = lcalc.zeros_in_interval (10 ,300 ,0.1)
F = lambda x: sum ([(mpmath.li(x^(1/j))-log(2) +

numerical_integral (1/(y*(y^2-1)*log(y)),x^(1/j),oo)[0]
)*moebius(j)/j for j in [1..3]]) -
sum ([(mpmath.ei(log(x)*((0.5+l[0]*i)/j)) +
mpmath.ei(log(x)*((0.5 -l[0]*i)/j))).real for l in L for
j in [1..3]])

@interact
def _(n=300):

print F(n)
print prime_pi(n)
print Li(n.n())
print Li(n.n()) - 1/2*Li(sqrt(n.n())) -

1/3*Li((n.n())^(1/3))

Many wonderful facts would follow from the truth of the Riemann Hypoth-
esis, or from a natural generalization.

Fact 25.7.2 (Consequences of the (generalized) Riemann Hypothesis). The
following follow from the Riemann Hypothesis or a generalization for things
like general Dirichlet series.

• The Dirichlet series of the Möbius function would be the multiplicative
inverse of the zeta function for lots more complex values than just the
real ones we proved it for in .

362 CHAPTER 25. FURTHER UP AND FURTHER IN

• The value (not just average) of σ(n) would have the following bound once
n is big enough:

σ(n) < eγ log(log(n))

• The biggest gap between consecutive prime numbers could not be too big
(to be precise, O(

√
p log(p)).

• We would know exactly what it means for a type of prime to win the
‘prime races’ (see Section 22.1).

• Artin’s conjecture (Conjecture 17.5.2) on primitive roots follows from a
generalization as well.

So can you prove that there are no other zeros other than those on the
critical line to contribute to these approximations to π(x)? If so, welcome to
the future of number theory!

25.8 Epilogue
Let’s see just a little more of the future of number theory. The Riemann zeta
function and counting primes is truly only the beginning of research in modern
number theory.

For instance, research in finding and counting points on curves (as in Chap-
ter 15) leads to more complicated series like ζ, called L-functions. There is a
version of the Riemann Hypothesis for them, too (see the end of the previ-
ous subsection). Even without that, they gives truly interesting, strange, and
beautiful results. Here is a recent result of interest.

Recall from Example 14.2.3 that the notation r12(n) should denote the
number of ways to write n as a sum of twelve squares. Here, order and sign
both matter, so (1, 2) and (2, 1) and (−2, 1) are all different.

Theorem 25.8.1. As we let p run through the set of all prime numbers, the
distribution of the fraction

r12(p)− 8(p5 + 1)

32p5/2

is precisely as this circular function in the long run:

2

π

√
1− t2

Proof. Needless to say, this is far beyond the level of this course – but maybe
you will make the next contribution? Initially this result is a corollary of
the proof of the Sato-Tate conjecture by Barnet-Lamb, Geraghty, Harris, and
Taylor; that proof crucially used the so-called “Fundamental Lemma” of Gérard
Laumon and Ngô Bảo Châu, the latter of whom won the Fields Medal based
on proving it in very full generality.

Sage note 25.8.2 (Into the future). The following graphic is based on one
due to William Stein, the original founder and developer of Sage, in personal
communication. The higher the number, the closer the values should group to
the distribution; change the number of bins in the histogram to see it more
clearly.

https://en.wikipedia.org/wiki/Sato–Tate_conjecture
https://en.wikipedia.org/wiki/Fundamental_lemma_(Langlands_program)

25.9. EXERCISES 363

def sqrt2 ():
PI = float(pi)
return plot(lambda x: (2/PI)*math.sqrt(1-x^2), -1,1,

plot_points =200,
rgbcolor =(0.3 ,0.1 ,0.1), thickness =2)

delta = delta_qexp (10^5)

@interact
def delta_dist(bins =(20 ,[10..150]) , number =

[500 ,1000 ,.. , delta.prec()]):
D = delta[: number]
w = [float(D[p])/(2* float(p)^(5.5)) for p in

prime_range(number + 1)]
show(histogram(w, bins=bins , normed=True) + sqrt2(),

frame=True , gridlines=True)

What an amazing result. These ideas are at the forefront of all types of
number theory research today, and my hope is that you will enjoy exploring
more of it, both with paper and pencil and using tools like Sage!

25.9 Exercises
1. Prove that eix = cos(x)+ i sin(x) using Taylor series. Try to include proofs
of the convergence of everything involved.

2. Many books have a chain of reasoning interpreting the value ζ(−1) = 1
12 .

Find a physical one and summarize the argument. (The Specialized References
and Other References may have some suggestions.) Do you buy that adding
all positive integers could possibly have a meaning?

3. Show all details for the improper integrals in Section 25.5.

4. Differentiate the function h(x) = xx. Why is this question appropriate for
this chapter?

5. Verify numerically that
∑∞

n=1
µ(n)
n → 0 – by calculator, then by computer.

How close can you get to zero before your computer gives up?

6. Read one of the several excellent introductions to the Riemann Hypothesis
intended for the “general reader”. (Some are listed in the Specialized Refer-
ences.)

7. What is the Birch-Swinnerton-Dyer Conjecture? Find out as much about
it as you can.

8. Answer one of these questions, or all of them.
• What are partitions of a number?
• What are continued fractions?
• What is an elliptic curve, and how is it used in cryptography?
• What is a number field?

9. What else do you want to know about numbers? What are you inspired to
discover?

364 CHAPTER 25. FURTHER UP AND FURTHER IN

Appendix A

List of Sage notes

There are many great Sage references. But for the convenience of users of this
text, we collect all the many Sage notes from the text here in one place.

