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Objectives:

1. To introduce the use of a log
2. To brieflly introduce shadow paging

Materials:

1. Projectable of transaction states
2. Projectable showing need to undo from latest to earliest
3. Projectable of a rollback and effect in log
4. Projectable showing need to redo from earliest to latest
5. Projectable of example of using log for recovery
6. Projectable of recovery algorithm
7. Projectable  showing Shadow Paging

I. Introduction

A.  We have been speaking about the notion of ACID transactions. 

1. Consistency is the responsibility of the transaction author - not the 
DBMS.

2. In our discussion of concurrency, we have seen how a DBMS can enforce 
the isolation properties of an ACID transaction.  

3. Today we will look at how it handles the atomic and durability properties.

B. Recall the notion of the state of a transaction. 
 
PROJECT
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1. Since a transaction may start making changes to the database before it 
commits - and therefore might fail after some changes have already been 
made. 
 
Atomicity requires that all effects of a transaction that enters the failed 
state must be removed from the database.   This is initiated by the SQL 
statement rollback

2. It is also possible that the system may crash while a transaction is active 
for a variety of possible reasons:

a) Power failures.

b) Hardware failures - e.g. a chip going bad.

c) Software failures - e.g. operating system crashes.

d) Network communication failures (due to many possible causes)

e) Human error - an operator pressing a wrong button or issuing a 
command that crashes the system. 
 
Again, atomicity requires that, in such cases, all effects of a 
transaction that was active when a crash occurred must be removed 
from the database before normal operation can resume.  This must be 
done when the database is restarted after the cause of the crash is 
rectified.

3. Once a transaction has entered the fully committed state, it is necessary to 
ensure that changes that it made to the database are durable.

a) If a system crash occurs, durability requires ensuring that all effects of 
a transaction that fully committed must remain in the database when 
normal operation is restored.   This is the focus of our discussion 
today.
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b) Durability also requires use of things like mirroring and on-site and 
off-site backups to deals with some issues that are not our focus today:

(1)Being able to deal with more catastrophic hardware failures that 
damage the media storing data.  Of these, the most potentially 
catastrophic is a head crash, in which a disk drive  head comes into 
contact with the surface of the disk - effectively destroying all the 
data on the platter. 

(2)Being able to deal with physical catastrophes such as fire, flood, 
etc. 

C. Storage Media Issues

1. Recall that data is stored in three types of storage, each with its own 
degree of security against loss:

a) Data in VOLATILE STORAGE - e.g. the main memory of the 
computer - is subject to loss at any time due to any kind of system 
failure.  In particular, power failures, hardware failures, and most 
software crashes will cause data in volatile storage to be lost.

b) Data in NON-VOLATILE STORAGE - e.g. disk and tape - is much 
more secure.  Data in non-volatile storage is generally not lost unless 
there is a power failure while it is being written or a catastrophic 
failure of the storage device itself (e.g. a head crash on a disk) or an 
external catastrophe such as fire or flooding.  In this regard, tape is 
much less vulnerable than disk.

c) Conceptually, STABLE STORAGE is storage that is immune to any 
kind of  loss.  While no storage medium is  totally immune to 
destruction of data, stable storage may be approximated by the writing 
of the same data on more than one non-volatile medium, so that if one 
is damaged the other(s) will still retain the data intact.
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(1)Use of on-site mirroring - e.g. through RAID

(2)Use of off-site mirroring over a network which protects against 
physical dangers as well as system errors/crashes.

(3)The latter approach is also of value in ensuring protection from 
certain kinds of physical damage to a system such as fire, flood, etc.

2. When we looked at file storage media earlier, we saw that disk and SSD's 
store data in blocks, such that information is transferred to and from these 
media as entire blocks.  

a) This means that write operations by a transaction are typically done to 
an in-memory buffer, with the actual transfer of the data to the disk 
occurring at a later time when the in-memory buffer is actually written 
to disk.  

b) Since main memory is volatile, that means that data that was written 
by a transaction can be lost if some sort of failure occurs before the 
data is actually written to non-volatile storage, which may not happen 
until many transactions later. 

c) Thus, the mere fact that a transaction is committed does not guarantee 
that all changes it has made to the database have actually made it to 
non-volatile storage.
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II.Logging

A. Crucial to guaranteeing the consistency of a database is the notion of a 
processing LOG, stored in stable storage.  

B. During the processing of each transaction, a series of entries are made in the 
log.  When a transaction starts processing, it is assigned a unique serial 
number.  Each entry in the log will includes the transaction's serial number, 
an entry type, and possibly other data.

