
CPS352 Lecture - Database Normalization

last revised February 10, 2021
Objectives:

1. To define the concepts “functional dependency” and “multivalued dependency”
2. To show how to find the closure of a set of FD’s and/or MVD’s
3. To define the various normal forms and show why each is valuable
4. To show how to normalize a design
5. To discuss the “universal relation” and “ER diagram” approaches to database design.

Materials:

1. Projectable of ER diagram for example unnormalized database
2. Projectable of Everything library scheme
3. Projectable of Lossy decomposition of Everything scheme
4. Projectable of Series of steps showing it is a problem
5. Projectable of notation for FD
6. Projectable of first cut at library FDs
7. Projectables of ER to FD Examples (4)
8. Projectable of review of Everything scheme and FDs
9. Projectable of normalization of Everything to 2NF
10.Projectable of normalization of Everything to 3NF, BCNF
11.Projectable of alternative that eliminates need for nulls for book not out
12.Projectable of Armstrong’s Axioms (from 5th ed slides augmented with examples)
13.Projectable of additional rules of FD inference (from 5th ed slide augmented

with examples)
14.Projectable of proofs of additional inference rules from Armstrong's axioms
15.Projectable of equivalent ways of writing the same set of FDs
16.Projectable of algorithm for computing F+ (from 5th ed slides)
17.Projectable of algorithm for computing closure of an attribute (From 5th ed

slides)
18.Projectable of finding closures for library FD attributes
19.Projectable of determining canonical cover for library FDs
20.Projectable of BCNF decomposition algorithm
21.Projectable of applying BCNF algorithm to example
22.Projectable of 3NF algorithm

1

23.Projectable of applying 3NF algorithm to example
24.Projectable of definition and notation for an MVD
25.Projectable of example showing problem that can result from an MVD
26.Projectable of example of an MVD that causes no problem
27.Projectable of ER to MVD example
28.Projectable of rules of inference for FD’s and MVD’s (5th ed slide)
29.Projectable of additional MVD Rules (5th ed slide)
30.Projectable of 4NF algorithm
31.Projectable of review of initial Everything scheme and dependencies for

example database with multiple authors allowed
32.Projectable of applying 4NF algorithm to this
33.Projectable of ER diagram for original unnormalized database and relational

created directly
34.Projectable of converting this to BCNF (without multiple authors) and 4NF (if

multiple authors allowed)

I. Introduction

A. We have already looked at some issues arising in connection with the design
of relational databases. We now want to take the intuitive concepts and
expand and formalize them.

B. We will base some of our examples in this series of lectures on a simplified
library database similar to the one we used in our introduction to relational
algebra and SQL lectures, with some modifications

1. We will deal with only book and borrower entities and the checked_out
relationship between them (we will ignore the reserve_book and
employee tables)

2. We will add a couple of attributes to book (which will prove useful in
illustrating some concepts)

a) We will allow for the possibility of having multiple copies of a given
book, so we include a copy_number attribute

2

b) We will also include a barcode attribute for books. (The barcode is a
unique number - almost like a serial number - assigned to a book when
it is acquired)

C. There are two major kinds of problems that can arise when designing a
relational database. We illustrate each with an example.

1. There are problems arising from including TOO MANY attributes in
one relation scheme.

Example: Suppose a user designs a database for the following ER diagram,

PROJECT

Suppose the individual purchases a commercial database and naievely decides
to use the following scheme. Note that it incorporates all of the attributes of the
separate tables relating to borrowers, books and checkouts from into a
single table - including the two new ones just added)

Everything(borrower_id, last_name, first_name, // borrower info  
 call_number, copy_number, barcode, // copy info  
 title, author, // other book  
 date_due) // check out info  
 
PROJECT

(Don’t laugh - people actually do this!)

3

Check
 Out

date_due

Borrower

borrower_id
last_name
first_name

Book

call_number
copy_number
barcode
title
author

a) Obviously, this scheme is useful in the sense that a desk attendant
could desire to see all of this information at one time.

b) But this makes a poor relation scheme for the conceptual level of
database design. (It might, however, be a desirable view to construct for
the desk attendant at the view level, using joins on conceptual relations.)

c) This scheme exhibits a number of anomalies. Let’s identify some
examples.