Sage note 1.5.1 About Sage notes
Sage note 1.5.2 Using commands in Sage cells
Sage note 2.1.2 Counting begins at zero
Sage note 2.1.3 Repeating commands for different input
Sage note 2.4.3 Remind how to get list elements
Sage note 4.2.1 Timing your work
Sage note 4.2.2 Too big of numbers
Sage note 4.2.4 Give it a name
Sage note 4.2.5 Making tuples
Sage note 4.2.6 Types matter
Sage note 4.5.1 Checking equality
Sage note 4.6.2 List comprehensions
Sage note 5.3.5 Getting interactive Sage help
Sage note 6.1.3 Making comments
Sage note 8.2.1 Colorful options
Sage note 9.1.6 Reminder to try things out
Sage note 9.3.2 Euler phi in Sage
Sage note 9.3.3 More complex list comprehension
Sage note 10.0.1 Reminder for colormaps
Sage note 10.1.2 Filtering list comprehensions
Sage note 10.2.2 How Sage does primitive roots
Sage note 10.5.4 Reminder on equality
Sage note 11.1.1 Always evaluate your definitions
Sage note 11.2.1 Reminder to evaluate definitions
Sage note 11.3.1 Another reminder to evaluate definitions
Sage note 11.3.4 Compute what you need
Sage note 11.3.6 Change values right in the code
Sage note 11.5.1 We keep reminding you
Sage note 11.6.1 A final reminder to evaluate definitions
Sage note 12.4.8 Reminder about timing
Sage note 12.5.3 Trying your primes yourself
Sage note 12.5.6 Code for trial division
Sage note 12.6.6 Building interacts

(Continued on next page)

365

366 APPENDIX A. LIST OF SAGE NOTES

Sage note 13.1.3 Handling errors
Sage note 13.4.6 Examining code is good for you
Sage note 16.2.2 Commands of more sophistication
Sage note 16.3.3 Quadratic residues
Sage note 17.1.4 Check your work
Sage note 17.4.9 Names of functions may vary
Sage note 18.2.3 Review quiz
Sage note 18.2.5 Explore here
Sage note 19.2.2 Syntax for sigma
Sage note 20.2.1 Try to be efficient
Sage note 21.1.1 Syntax for counting primes
Sage note 21.1.2 Cython
Sage note 21.1.3 Not all algorithms are equal
Sage note 23.1.5 Check your work again
Sage note 25.8.2 Into the future

Appendix B

Notation

This is a quick guide to possibly unfamiliar notation. Page numbers or ref-
erences usually refer to the first appearance of a notation with that meaning,
occasionally to a definition.

Symbol Description Page

Z (ring of) integers 1
N counting numbers (starting at zero) 1
a | b a is a divisor of b 3
gcd(a, b) greatest common divisor of a and b 10
⌊x⌋ greatest integer (floor) function 23
a ≡ b (mod n) a is congruent to b modulo n 36
[a] the equivalence class of a modulo some fixed n 39
a−1 multiplicative inverse of a number modulo some

fixed n
53∏n

i=1 pi product of unspecified, possible identical,
primes

65∏
p short form for product of primes 65∏
q alternate short form for product of primes 65∏n
i=1 p

ei
i product of unspecified distinct prime power 65∏

pe short form for product of prime powers 65
pk ∥ n for p prime, pk | n but pk+1 does not divide n 68
n! n factorial 69
Zn (ring of) integers modulo n 87
A \ {a} the set of all elements in A except a ∈ A 93
|G| order of a group G 94
|x| order of a group element x ∈ G 95
Un group of units modulo n 100
ϕ(n) order of the group of units of n (Euler function) 102
Fn Fermat number 22

n

+ 1 149
Mn Mersenne number 2n − 1 151
r2(n) number of different ways to write n as a sum of

two squares
186

rk(n) number of different ways to write n as a sum of
k perfect squares

192

QR abbreviation for ‘quadratic residue’ 220(
a
p

)
Legendre symbol, for p prime 226

(Continued on next page)

367

368 APPENDIX B. NOTATION

Symbol Description Page

aE multiples of even numbers by a (in a given
residue system)

233(
a
n

)
Jacobi symbol, n odd 240

r(n) alternate notation for r2(n) 254
σk(n) sum of kth powers of divisors of n 259
τ(n) number of (positive) divisors of n 259
σ(n) sum of (positive) divisors of n 259
u(n) unit function 262
N(n) identity function 262
σ−1(n) abundancy index of n 268
O(g(x)) ‘Big Oh’ notation that a function is less in ab-

solute value than Cg(x), for some constant C
276

log(n) natural (base e) logarithm 283
γ Euler-Mascheroni gamma constant, limit of dif-

ference between the harmonic series and natu-
ral logarithm

285

Γ Gamma function factorial extension 285
ϕ(n, a) number of integers coprime to first a primes 293
Li(x) logarithmic integral

∫ x

2
dt

log(t) 294
Θ(x) Chebyshev theta function 300
a(n) prime number indicator function 301
p# primorial (product of primes up to p) 312
C2 twin prime constant 315
µ(n) Moebius function of n 319
f ⋆ g Dirichlet product of arithmetic functions f and

g
322

I(n) Dirichlet product identity function 323
ω(n) number of unique prime divisors of n 325
ν(n) alternate notation for ω(n) 325
λ(n) Liouville’s function 325
ζ(s) Riemann zeta function 333
J(x) auxiliary function in Riemann explicit formula 355

Appendix C

References and Further
Resources

There are so many resources I used in preparation of this book it would be
very hard to list all of them. Still, I have a lot of recommendations for further
reading, places for instructors to look for alternate examples, proofs, exercises,
etc., and most of these are books I have actively used at some point. I at-
tempted to include a canonical website for each book, though be aware that
especially publisher pages may change at short notice. I’ve also included some
valuable articles I have benefited from.