1. When the transaction begins, a <start> entry is made in the log.

2. Appropriate entries are made in the log to record changes that the 
transaction makes to the database.  A key principle is that whenever an 
operation is performed that leads to changes in what is stored in the 
database, a <write> entry is first made in the log and only then is an 
actual change to the database initiated.

a) This is called write-ahead logging.

b) In the logging approach known as immediate update, in addition to recording 
the transaction performing the operation, the <write> entry in the log also 
records the location being changed and the old and new values in that entry.

c) Often, the location is a particular page in the file, in which case the log 
entry must record surrounding context as well.  For simplicity, though, we 
will act as if the log just needs to include the one item being changed.

3. One of two types of entry is made in the log when the transaction completes:

a) A <commit> entry indicates that the transaction completed  successfully, so 
that the durability all its changes to the database should be preserved.   This 
is written when the transaction executes a commit operation in SQL, or it 
commits implicitly through some sort of autocommit. 
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b) An <abort> entry indicates not only that the transaction failed for but 
also that all effects of the transaction have been removed from the 
database - so the state of the database is the same as it would be if the 
transaction had never occurred.  (So SQL rollback just puts the 
transaction in the failed state - the <abort> entry indicates that rolling 
the transaction back has actually been done.)

c) If a transaction was in process (but not finished) when a system  crash 
occurs, then neither of these entries will appear in the log. 

4. (We will encounter another type of entry called redo-only shortly.)

C. We suggested that the log should be maintained in stable storage. Actually, 
this is not absolutely necessary.  Non-volatile storage can be used for the log 
(and often is).

1. One way to achieve a measure of stability is to keep two copies of the log 
on separate media, so that failure of one medium will not destroy the log

2. Ideally, the second copy of the log is kept at a remote site accessed over a 
network.

3. In either case, however, we DO have to ensure that the log data is actually 
written to the storage medium  BEFORE the changes it records are 
actually written.

a) Since each log entry will be relatively short, the system will  normally 
buffer entries in primary storage until a full block of entries has 
accumulated, and then will write that block to the log, followed by 
updating the various database entries on disk.

b) If a change has been made to an in-memory copy of a block, but the 
corresponding log entry recording the change has not yet been 
physically written to  the log, the in-memory buffer for the block must 
be pinned until the log block has been filled up and written.
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c) If, for some reason, it becomes necessary to write out the data block 
before the log block recording the change has been written, then we 
will need to FORCE the premature writing of a  partially-filled log 
block\

d) If we are using a second copy of the log at a remote site, then a very 
safe strategy would prohibit committing a transaction if we cannot 
write the log entry at BOTH sites due to a  communication  problem or 
failure of the remote site.  Since this could prevent  any work from 
occurring, this can relaxed to allow work to proceed with some 
minimal risk of data loss in such cases.

4. Further, we have to ensure that a system crash during the writing of a 
particular log block cannot corrupt data previously written to the log.  
This is a particular concern if we have to force the output of a log block 
before it is full.  It would seem reasonable to consider reading this block 
back in, adding more data to it, and then writing it back out.  But a failure 
during this rewrite could corrupt the previous data!  So this cannot be 
allowed.
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III.Use of the Log

A. Information in the log is used to ensure atomicity when a transaction enters 
the failed state.

1. The log is scanned backwards - stopping when the <start> entry for the 
transaction is encountered. 

a) Each time a <write> entry for the transaction is encountered, the old 
value recorded in the entry is written back to the database.  This 
ensures atomicity by removing all effects of the transaction from the 
database.

b) The order in which this is done is important.  To see why, consider the 
log that might be produced by a transaction that writes the same 
location twice, where the transaction fails just after the second write. 
 