ASK CLASS

(1)Update anomalies:

If a borrower has several books out, and the borrower’s name
changes (e.g. through marriage), failure to update all the tuples
creates inconsistencies.

(2)Insertion anomalies:

We cannot store a book in the database that is not checked out to
some borrower. (We could solve this one by storing a null for the
borrower_id, though that’s not a desirable solution.)

We cannot store a new borrower in the database unless the
borrower has a book checked out. (No good solution to this.)

(3)Deletion anomalies

When a book is returned, all record of it disappears from the
database if we simply delete the tuple that shows it checked out to a
certain borrower. (Could solve by storing a null in the borrower_id
instead.)

If a borrower returns the last book he/she has checked out, all
record of the borrower disappears from the database. (No good
solution to this.)

4

d) Up until now, we have given intuitive arguments that designing the
database around a single table like this is bad - though not something
that a naive user is incapable of! What we want to do in this series of
lectures is formalize that intuition into a more comprehensive, formal
set of tests we can apply to a proposed database design.

2. Problems of the sort we have discussed can be solved by
DECOMPOSITION: the original scheme is decomposed into two or more
schemes, such that each attribute of the original scheme appears in at least
one of the schemes in the decomposition (and some attributes appear in
more than one).

However, decomposition must be done with care, or a new problem
arises.

Example: Suppose our naive user overhears a couple of CS352 students
talking at lunch and decides that, since decomposition is good, lots of
decomposition is best - and so creates the following set of schemes:

Borrower(borrower_id, last_name, first_name)
Book(call_number, copy_number, barcode, title, author)
Checked_out(date_due)

PROJECT

a) This eliminates all of the anomalies we listed above - so it must be
good - right?

ASK CLASS for the problem

b) There is now no way to represent the fact that a certain borrower has a
certain book out - or that a particular date_due pertains to a particular
Borrower/Book combination.

c) This decomposition is an example of what is called a LOSSY-JOIN
decomposition.

5

(1)To see where this term comes from, suppose we have two borrowers and
two books in our database, each of which is checked out - i.e, using our
original scheme, we would have the following single table:

20147 cat charlene AB123.40 1 17 Karate elephant 2016-11-15  
89754 dog donna LM925.04 1 24 Cat Cook dog 2016-11-10  
 
PROJECT Series of Steps  

(2)Now suppose we decompose this along the lines of the proposed
decomposition. We get the following three tables.

20147 cat charlene  
89754 dog donna  
 
AB123.40 1 17 Karate elephant  
LM925.04 1 24 Cat Cook dog  
 
2016-11-15  
2016-11-10  
 

(3)Finally, we attempt to reconstruct our original table, by doing a
natural join of our decomposed tables.

Borrower |X| Book |X| Checked_Out

(Note that, in this case, the natural join is equivalent to cartesian
join because the tables being joined have no attributes in common.)

What do we get?

ASK

8 rows: each consisting of one of the two borrowers, one of the two
books, and one of the two due data

(4)We say that the result is one in which information has been lost. At first,
that sounds strange - it appears that information has actually been gained,

6

since the new table is 4 times as big as the original, with 6 extraneous
rows. But we call this an information loss because

(a)Any table is a subset of the cartesian join of the domains of its
attributes.

(b)The information in a table can be thought of as the knowledge
that certain rows from the set of potential rows are / are not
present.

(c)When we lose knowledge as to which rows from the cartesian
join are actually present, we have lost information.

(5)We say that a decomposition of a relation scheme R into two or
more schemes R1, R2 ... Rn (where R = R1 U R2 U .. U Rn) is a
lossless-join decomposition if, for every legal instance r of R,
decomposed into instances r1, r2 .. rn of R1, R2 .. Rn, it is always
the case that

r = r1 |x| r2 |x| ... |x| rn

(Note: it will always be the case that r is a SUBSET of
r1 |x| r2 |x| ... |x| rn. The relationship is lossy if the subset is a
proper one.)

(6)Exercise: can you think of a lossless-join decomposition of
Everything that also eliminates the anomalies?

ASK

If we kept Borrower and Book as above, and made Checked_out be
on the scheme (borrower_id, call_number, date_due), the
decomposition onto Borrower, Book and Checked_Out would be
lossless join, as desired.