C.1 General References
There are many good introductory number theory texts.

[1] Gareth A. and J. Mary Jones, Elementary Number Theory, Springer,
London, (2005). (Website)
A good introduction with an emphasis on groups, containing interleaved
exercises with full answers.

[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Num-
bers, fifth edition, Oxford, (1979) (Website for expanded sixth edition)
A highly regarded text with copious notes, but sometimes more than a
little hard to parse with its consecutively numbered theorems and very
dense prose.

[3] William Stein, Elementary Number Theory: Primes, Congruences, and
Secrets, Springer, (2008) (Website)
Freely available and the first Sage-enabled number theory text, by the
founder of Sage (a number theorist).

[4] Ken Rosen, Elementary Number Theory and its Applications, Pearson,
(2011). (Website)
A venerable text with programming exercises that still wear well.

[5] David C. Marshall, Edward Odell, Michael Starbird, Number Theory
through Inquiry, Mathematical Association of America, Washington, (2007).
(Website)
The topics are very standard, but the approach is quite different; no
proofs, only statements. This turns out to be a highly effective pedagogy;
see the Academy of Inquiry Based Learning for more information.

369

http://www.springer.com/us/book/9783540761976
https://global.oup.com/academic/product/an-introduction-to-the-theory-of-numbers-9780199219865
http://wstein.org/ent/
http://www.pearsonhighered.com/educator/product/Elementary-Number-Theory/9780321500311.page
http://www.maa.org/publications/ebooks/number-theory-through-inquiry
http://www.inquirybasedlearning.org

370 APPENDIX C. REFERENCES AND FURTHER RESOURCES

[6] R. P. Burn, A pathway into number theory, Cambridge, (1996) (Website)
A very fun inquiry-driven text before there were such things, with a lot
of extremely good examples, especially in things like quadratic forms.

[7] John Stillwell, Elements of Number Theory, Springer, (2003) (Website)
More algebraically oriented, with good material on the Pell equation and
Gaussian integers – noteworthy for a good treatment of Conway’s river
concepts.

[8] Harold Shapiro, Introduction to the Theory of Numbers, Dover, (2008)
(No website)
Incredibly comprehensive, at a fairly high level. Good material on av-
erages and odd perfection, immense bibliography and notes in style of
[C.1.2], and also inquiry-driven “do-it-yourself” sections. Appears to be
out of print.

[9] Anthony Gioia, The Theory of Numbers, Dover, (2001) (No website)
Surprisingly detailed and high-level but has good coverage of several
unusual topics such as geometry of numbers.

[10] Marty Erickson, Anthony Vazzana, David Garth, Introduction to Number
Theory, second edition, CRC, (2016). (Website)
Enough material for two courses, some fairly advanced, and newly en-
dowed with downloadable Sage worksheets.

[11] George Andrews, Number Theory, Dover, (1994) (Website)
Yet another nice reprint from Dover, this one with (as one would expect
of the author) great combinatorial content.

[12] H. M. Edwards, Higher Arithmetic: An Algorithmic Introduction to Num-
ber Theory, American Mathematical Society, (2006) (Website)
Not so algorithmic, but very, very concrete and constructive. Squares
are □s, which grows on the reader.

[13] Neville Robbins, Beginning Number Theory, Jones and Bartlett, (2006)
(No website)
An out-of-print standard text with many similar topics and interesting
historical comments.

[14] Oystein Ore, Invitation to Number Theory, Mathematical Association of
America, (1967) (Website)
An older text that is still worth the conversational tone.

C.2 Proof and Programming References
The first few books here are good resources for an introduction to proof, which
should cover anything needed as a prerequisite for this text.

In addition to the many good programming exercises in several books in
the General References, the latter books will give you an introduction to the
programming side of things.

[1] Richard Hammack, The Book of Proof, (2013). (Website)
A quality middle-of-the-road introduction to proof, used reasonably widely
and covering all standard topics for a proof transition course.

[2] Joseph Fields, A Gentle Introduction to the Art of Mathematics, (2013).
(Website)
The title is pretty accurate; this is a quite gentle open text usable for
self-study.

http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/pathway-number-theory-2nd-edition
http://www.springer.com/us/book/9780387955872
http://tvazzana.sites.truman.edu/introduction-to-number-theory/
http://store.doverpublications.com/0486682528.html
http://bookstore.ams.org/stml-45/
http://www.maa.org/press/ebooks/invitation-to-number-theory
http://www.people.vcu.edu/~rhammack/BookOfProof/
http://giam.southernct.edu/GIAM/

C.3. SPECIALIZED REFERENCES 371

[3] Edward Burger, Extending the Frontiers of Mathematics, Key College,
(2007) (Website)
This book is not necessarily just an introduction to proof, but has a
wonderful attitude to conjecture. Essentially, one should view every proof
as an opportunity to extend, and every disproof as a chance to rescue.

[4] Gregory Bard, Sage for Undergraduates, American Mathematical Society,
(2015) (Website)
This is a very good guide to Sage for anyone starting out with basic
college math knowledge; the author has taught using Sage for some time.
Did I mention it is freely downloadable as well as available in print?

[5] Craig Finch, Sage: Beginner’s Guide, Packt, (2011) (Website)
This guide is not free, but is comprehensive (for the time it was writ-
ten) and has the unique perspective of someone not involved in the Sage
community.