<T start>  
<T write, A, 0, 1>  
<T write, A, 1, 2>  
 
PROJECT 
 
If the old values are written back in the the same order in which they 
appear in the log, what will be written to A?  What should it be? 
 
ASK 
 
1 will be written - it should be 0

c) Working backward from the latest entry in the log ensures that the 
original value in the database when the transaction was started is the 
one that is restored.  (It also means we can stop scanning the log when 
we reach the <start> entry for the transaction.)
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2. When this is done, one or more special "redo-only" entries are added to 
the log as well.   This deals with the possibility that a system crash may 
occur before the rewritten value ends up in non-volatile storage, and also 
simplifies the crash recovery process.

3. This is referred to as UNDOING a transaction

4. Once all the transaction's effects have been undone - and only then - the 
<abort> entry can be written. 

5. Thus, the following transaction, done with A initially 0, 
 
set A to 1  
set A to 2  
rollback;  
 
PROJECT 
 
results in the following log entries, with A restored to 0 
 
<T start>  
<T write A, 0, 1>  
<T write, A, 1, 2>  
<T redo-only, A, 1>  
<T redo-only, A, 0>  
<T abort>  
 
PROJECT 

B. When a crash occurs, the log  is used to ensure atomicity and durability.

1. If a <commit> entry for the transaction appears in the log, it indicates that 
the transaction has full committed,.  Information in the log is used to 
ensure durability following a crash.
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a) it is possible that some of its write operations were in volatile storage and 
had not yet been copied to non-volatile storage.   To ensure  durability it is 
necessary to ensure that each of the "new" values in its <write> is actually 
present on disk.   This can be done by simply writing them again, since no 
harm is done by writing the same value twice.

b) This is referred to as REDOING a transaction.  Note that - in this 
context - to REDO a transaction simply means ensuring that the 
changes it made to the database are restored if necessary - the 
computation done by the transaction is not redone - just its effects. 
When a crash occurs, information in the log is also used to ensure 
atomicity by undoing any changes recorded by <write> entries that 
pertain to transactions for which a <start> entry occurred but no 
<abort> or <commit> entry appears in the log.

c) Again, the order for doing this is important.   To see why, consider the log 
that might be produced by two transactions that each commit after writing 
the same location,  if a crash occurs just after the second commit. 
 
<T1 start>  
<T1 write, A, 0, 1>  
<T1 commit>  
<T2 start>  
<T2 write, A, 1, 2>  
<T2 commit>  
 
PROJECT 
 
If the old values are written back in the the same order from earliest to 
latest (as needs to be the case for undo), what will be written to A?  What 
should it be? 
 
ASK 
 
1 will be written - it should be 2
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2. It may appear that, when a crash occurs, transactions for which an 
<abort> entry appears in the log may be ignored, since their effects were 
already removed from the database.  

a) This is not true, though.  If a crash occurs soon after a transaction is 
aborted, it is possible that some of the rewrites of old values needed to 
undo it have not yet found their way to non-volatile storage.  
Therefore, redo-only entries do need to be rewritten, just in case.   This 
can be done by simply writing them again, since no harm is done by 
writing the same value twice.

b) It turns out that the algorithm is simplified if the <write> entries for 
this transaction are actually redone - which seems counter-intuitive, 
since they were just undone!   However, no lasting harm is done since 
the redo-only entries that appear subsequently will wipe their effect 
out again - and the algorithm is actually simpler this way.

3. When a crash occurs, transactions for which a <start> entry appears in the log 
but no <commit> or <abort> entry appears were active at the time of the crash.  
They need to be undone. Since they did not commit, they are treated as if they 
had failed (though it may be possible to restart the transaction from the 
beginning.)  This means that their <write> entries must be undone, <redo-
only> entries must be added to the log, and an <abort> entry for the 
transaction must be added to the log when recovery is finished. 

 

This implies, of course, that every transaction except one active when a crash 
occurs will have either a <commit> or an <abort> entry in the log, and that a 
transaction will be totally undone at most once - and after recovery is complete 
all transactions (even those active at the time of the crash) will either a 
<commit> or an <abort> entry in the log.