7

3. There is actually another problem that can result from decomposition;
however, we cannot discuss it until we have introduced the notion of
functional dependencies.

D. First, some notes on terminology that we will use in this lecture:

1. A relation scheme is the set of attributes for some relation - e.g. the
scheme for Borrower is { borrower_id, last_name, first_name}.

We will use upper-case letters, or Greek letters (perhaps followed by a
digit), to denote either complete relation schemes or subsets. Typically,
we will use something like “R” or “R1” to refer to the scheme for an
entire relation, and a letter like “A” or “B” or a or b to refer to a subset.

2. A relation is the actual data stored in some scheme.

We will use lower-case letters (perhaps followed by a digit) to denote
actual relations - e.g. we might use “r” to denote the actual relation whose
scheme is “R”, and “r1” to denote the actual relation whose scheme is
“R1”.

3. A tuple is a single actual row in some relation.

We will also use lower-case letters (perhaps followed by a digit) to denote
individual tuples - often beginning with the letter “t” - e.g. “t1” or “t2”.

8

II. Functional Dependencies

A. Though we have not said so formally, what was lurking in the background of
our discussion of decompositions was the notion of FUNCTIONAL
DEPENDENCIES. A functional dependency is a property of the
UNDERLYING REALITY which we are modeling, and affects the way we
model it.

1. Definition: for some relation-scheme R, we say that a set of attributes B
(B a subset of R) is functionally dependent on a set of attributes A (A a
subset of R) if, for any legal relation on R, if there are two tuples t1 and
t2 such that t1[A] = t2[A], then it must be that t1[B] = t2[B].

(This can be stated alternately as follows: there can be no two tuples t1
and t2 such that t1[A] = t2[A] but t1[B] <> t2[B].)

2. We denote such a functional dependency as follows:

A → B (Read: A determines B)

PROJECT

Example: We assume that a borrower_id uniquely determines a borrower
(that’s the whole reason for having it), and that any given borrower has
exactly one last name and one first name. Thus, we have the functional
dependency:

borrower_id → last_name, first_name

 [Note: this does not necessarily have to hold. We could conceive of a
design where, for example, a borrower_id could be assigned to a family,
with several individuals able to use it However, in the scheme we are
developing, we will assume that the FD above does hold.]

3. Let’s list some functional dependencies for the reality underlying a
simplified library database scheme, which includes the attributes listed
below, organized into tables in some appropriate way.

9

Reminder: we’ve added two attributes to the list used in previous
examples. These will be important to allow us to illustrate some
concepts.

borrower_id
last_name
first_name
call_number
copy_number
barcode
title
author
date_due

WRITE ON BOARD AND ASK FOR FD’S - PROJECT

borrower_id → last_name, first_name
call_number → title
call_number, copy_number → barcode
call_number, copy_number → borrower_id, date_due *
* If a certain book is not checked out, then, of course, it has no
 borrower_id or date_due
barcode → call_number, copy_number

(Note: these FD’s imply a lot of other FD’s - we’ll talk about this shortly)

4. What about the following - should it be a dependency?

call_number → author

ASK

a) Obviously, this is not true in general - books can have multiple
authors.

10

b) At the same time, it is certainly not the case that there is NO
relationship between call_number and author.

c) The relationship that exists is one that we will introduce later, called a
multi-valued dependency.

d) For now, we will make the simplifying assumption that each book has
a single, principal author which is the only one listed in the database.
Thus, we will assume that, for now:

call_number → author

holds. (Later, we will drop this assumption and this FD)

B. The first step in using functional dependencies to design a database is to
LIST the functional dependencies that must be satisfied by any instance of
the database.

1. We begin by looking at the reality being modeled, and make explicit the
dependencies that are present in it. This is not always trivial.

a) Example: earlier, we considered the question about whether we should
include

call_number → author

in our set of dependencies

b) Example: Should we include the dependency

last_name, first_name → borrower_id

in our set of dependencies used for our design?

The answer depends on some assumptions about peoples' names, and on
whether we intend to store a full name (last, first, mi, plus suffixes such as
Sr, Jr, III etc.) For our examples, we will not include this dependency.