[6] Allen Downey, Think Python, O’Reilly, (2012) (Website)
A very good introduction to programming from scratch in Python, usable
from the website or as a hard-copy text.

[7] Zed Shaw, Learn Python the Hard Way, Addison-Wesley, (2013) (Web-
site)
A preternaturally idiosyncratic take on how to program, but well worth
the effort to learn things the hard way if you have the time to push
through it.

C.3 Specialized References
Number Theory is a huge field, and even at an introductory level there are
many wonderful resources to be aware of. I have used most of the following in
one way or another in preparation of this text, and if you are intrigued by a
specific facet of number theory, I encourage you to get these from your library!
Most of these are more specialized, but a few are not really texts but intended
for the “casual” reader.
[1] John Derbyshire, Prime Obsession, Joseph Henry Press, (2003) (Website)

A marvelous achievement of bringing the Riemann Hypothesis to the (de-
termined) lay reader while simultaneously making you care about post-
Napoleonic Europe. If I do say so myself.

[2] Roland van der Veen and Jan van de Craats, The Riemann Hypothesis,
Mathematical Association of America, (2016). (Website)
Interesting lecture notes leading to a basic understanding of the Riemann
Hypothesis, based on a high-school enrichment program in the Nether-
lands.

[3] Barry Mazur and William Stein, Prime Numbers and the Riemann Hy-
pothesis, Cambridge University Press, (2016). (Website)
This book goes straight for the jugular of the Riemann Hypothesis, start-
ing from scratch. That requires a lot of investment, but you won’t find it
from the perspective of working number theorists in other books, either.

[4] H. M. Edwards, Riemann’s Zeta Function, Dover, (2001) (Website)
Still useful comprehensive first text on this important topic.

[5] Jeffrey Stopple, A Primer of Analytic Number Theory, Cambridge, (2003).
(Website)
Very innovative book on exactly what it says; second half not neces-

http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP000280.html
http://www.gregorybard.com/Sage.html
https://www.packtpub.com/hardware-and-creative/sage-beginners-guide
http://greenteapress.com/wp/think-python/
https://learncodethehardway.org/python/
https://learncodethehardway.org/python/
https://www.nap.edu/catalog/10532/prime-obsession-bernhard-riemann-and-the-greatest-unsolved-problem-in
http://www.booksandculture.com/articles/2009/janfeb/prime.html
http://www.maa.org/press/books/the-riemann-hypothesis
http://wstein.org/rh/
http://store.doverpublications.com/0486417409.html
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/primer-analytic-number-theory-pythagoras-riemann

372 APPENDIX C. REFERENCES AND FURTHER RESOURCES

sarily for every us undergraduate, but easiest introduction to Birch-
Swinnerton-Dyer I could find! Covers most traditional material, too,
and has copious entertaining historical notes.

[6] Tom Apostol, Introduction to Analytic Number Theory, Springer, (1976).
(Website)
The canonical “undergraduate” analytic number theory book. Monu-
mental but very difficult; zillions of interesting results in exercises.

[7] Stan Wagon and David Bressoud, A Course in Computational Number
Theory, Wiley, (2008). (Website)
Contains Mathematica code to visualize and explore a lot of interesting
number theory, and is very consistent with the computational viewpoint
throughout.

[8] Paul Pollack, Not Always Buried Deep, American Mathematical Society,
(2009). (Website)
Definitely a second course in number theory, as the subtitle says, with
good material on arithmetic progressions and the Hilbert-Waring prob-
lem (the latter is difficult to find in a textbook).

[9] Harold Davenport, The Higher Arithmetic, Cambridge University Press,
(2008). (Website)
Another well-known general resource, with a very good description of how
to find if a rational conic has a rational point (which directly connects
to integer points on conics as well).

[10] Stephen Richards, A Number for Your Thoughts, S. P. Richards, (1982)
(No website)
Many very interesting topics for the general reader, from repunits to all
sorts of other topics. Intriguing story must lie behind the essentially
identical book by a different author several years later.

[11] Samuel S. Wagstaff, Jr., The Joy of Factoring, American Mathematical
Society, (2013). (Website)
The title says it all, and more accessible to college students than one
would think. By one of the leaders in the field.

[12] George Andrews and Kimmo Eriksson, Integer Partitions, Cambridge
University Press, (2004). (Website)
A brilliant, accessible, inventive book which makes me very sad there is
only enough time for so many topics in a one-semester course. Indispens-
able for bringing partitions to undergraduates.

[13] Richard Friedberg, An Adventurer’s Guide to Number Theory, Dover,
(1995) (Website)
Very conversational and enjoyable; not really a textbook. Key feature
is a detailed discussion of how Euler missed what is essentially unique
factorization in a certain number field for two of his more interesting
results – and he does it without actually proving unique factorization!

[14] Julian Havil, Gamma: Exploring Euler’s Constant, Princeton, (2009).
(Website)
This book turns out to be about both Γ the function and γ the constant
(recall Definition 20.3.2), and includes a description of Apéry’s tomb (see
Subsection 24.4.1 and ζ(3)).

[15] C. D. Olds, Anneli Lax, Giuliana Davidoff, The Geometry of Numbers,
Mathematical Association of America, (2000) (Website)
Delightful introduction to and inspiration for many of the lattice topics

http://www.springer.com/us/book/9780387901633
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470412151.html
http://bookstore.ams.org/mbk-68
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/higher-arithmetic-introduction-theory-numbers-8th-edition
http://bookstore.ams.org/stml-68
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/integer-partitions
http://store.doverpublications.com/0486281337.html
http://press.princeton.edu/titles/7494.html
http://www.maa.org/press/ebooks/the-geometry-of-numbers

C.4. HISTORICAL REFERENCES 373

pursued in this text. The second half goes fairly deep, and is more than
worth pursuing as a directed study with undergraduates.