C. Example: 
 
Suppose, when a crash occurs, that the log contains the following entries: 
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<T1 start>  
<T1 write, A, 0, 1>  
<T1 commit>  
<T2 start>  
<T2 write, B, 2, 3>  
<T2 redo-only B, 2>  
<T2 abort>  
<T3 start>  
<T3 write, C, 4, 5>  
 

PROJECT

1. T1 must be redone, because its <commit> entry appears in the log.  
Therefore, it is redone, and its new value 1 is written to A just to be sure it 
is there.  (It may be there already, but no harm writing twice).

2. T2 has already been undone, because its <abort> entry appears in the 
log.  Its <redo-only> entry must be redone, ensuring B contains the 
value 2.   The algorithm we will see shortly will also redo its <write>, 
which will temporarily change B to 3, but that will be replaced when the 
<redo-only> entry is redone.

3. T3 was active at the time of the crash (its <start> appeared in the log, but no 
<commit> or <abort>).  To do this, the old value of 4 is written to C, and new 
<T3 redo-only C 4> and <T3 abort> entries are added to the end of the log

D. All of this would imply that, when a crash occurs,  myriads of entries in the 
log might have to be either redone or undone.  To reduce the potential this 
would have for delaying recovery from a crash, it is possible to periodically 
perform a checkpoint operation. 

1.  At a checkpoint, all log entries that have not yet been written to stable 
storage are flushed, and then all write entries are also flushed.. 

2. A <checkpoint> entry in the log can be added containing a list of 
transactions that were active at the time of the checkpoint.
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3. Should a crash occur before the next checkpoint, only log entries for 
these transactions or those started after the checkpoint need to be dealt 
with in the event of a crash.

4. Only the most recent checkpoint must be considered in recovery.

E. This leads to the following recovery algorithm 

 

find the most recent <checkpoint> entry  
    copy the lists of entries that were active at the  
        time of the checkpoint into a list of  
        transactions that may need to be undone  
scan the entries in the log from the checkpoint forward  
    // This is called the redo phase  
    if the entry is a <start>  
        add the transaction to the list of transactions  
            that may need to be undone  
    else if the entry is a <commit> or <abort>  
        remove the transaction from the list of  
            transactions that may need to be undone  
    else (it is a <write> or <redo-only)  
        redo it  
scan the entries in the log backward from the end of the  
        log until the list of transactions needing to be  
        undone is empty  
    // Note that this may go past the checkpoint entry if need  
    //   be to undo writes by transactions that were  
    //   active at the time of the checkpoint  
    // This is called the undo phase  
    if the entry is a <write> and the transaction is on  
            the list of transactions needing to be undone  
        undo it  
    if the entry is a <start> and the transaction is on  
            the list of transactions needing to be undone  
        remove it from the list    
 
PROJECT
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IV.Shadow Paging

A. Another method that has been used for handling recovery is quite different,  
since it does not make use of a log at all.  Instead, it  works by maintaining 
two separate versions of the active portion of the database: the current 
version (which reflects all changes made thus far) and the shadow version 
(which reflects the state of the database before the transaction started.)

1. A particular transaction "sees" only the current version.  In a concurrent 
environment, other users either "see" the shadow version still, or are prevented 
from accessing the item at all until the current transaction commits.

2. If a particular transaction is user aborted or fails, then the current version 
of the database is discarded and the shadow version remains as it was.

3. When the transaction commits, the current version is made permanent by 
a simple pointer readjustment.

B. Of course, doing this with the entire database could require a huge amount of 
additional storage, copying of information, etc.  The name shadow PAGING comes 
from the fact that the system views the  physical storage as a series of pages  
numbered 1 .. n (where n can be very large).  No requirement is imposed that 
consecutive pages occupy consecutive physical locations on the disk; instead, a 
page table  is used to map page numbers to physical locations. 
 
PROJECT page table 
 
Access to the page table is via a pointer to it kept in some known   location on disk.

C. As noted in the book, this scheme is a harder to use with concurrent 
processing than the other schemes - since now each concurrent transaction 
must have its own private current page table and interaction between 
transactions is harder to control.  For this reason, it is not often used.
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