11

2. Note that there is a correspondence between FD’s and symbols in an ER
diagram - so if we start with an ER diagram, we can list the dependencies in it.

a) What does the following pattern in an ER diagram translate into in
terms of FD’s? (Note that A is underlined)

PROJECT, THEN ASK

A → BC

b) How about this? (Note that A and W are underlined)

PROJECT, THEN ASK

A → BCMWXY
W → XY

But not

W → XY

because relationship is one to many

A B C

A B C W X YM

12

c) How about this?

PROJECT, ASK

A → BCMWXY
W → XYMABC

d) Or this?

PROJECT, ASK

A → BC
W → XY
AW → M

3. Thus, the same kind of thinking that goes into deciding on keys
and one-to-one, one-to-many, or many-to-many relationships in ER
diagrams goes into identifying dependencies in relational schemes.

A B C W X YM

A B C W X YM

13

C. We then generate from this initial listing of dependencies the set of functional
dependencies that they IMPLY. We will say more about this later, but for
now we can introduce the basic idea.

1. Example: given the dependencies

call_number, copy_number → borrower_id
borrower_id → last_name, first_name

a) The following dependency also must hold

call_number, copy_number → last_name, first_name

(The call number of a (checked out) book determines the name of the
borrower who has it)

b) We can show this from the definition of functional dependencies by
using proof by contradiction, as follows:

We want to show that, given any two legal tuples t1 and t2 such that
t1[call_number, copy_number] = t2[call_number, copy_number], it
must be the case that t1[last_name, first_name] = t2[last_name,
first_name].

(1)Suppose there are two tuples t1 and t2 such that this does not hold -
e.g.

t1[call_number, copy_number] = t2[call_number, copy_number]
and t1[last_name, first_name] ≠ t2[last_name, first_name]

(2)Now consider the borrower_id values of t1 and t2.

If it is the case that

t1[borrower_id] ≠ t2[borrower_id]

then the FD call_number, copy_number → borrower_id is not
satisfied

14

But if it is the case that

t1[borrower_id] = t2[borrower_id]

then the FD borrower_id → last_name, first_name is violated.

(3)Either way, if t1 and t2 violate

call_number, copy_number → last_name, first_name

then they also violate one or the other of the given dependencies.

QED

2. Given an initial set of dependencies F, we refer to the set of all
dependencies imply as the transitive closure of F - written F+. We will
discuss later how we can actually go about discovering this.

D. Note that the notions of superkey, candidate key, and primary key we
developed earlier can now be stated in terms of functional dependencies.

1. Given a relation scheme R, a set of attributes K (K subset R) is a
SUPERKEY iff K → R. (And therefore by the decomposition rule each
individual attribute in R.)

2. A key K is a CANDIDATE key iff there is no proper subset of K that is a
superkey.

a) A superkey consisting of a single attribute is always a candidate key.

b) If K is composite, then for K to be a candidate key it must be the case
that for each proper subset of K there is some attribute in R that is
NOT functionally dependent on that subset, though it is on K.

3. The PRIMARY KEY of a relation scheme is the candidate key chosen
for that purpose by the designer.

15

4. Since a relation is a set, it must have a superkey (possibly the entire set of
attributes.) Therefore, it must have one or more candidate keys, and a
primary key can be chosen. We assume, in all further discussions of
design, that each relation scheme we work with has a primary key.

Note: In our discussion of the ER model, we introduced the notion of a
weak entity as an entity that has no superkey. However, the process by
which we convert to tables guarantees that the corresponding table will
have a superkey, since we include in the table the primary key(s) of the
entity/entities on which the weak entity depends.

5. In the discussions that follow, we will say that an attribute is a KEY
ATTRIBUTE if it is a candidate key or part of a candidate key. (Not
necessarily the primary key.) Some writers call a key attribute a PRIME
ATTRIBUTE.

E. Functional dependencies are used in two ways in database design

1. They are used as a guide to DECOMPOSING relations. For example, the
problem with our original, single-relation scheme was that there were too
many functional dependencies within one relation.

a) last_name and first_name depend only on borrower_id

b) title and author depend only on call_number

c) if a book is checked out, then borrower_id and date_due depend on
call_number, copy_number

d) We run into a problem when all of these FD’s appear in a single table -
we will formalize this soon.)