[16] Paulo Ribenboim, The Little Book of Bigger Primes, Springer, (2004)
(Website)
This book has incredible amounts of interesting detail regarding many of
the prime topics considered here. An example: a discourse on whether
the pseudoprime criterion base 2 was really discovered by ancient Chinese
mathematicians.

[17] Paulo Ribenboim, My Numbers, My Friends, Springer, (2000) (Website)
Based on a series of lectures, this book is rather higher level, but has cor-
respondingly more truly interesting material, including an entire chapter
inspired by 1093 and a very early prime-generating algorithm by a certain
Pocklington.

C.4 Historical References

Number Theory is also a very old field, as should be clear from using this
book. Here I have collated references intended both for mathematicians and
the fabled ‘educated laity’. (Note that many of the other books referenced here
have significant historical content, notably [C.3.5].)

[1] Jim Tattersall, Elementary Number Theory in Nine Chapters, Cambridge
University Press, (2005) (Website)
Oodles of class-tested historical material and many, many exercises, in-
cluding a welter of them on topics surrounding amicable numbers.

[2] John J. Watkins, Number Theory: A Historical Approach, Princeton,
(2013). (Website)
A very nice historically-oriented approach to elementary number theory.
Includes Sage material in an appendix.

[3] Oystein Ore, Number Theory and Its History, Dover, (1948). (Website)
Another conversational classic by Ore, with plenty of historical goodies.

[4] Jay Goldman, The Queen of Mathematics, AK Peters, (1997) (Website)
A truly historical sojourn through much of number theory up through
the early twentieth century, with extensive primary source material and
investigation of Gauss’ monumental work. Sadly, largely beyond the level
of this text.

[5] William Dunham, Journey Through Genius, Wiley, (1990). (Website)
This is intended for those without calculus, but has many great number-
theoretic bits all the same.

[6] William Dunham, Euler: The Master of Us All, Mathematical Associa-
tion of America, (1999). (Website)
This book has some nice discussion of Euler’s number theory alongside
many other historical vignettes with real math power.

[7] A. Knoebel et al., Mathematical Masterpieces: Further Chronicles by the
Explorers, Springer, (2007). (Website)
Collection of additional classroom resources focused on primary source
material, including the Basel problem and quadratic reciprocity.

http://www.springer.com/us/book/9780387201696
http://www.springer.com/us/book/9780387989112
http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/elementary-number-theory-nine-chapters-2nd-edition?format=PB
http://press.princeton.edu/titles/10165.html
http://store.doverpublications.com/0486656209.html
https://www.crcpress.com/The-Queen-of-Mathematics-A-Historically-Motivated-Guide-to-Number-Theory/Goldman/p/book/9781568810065
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471500305.html
http://www.maa.org/press/books/euler-the-master-of-us-all
http://www.springer.com/us/book/9780387330600

374 APPENDIX C. REFERENCES AND FURTHER RESOURCES

C.5 Other References
Some books are just interesting, even if they are not primarily about number
theory. I enjoyed all of these a great deal and recommend them.
[1] Richard Evans Schwartz, You Can Count on Monsters, A K Peters,

(2010) (Website)
This delightful picture book has a different monster for each prime num-
ber, with bizarre combinations for composites. Personal experience says
it satisfies for ages three and up.

[2] Nathan Carter, Visual Group Theory, Mathematical Association of Amer-
ica, (2009). (Website)
Visualize group theory; gorgeous pictures.

[3] John H. Conway and Richard Guy, The Book of Numbers, Springer,
(1996). (Website)
A joyous and pictorially engaging romp.

[4] Arthur T. Benjamin and Ezra Brown (eds.), Biscuits of Number Theory,
Mathematical Association of America, (2009). (Website)
A very good compendium of many articles (published throughout the
years) most appropriate for teachers of undergraduate number theory.

[5] Kerins et al., Famous Functions in Number Theory, American Mathe-
matical Society, (2015). (Website)
Aimed at bringing number theory to in-practice or pre-practice educa-
tors, this has a very nice treatment of arithmetic functions. Once you’ve
heard of summation and Moebius inversion as ‘parent’ and ‘child’ rela-
tionships, you’ll never think of them the same again.

[6] Kerins et al., Applications of Algebra and Geometry to the Work of Teach-
ing, American Mathematical Society, (2015). (Website)
Aimed at bringing algebra and geometry to in-practice or pre-practice
educators; manages to bring Gaussian and Eisenstein integers and some
quadratic forms in at the ground level.

[7] T. S. Michael, How to Guard an Art Gallery, Johns Hopkins, (2009)
(Website)
The subtitle is “and other discrete mathematical adventures”, and that
about says it. Covers a surprising amount of number theory in very visual
ways.

[8] Robert Young, Excursions in Calculus: An Interplay of the Continuous
and Discrete, Mathematical Association of America, (1992) (Website)
Unfortunately no longer in print, but a very good source of ideas for
connecting what we usually think of as the continuous world of calculus
and various discrete topics (not just number theory, though this shows
up in several chapters).