2. They are used as a means of TESTING decompositions.

a) We can use the closure of a set of FD's to test a decomposition to be
sure it are lossless join.

16

If we decompose a scheme R with set of dependencies F into two
schemes R1 and R2, the resultant decomposition is lossless join iff

 (R1 ∩ R2) → R1 is in F+

or

 R1 ∩ R2 → R2 is in F+

(or both)

Lossless-join is an absolutely essential property of a valid
decomposition, of course.

b) We also want to produce DEPENDENCY-PRESERVING
decompositions wherever possible.

(1)A dependency-preserving decomposition allows us to test a new
tuple being inserted into some table to see if it satisfies all relevant
functional dependencies without doing a join.

Example: If our decomposition includes a scheme including the
following attributes:

call_number, copy_number, barcode ...

then when we are inserting a new tuple we can easily test to see
whether or not it violates the following dependencies

barcode → call_number, copy_number
call_number, copy_number → barcode

Now suppose we decomposed this scheme in such a way that no
table contains all three of these attributes - i.e. into something like:

call_number, barcode
and

copy_number, barcode ...

When inserting a new book entity (now as two tuples in two
tables), we can still test

barcode → call_number, copy_number

17

by testing each part of the right hand side separately for each table -
but the only way we can test whether

call_number, copy_number → barcode

is satisfied by a new entity is by joining the two tables to make sure
that the same call_number and copy_number don’t appear with a
different barcode

(2)To test whether a decomposition is dependency-preserving, we
introduce the notion of the restriction of a set of dependencies to
some scheme. Basically, the restriction of a set of dependencies to
some scheme is the subset which have the property that all of the
attributes of the dependency are contained in the scheme

Ex: The restriction of { A → B, A →C, A → D to (ABD) is
{ A →B, A →D }

(3)A decomposition is dependency preserving if the transitive closure
of the original set is equal to the transitive closure of the set of
restrictions to each scheme.

Example: if we have a scheme (ABCD) with dependencies

A → B
B → CD

(a)The decomposition into

(AB) (BCD)

is both lossless-join and dependency preserving.

(b)So is the following decomposition

(AB) (BC) (BD)

because

B → C and B → D together imply B → CD

18

(c)However, the following decomposition, while lossless join, is
not dependency-preserving

(AB) (ACD)

i) The transitive closure of the original set of dependencies
includes A → (all combinations of A,B,C,D) and
B → (all combinations of B, C, D)

ii) The restriction of this to the decomposed schemes is A → (all
combinations of AB) and A → (all combinations of A,C,D)

iii)Since B → CD is not a member of the transitive closure of
these restrictions, it cannot be tested without doing a join

Example: suppose we have the tuple a1 b1 c1 d1 in the table,
and try to insert a2 b1 c2 d2.

This violates B → CD. However, we cannot discover this
fact unless we join the two tables, since B does not appear in
the same table with C or D

(4)Again, suppose we have the scheme (ABCD) with dependencies

A → B
A → C
B → CD

If we decompose into

(AB) (BCD)

The decomposition is lossless join and dependency-preserving, even
though we can’t test A → C directly without doing a join, because A →
C is implied by the dependencies A → B and B → C which we can test -
it is therefore in the transitive closure of the restriction of the original set
of dependencies to the decomposed scheme.

19

(5)The book gives an algorithm for testing dependency-preservation, but it
is computationally expensive to compute the closures. However, we can
often identify by inspection which dependencies do not appear in the
restrictions of the the decomposition, and then check to see whether these
are implied by dependencies that do appear.

(6)Dependency preservation is highly desirable, since it avoids
needing to use natural joins to test a new row being inserted - but it
is not absolutely essential and sometimes must be done without.

III.Decomposition Using Functional Dependencies

A. We will now develop an example of how the functional dependencies we
identified earlier can be used to decompose our original "Everything" scheme.

In contrast to the approach used in the book, we will proceed along lines
closer to the way the various normal forms were actually discovered, rather
than starting with Boyce-Codd Normal Form (BCNF) which is actually the
end result of a process of invention.