C.6 Useful Articles
Throughout the text, I’ve attempted to reference articles in so-called ‘gener-
alist’ mathematics publications which have been useful or intriguing. See also
the collection [C.5.4], where some of these appear. For any comments, see the
locations they are referenced.
[1] Ivan Niven and Barry Powell, Primes in Certain Arithmetic Progressions,

The American Mathematical Monthly, June-July 1976, 83 no. 6, 467–469.

http://www.richardevanschwartz.com/monsters.html
http://www.maa.org/publications/ebooks/visual-group-theory
http://www.springer.com/us/book/9780387979939
http://www.maa.org/press/books/biscuits-of-number-theory
http://bookstore.ams.org/sstp-3/
http://bookstore.ams.org/sstp-2
https://jhupbooks.press.jhu.edu/content/how-guard-art-gallery-and-other-discrete-mathematical-adventures
http://www.maa.org/publications/books/excursions-in-calculus

C.6. USEFUL ARTICLES 375

[2] D. Zagier, A One-Sentence Proof That Every Prime p ≡ 1(mod 4) Is a
Sum of Two Squares, The American Mathematical Monthly, February
1990, 97 no. 2, 144–144.

[3] Andrew Granville and Greg Martin, Prime Number Races, The American
Mathematical Monthly, January 2006, 113 no. 1, 1–33.

[4] David A. Cox, Why Eisenstein Proved the Eisenstein Criterion and Why
Schönemann Discovered It First, The American Mathematical Monthly,
January 2011, 118 no. 1, 3–21.

[5] Steven H. Weintraub, On Legendre’s Work on the Law of Quadratic Reci-
procity, The American Mathematical Monthly, March 2011, 118 no. 3,
210–216.

[6] Jonathan Bayless and Dominic Klyve, Reciprocal Sums as a Knowl-
edge Metric: Theory, Computation, and Perfect Numbers, The American
Mathematical Monthly, November 2013, 120 no. 9, 822–831.

[7] Xianzu Lin, Infinitely Many Primes in the Arithmetic Progression kn−1,
The American Mathematical Monthly, January 2015, 122 no. 1, 48–51.

[8] Reinhard Laubenbacher and David Pengelley, Eisenstein’s Misunder-
stood Geometric Proof of the Quadratic Reciprocity Theorem, The College
Mathematics Journal, January 1994, 25 no. 1, 29–34.

[9] Roger B. Nelsen, Proof Without Words: Square Triangular Numbers and
Almost Isosceles Pythagorean Triples, College Mathematics Journal, May
2016, 47 no. 3, 179–179.

[10] David Lowry-Duda, Unexpected Conjectures about -5 Modulo Primes,
College Mathematics Journal, January 2015, 46 no. 1, 56–57.

[11] William G. Stanton and Judy A. Holdener, Abundancy “Outlaws” of the
Form σ(N)+t

N , Journal of Integer Sequences, 10
[12] D. R. Slavitt, Give Way To God, or The Dying Christ – Pierre de Fermat,

The Mathematical Intelligencer, Summer 2012, 34 no. 2, 3–5.
[13] Paul Nahin, The Mysterious Mr. Graham, The Mathematical Intelli-

gencer, Spring 2016, 38 no. 1, 48–51.
[14] P. A. Weiner, The abundancy index, a measure of perfection, Mathemat-

ics Magazine, October 2000, 73 no. 4, 307–310.
[15] Andrew Bremner, Positively prodigious powers or how Dudeney done it?,

Mathematics Magazine, April 2011, 84 no. 2, 120–125.
[16] Rafael Jakimczuk, The Quadratic Character of 2, Mathematics Maga-

zine, April 2011, 84 no. 2, 126–127.
[17] Russell A. Gordon, Properties of Eisenstein Triples, Mathematics Mag-

azine, February 2012, 85 no. 1, 12–25.
[18] Roger B. Nelsen, Proof Without Words: Infinitely Many Almost-Isosceles

Pythagorean Triples Exist, Mathematics Magazine, April 2016, 89 no. 2,
103–104.

[19] C. Edward Sandifer, How Euler Did It: Odd Perfect Numbers, MAA
Online, November 2006

[20] Matthias Beck, How to change coins, M&M’s, or chicken nuggets: The
linear Diophantine problem of Frobenius, in Resources for Teaching Dis-
crete Mathematics: Classroom Projects, History Modules, and Articles
(B. Hopkins, ed.), Mathematical Association of America, 2009, 65–74.

376 APPENDIX C. REFERENCES AND FURTHER RESOURCES

Index

abundancy index, 267
abundancy outlaws, 268
asympotic, 294

Bachet equation, 30, 202, 204
base a test, 153
Bertrand’s postulate, 297
Bezout identity, see Euclidean

algorithm, extended
Big Oh notation, see Landau

notation
Brun’s constant, 316

Carmichael numbers, 155
characterization of, 155

certificate of primality, 159
Chinese remainder theorem, 52,

104, 218
cipher, 125
coin problem, 1
combinatorics, 82
completing the square, 219
composite number, 61
conductor, 1
congruence, 35

(modular equation), 43
linear, 47
quadratic, 217

congruences
system of, 52

congruent, 36
congruent number problem, 28
conjecture

Artin’s, 243
Catalan’s, 31, 205
Goldbach, 315
Polignac’s, 313
Riemann hypothesis, 354
twin prime, see twin prime

conjecture, 313
Wagstaff’s, 316

continued fraction, 165

coprime, see prime, relatively
counting numbers, 1
CRT, see Chinese remainder

theorem
cryptography, 125

asymmetric key, 130
elliptic curve, 137
public key, 130
public-key, 137
symmetric key, 128

decode, 126
decryption, 127
density

positive, 311
zero, 311, 347

Diophantine equations, 25, 198
linear, 17

Dirichlet product, 322
Dirichlet series, 336
Dirichlet’s Theorem, see primes, in

an arithmetic progression
divisibility, 3
division algorithm, 7
divisor, 3

greatest common, see greatest
common divisor

Eisenstein criterion
for quadratic residues, 235

Elements
Euclid’s, 11, 264

elliptic curves, 30, 193
encode, 125
encryption, 127

Diffie-Hellman, 131, 133
RSA, 139

eponymy
Boyer’s law of, see Stigler’s

law of eponymy
equivalence class, 39
Euclidean algorithm, 11, 190

377

378 INDEX

extended, 12
Euler ϕ function, 102, 252
Euler product, 336
Euler’s theorem, 102
Euler-Mascheroni constant, 285,

372

factorial, 69
factorization, 64

prime, 64
prime power, 64

Fermat factorization, 164
Fermat numbers, 138, 149, 241
Fermat’s last theorem, 29, 193
Fermat’s little theorem, 82

square root of, 156
field, 89
floor function, see greatest integer

function
Frobenius number, 1
FTA, see fundamental theorem of

arithmetic
function

arithmetic, 251
Chebyshev theta, 300
Dirichlet identity, 323
Gamma, 285, 372
identity, 262
Liouville, 325
multiplicative, 108, 252, 262
probability density, 294
Riemann zeta, see zeta

function
step, 300
unit, 262

fundamental region, 181
fundamental theorem

of arithmetic, 65

gamma, see Euler-Mascheroni
constant

generator, see group, generator of
greatest common divisor, 10
greatest integer function, 23, 301
group

Abelian, 96, 209, 233, 326
cyclic, 96, 112, 118
definition of, 93
example of non-Abelian, 97
finite, 94
generator of, 96, 112
homomorphism, 226
of quadratic residues, see

residues, group of
quadratic

of units, see units, group of
quotient, 223

harmonic series, 285, 334
prime, see prime harmonic

series
Hensel’s lemma, 76, 218

identity element, 92
integer lattice, see lattice, integer
integers, 1

Gaussian, 189
modulo n, 87

integral test for series convergence,
334

inverse
of a group element, 92
of a number, 53

Jacobi symbol, 240

key
decryption, 127
encryption, 127
exchange, 136

key exchange, 135
Korselt’s theorem, 155
Kronecker symbol, 240

Lagrange’s theorem
for polynomials, 79
on group order, 95

Landau notation, 276
lattice, 178

integer, 20, 178, 189, 256, 280
positive integer point, 24
sublattice, 181

least common multiple, 15, 72
Legendre symbol, 226

computation, 231
lemma

correct Greek plural of, 66
easier English plural of, 66
what is a, 36

logarithm
discrete, 122

logarithmic integral, 294
Lucas-Lehmer test, 151

maximum, 68
Mersenne numbers, 151
Mihailescu’s theorem, 31
Miller’s test base a, 157
Miller-Rabin test for primality,

159

INDEX 379

minimum, 68
modulus, 36
Moebius

function µ, 319
monoid

commutative, 326
Mordell equation, 30, 202
Mordell’s theorem, 205

Newton’s method, 77
norm, 179, 190
number

k-perfect, 266
abundant, 266
deficient, 266
odd perfect, 269
perfect, 264
pseudoperfect, 266
superabundant, 266
weird, 266

number fields, 165
numbers

amicable, 266

operation
associative, 91
binary, 91
closed, 91
commutative, 96

order
of a group, 94
of a group element, 95

parametrization, 199
parity, 27, 235
Pell’s equation, 211
perfect number, see number,

perfect
pigeonhole principle, 94
points

adding, 209
doubling, 209

Pollard rho factorization, 167
polynomial

prime-generating, 63
prime

constellation, 316
harmonic series, 344
number, 61
races, 305
relatively, 14, 131, 343

prime counting function π(x), 291
explicit formula, see Riemann

explicit formula for π(x)
prime number theorem, 296

elementary proof, 296
primes

arithmetic progressions of,
310

cousin, 316
factorial, 316
Fermat, 149
Gaussian, 190
Germain, 145, 193, 243, 249
in an arithmetic progression,

309
Mersenne, 151, 264
primorial, 316
proof of infinitude of, see

proof, of infinitude of
primes

sexy, 316
twin, see twin primes

primitive root, 111, 223
characterization of, 112
number of, 116
of primes, 118
testing for, 113

primorial, 312, 344
proof

by contradiction, 2
by contrapositive, 2
by induction, 2
by infinite descent, 29
by strong induction, 67
of infinitude of primes, 63

pseudoprime, 153
infinitely many, 158
strong, 158

Pythagorean theorem, 22, 25
Pythagorean triple, 25

characterization of, 27
primitive, 25

Python, 5
Pépin’s test, 241

quadratic forms, 206
quadratic nonresidue, 221
quadratic reciprocity, 238

applications of, 241
proof of, 244

quadratic residue, see residue,
quadratic

relation, 35
equivalence, 38

relatively prime, see prime,
relatively

repunit, 71

380 INDEX

residue, 39
quadratic, 220

residues
complete system of, 40
group of quadratic, 223
least absolute, 40
least nonnegative, 40