1. First, let's review our "Everything" scheme and its functional
dependencies.

PROJECT

2. What should be use as the primary key for this scheme?

Recall that a primary key must functionally determine all the attributes of
a scheme. There are actually two possibilities. What are they?

ASK

a) call_number and copy_number would work.

• call_number directly determines title and author
• call_number and copy_number together determine barcode,
borrower_id, and date_due

20

• since borrower_id determines last_name and first_name, call_number
and copy_number together determine these as well.

b) barcode would also work, since it directly determines call_number and
copy_number, which together determine everything else

c) We will use call_number and copy_number as the primary key for this
example

B. Actually, as this design stands we have already made a design decision
related to normalization.

1. Recall that we decided at least for the time being - to include the FD

call_number → author

2. Suppose we had not done this, allowing a single book to have multiple
authors (as is normally this case). One way to do this would be to allow
the author attribute to be multivalued - to be a list of authors.

3. Recall that, in the relational model, the domains of attributes must be
atomic (single, non-composite values). In his original paper on the
relational model, the inventor - Edgar Codd - referred to this requirement
as "normalization". In the history of database normalization, this has
become known as first normal form, and all the higher normal forms
assume it.

4. An alternative would be to store multiple rows for a book with multiple
authors - one for each author. But in that case, author would no longer
depend on the primary key, since a given copy number could be
associated with multiple values of author. (And adding author to the PK
would create other problems which we will talk about later.)

5. Our scheme, as it now stands - with only one author per book - needs no
further work is needed to achieve 1NF. But we will come back to the
question of allowing multiple authors later.

21

C. Earlier, we identified some update, insertion, and deletion anomalies present
in this scheme. There are actually also some more subtle ones as well.

1. Note that, in the Everything scheme, all of the information about a book
(call number, copy number, barcode, title, and author) is in a single
scheme. But looking at our functional dependencies, we find that title and
author depend only on call_number. This gives rise to several anomalies:

a) Suppose we discovered that, when creating our database, we had made
an error spelling the author's name. If we had several copies of the
book, we would need to correct each row in the database. What kind
of anomaly is this an example of?

ASK

Update anomaly

b) Suppose that, while we were waiting for the first copy of a new book to
come in, we wanted to make an entry for the author and title of the book
in our database. We couldn't do this unless we created a row with a
copy number and barcode - something we generally want to avoid.
What kind of anomaly is this an example of?

ASK

Insertion anomaly

c) Suppose our only copy of a single book is lost. While we are waiting
for a replacement to come in, we delete the row in the database
describing the book since the barcode refers to a book that we no
longer have. In the process, we lose the information on the title and
author, which we then have to re-enter when the replacement arrives.
What kind of anomaly is this an example of?

ASK

Deletion anomaly

22

2. It turns out that these anomalies are all a result of what is known as a
partial dependency - since author and title depend only on a subset of the
key. Codd went on to define 2nd normal form as excluding partial
dependencies like this - i.e. no attribute can be allowed to depend on a
proper subset of any candidate key.

3. So to put our Everything scheme into 2NF, we could decompose as
follows:

EverythingElse(borrower_id, last_name, first_name,  
 call_number, copy_number, barcode,  
 date_due)  
 
BookInfo(call_number, title, author)  
 
PROJECT
 
(Notice how call_number appears in both the decomposed scheme and the
added scheme to make the decomposition lossless - since the intersection
of the attributes of the two schemes is call_number, which is a superkey
for BookInfo.)

D. While this has eliminated the anomalies related to information about a book's
title and author, it still leaves the anomalies related to borrower.

1. What were they?

ASK

a) Update - if a borrower starts using a different name (e.g. as a result of
marriage or change of legal name), we need to update the entry in the
table for every book that this borrower has out.

b) Insertion - we can only add a new borrower if the individual has a
book checked out. (It might seem we could address this by creating a
row with the borrower information and nulls for the book information,

23

but then we would end up with a null primary key, which is not
allowed!)

c) Deletion - if a borrower has only one book checked out and the book
is returned (or if it is lost), deleting the row loses the information about
the borrower. (Again, simply nulling the information about the book
to preserve the borrower information results in a null primary key.)