Riemann explicit formula for π(x),
360

Riemann Hypothesis, 354
consequences of, 361

ring, 72, 87
example of non-unique

factorization domain, 72
of integers (hint of), 189, 207,

213

Sage, 5
embedded cells, 5
notes, 5

SageMath, see Sage
secret sharing, 146
sieve

of Eratosthenes, 64
signature

digital, 142
Skewes’ number, 295
square root modulo n, 176

Stigler’s law of eponymy, see also
eponymy, Boyer’s law of,
216

sums of squares, 171, 189, 254
insane fact concerning, 257

table
addition, 87
multiplication, 88

trapdoor, 137
trial factorization, 161, 162
twin prime conjecture, 313
twin prime constant, 315
twin primes, 313

units, 101
group of, 100, 144, 223

units modulo n, see units, group of

Waring’s Problem, 193
well-defined

congruence arithmetic, 39
well-ordering

principle, 2, 8
proof of, 3

Wilson’s theorem, 81

zero density, see density, zero
zeta function, 333

	Acknowledgements
	To Everyone
	To the Student
	To the Instructor
	Prologue
	A First Problem
	Review of Previous Ideas
	Where are we going?
	Exercises
	How to Use Computation

	Basic Integer Division
	The Division Algorithm
	The Greatest Common Divisor
	The Euclidean Algorithm
	The Bezout Identity
	Exercises

	From Linear Equations to Geometry
	Linear Diophantine Equations
	Geometry of Equations
	Positive Integer Lattice Points
	Pythagorean Triples
	Surprises in Integer Equations
	Exercises
	Two facts from the gcd

	First Steps with Congruence
	Introduction to Congruence
	Going Modulo First
	Properties of Congruence
	Equivalence classes
	Why modular arithmetic matters
	Toward Congruences
	Exercises

	Linear Congruences
	Solving Linear Congruences
	A Strategy For the First Solution
	Systems of Linear Congruences
	Using the Chinese Remainder Theorem
	More Complicated Cases
	Exercises

	Prime Time
	Introduction to Primes
	To Infinity and Beyond
	The Fundamental Theorem of Arithmetic
	First consequences of the FTA
	Applications to Congruences
	Exercises

	First Steps With General Congruences
	Exploring Patterns in Square Roots
	From Linear to General
	Congruences as Solutions to Congruences
	Polynomials and Lagrange's Theorem
	Wilson's Theorem and Fermat's Theorem
	Epilogue: Why Congruences Matter
	Exercises

	The Group of Integers Modulo n
	The Integers Modulo n
	Powers
	Essential Group Facts for Number Theory
	Exercises

	The Group of Units and Euler's Function
	Groups and Number Systems
	The Euler Phi Function
	Using Euler's Theorem
	Exploring Euler's Function
	Proofs and Reasons
	Exercises

	Primitive Roots
	Primitive Roots
	A Better Way to Primitive Roots
	When Does a Primitive Root Exist?
	Prime Numbers Have Primitive Roots
	A Practical Use of Primitive Roots
	Exercises

	An Introduction to Cryptography
	What is Cryptography?
	Encryption
	A Modular Exponentiation Cipher
	An Interesting Application: Key Exchange
	RSA Public Key
	RSA and (Lack Of) Security
	Other applications
	Exercises

	Some Theory Behind Cryptography
	Finding More Primes
	Primes – Probably
	Another Primality Test
	Strong Pseudoprimes
	Introduction to Factorization
	A Taste of Modernity
	Exercises

	Sums of Squares
	Some First Ideas
	Primes Can Be Written in at Most One Way
	A Lemma About Square Roots Modulo n
	Primes as Sum of Squares
	All the Squares Fit to be Summed
	A One-Sentence Proof
	Exercises

	Beyond Sums of Squares
	A Complex Situation
	More Sums of Squares and Beyond
	Related Questions About Sums
	Exercises

	Points on Curves
	Rational Points on Conics
	A tempting cubic interlude
	Bachet and Mordell Curves
	Points on Quadratic Curves
	Making More and More and More Points
	The Algebraic Story
	Exercises

	Solving Quadratic Congruences
	Square Roots
	General Quadratic Congruences
	Quadratic Residues
	Send in the Groups
	Euler's Criterion
	The Legendre Symbol
	Our First Full Computation
	Exercises

	Quadratic Reciprocity
	More Legendre Symbols
	Another Criterion
	Using Eisenstein's Criterion
	Quadratic Reciprocity
	Some Surprising Applications of QR
	A Proof of Quadratic Reciprocity
	Exercises

	An Introduction to Functions
	Three Questions for Euler phi
	Three Questions, Again
	Exercises

	Counting and Summing Divisors
	Exploration: A New Sequence of Functions
	Conjectures and Proofs
	The Size of the Sum of Divisors Function
	Perfect Numbers
	Odd Perfect Numbers
	Exercises

	Long-Term Function Behavior
	Sums of Squares, Once More
	Average of Tau
	Digging Deeper and Finding Limits
	Heuristics for the Sum of Divisors
	Looking Ahead
	Exercises

	The Prime Counting Function
	First Steps
	Some History
	The Prime Number Theorem
	A Slice of the Prime Number Theorem
	Exercises

	More on Prime Numbers
	Prime Races
	Sequences and Primes
	Types of Primes
	Exercises

	New Functions from Old
	The Moebius Function
	Inverting Functions
	Making New Functions
	Generalizing Moebius
	Exercises

	Infinite Sums and Products
	Products and Sums
	The Riemann Zeta Function
	From Riemann to Dirichlet and Euler
	Multiplication
	Multiplication and Inverses
	Four Facts
	Exercises

	Further Up and Further In
	Taking the PNT Further
	Improving the PNT
	Toward the Riemann Hypothesis
	Connecting to the Primes
	Connecting to Zeta
	Connecting to Zeros
	The Riemann Explicit Formula
	Epilogue
	Exercises

	List of Sage notes
	Notation
	References and Further Resources
	General References
	Proof and Programming References
	Specialized References
	Historical References
	Other References
	Useful Articles

	Index