2. It turns out that these anomalies are all a result of a transitive dependency
- the borrower's name depends on the primary key only indirectly -
through the non-key attribute borrower_id. Codd went on to define
3rd normal form as excluding transitive dependencies like this - i.e. no
attribute can be allowed to depend on a non-key attribute. (This also
implicitly excludes partial dependencies, so any 3NF relation is also in
2NF, though the reverse is not necessarily the case.)

In the case of our everything scheme, this leads us to decompose to:

BorrowerInfo(borrower_id, last_name, first_name)  
BookInfo(call_number, title, author)  
CopyInfo(call_number, copy_number, barcode,  
 borrower_id, date_due)  
 
PROJECT
 
(Notice how borrower_id appears in both the decomposed scheme and the
added scheme to make the decomposition lossless - since the intersection
of the attributes of the two schemes is borrower_id, which is a superkey
for BorrowerInfo.)

3. Sometimes the normalization criterion for 3NF is stated this way: each
non-key attribute must depend on the key (1NF), the whole key (2NF),
and nothing but the key (3NF).

24

E. Actually, there is still a subtle problem with 3NF. To deal with some unusual
situations (which we can't illustrate with this particular database), 3NF
allows a key attribute to be on the right hand side of a transitive dependency.

1. One proposal to address this was to redefine 3NF to forbid this.

2. However, treating key attributes specially sometimes turns out to be
necessary for the sake producing dependency-preserving decomposition.
Pages 315-318 give an example of such a case.

3. This led, a few years later, to the introduction of a new normal form
called Boyce-Codd Normal Form (BCNF).

4. The BCNF definition is strictly stronger than 3NF - every BCNF scheme
is also in 3NF, but the reverse is not true - there are some 3NF schemes
that are not BCNF. It also turns out that it is simpler!

5. A scheme is in BCNF if every FD 𝛂 → 𝛃 (where 𝛂 and 𝛃 are sets of
attributes that appear in the scheme) that holds on the scheme is it either
the case that

a) It is trivial - i.e. 𝛂 ⊇ 𝛃

b) 𝛂 is a superkey.

F. It turns out that our 3NF decomposition of Everything is also in BCNF, so
we need to nothing more.

However, it might be expedient to consider one more change to simplify our
use of the scheme.

How should we handle the case of a copy of a book that is not checked out to
anyone, since the CopyInfo scheme contains attributes borrower_id and
date_due which are not relevant to a copy that is not checked out?

25

1. This would be a case where storing null for these attributes for a copy that
is not checked out makes good sense - in which case when a copy that is
checked out is returned, we replace the values with null.

2. Alternately, we might decompose further

BorrowerInfo(borrower_id, last_name, first_name)  
BookInfo(call_number, title, author)  
CopyInfo(call_number, copy_number, barcode)  
CheckedOut(call_number, copy_number, borrower_id, date_due)  

In this case, we store nothing in CheckedOut when a copy is acquired, add a
row to CheckedOut when it is checked out, and delete the row in CheckedOut
when it is returned.

PROJECT

G. There are algorithms for going directly to BCNF or 3NF without passing through
the other normal forms. But before we can look at these, we need to delve into the
theory of functional dependencies a bit more.

IV. Theory of Functional Dependencies

A. Formally, if F is the set of functional dependencies we develop from the logic
of the underlying reality, then F+ (the transitive closure of F) is the set
consisting of all the dependencies of F, plus all the dependencies they imply.

To compute F+, we can use certain rules of inference for dependencies

1. A minimal set of such rules of inference is a set known as Armstrong's
axioms [Armstrong, 1974]. These are listed in the text on page 339

PROJECT 5th ed slide augmented with examples

a) Example of reflexivity:

last_name, first_name → last_name

26

Note: this is the only rule that lets us “start with nothing” and still create
FD’s. Dependencies created using this rule are called “trivial dependencies”
because they always hold, regardless of the underlying reality.

Definition: Any dependency of the form 𝛂 → 𝛃, where 𝛂 ⊇ 𝛃 is called
trivial.

b) Example of augmentation:

Given:

borrower_id → last_name, first_name

It follows that

borrower_id, call_number → last_name, first_name, call_number

c) Example of transitivity:

call_number, copy_number → last_name, first_name

d) Note that this is a minimal set (a desirable property of a set of
mathematical axioms.) However, the task is made easier by using
certain additional rules of inference that follow from Armstrong's
axioms. These are also listed on page 321 in the book.

PROJECT 5th ed slide augmented with examples

(1)Example of Union rule:

Since call_number → title

and

call_number → author

it follows that

call_number → title, author

27

(2)Example of the Decomposition rule:

Since borrower_id → last_name, first_name,

it follows that

borrower_id → last_name

and

borrower_id → first_name

(3)Example of the Pseudo-transitivity rule: (Note: to illustrate this
concept we will have to make some changes to our assumptions,
just for the sake of this one illustration)

Suppose we require book titles to be unique - i.e. we require

title → call_number (but not, of course, title → copy_number!)

Then, given

call_number, copy_number → barcode, borrower_id, date_due

by pseudo-transitivity, we would get

title, copy_number → barcode, borrower_id, date_due

e) Each of these additional rules can be proved from the ones in the basic
set of Armstrong’s axioms - examples:

PROJECT

(1)Proof of the union rule

Given: 𝛂 → 𝛃, 𝛂 → 𝝲

Prove: 𝛂 → 𝛃𝝲

Proof: 𝛂𝛂 → 𝛂𝛃 (augmentation of first given with 𝛂)

28

𝛂 → 𝛂𝛃 (since we are working with sets, 𝛂𝛂 = 𝛂)
𝛂𝛃 → 𝛃𝝲 (augmentation of second given with 𝛃)
𝛂 → 𝛃𝝲 (transitivity)

(2)Proof of the decomposition rule:

Given: 𝛂 → 𝛃𝝲

Prove: 𝛂 → 𝛃 and 𝛂 → 𝝲

Proof: 𝛃𝝲 → 𝛃 and 𝛃𝝲 → 𝝲 (by reflexivity)
 𝛂 → 𝛃 and 𝛂 → 𝝲 (by transitivity using given)

(3)Proof of the psuedo-transitivity rule:

Given: 𝛂 → 𝛃 and 𝛃𝝲 → 𝝳

Prove: 𝛂𝝲 → 𝝳

Proof: 𝛂𝝲 → 𝛃𝝲 (augmentation of first given with 𝝲)
 𝛂𝝲 → 𝝳 (transitive rule using second given)

2. Note that the union and decomposition rules, together, give us some
choices as to how we choose to write a set of FD's.

For example, given the FD's

𝛂 → 𝛃𝝲 and 𝛂 → 𝝳𝝴

We could choose to write them as

𝛂 → 𝛃

𝛂 → 𝝲

𝛂 → 𝝳

𝛂 → 𝝴

or as

𝛂 → 𝛃𝝲𝝳𝝴

(or any one of a number of other ways)

29

Because the latter form requires a lot less writing, we used it when listing
our initial set of library dependencies, and we will use it in many of the
examples which follow.

PROJECT

a) In practice, F+ can be computed algorithmically. An algorithm is given
in the text for determining F+ given F:

PROJECT - 5th ed slide

b) Note that, using an algorithm like this, we end up with a rather large
set of FD’s. (Just the reflexivity rule alone generates lots of FD’s.)

For this reason, it is often more useful to consider finding the closure
of a given attribute, or set of attributes. (If we apply this process to all
attributes appearing on the left-hand side of an FD, we end up with all
the interesting FD’s)

(1)The text gives an algorithm for this:

PROJECT - 5th ed slide

(2)Example of applying the algorithm to left hand sides of each of the
FD’s for our library:

Starting set (F):

borrower_id → last_name, first_name
call_number → title
call_number, copy_number → barcode, borrower_id, date_due
barcode → call_number, copy_number
call_number → author

(a)Compute borrower_id +:

Initial: { borrower_id }

On first iteration through loop, add

30

last_name
first_name

Additional iterations don’t add anything

∴ borrower_id → borrower_id, last_name, first_name

(b)Compute call_number +

Initial: { call_number }

On first iteration through loop, add

title
author

Additional iterations don’t add anything

∴ call_number → call_number, title, author

(c)Compute call_number, copy_number +

Initial: { call_number, copy_number }

On first iteration through loop, add

title
barcode
borrower_id
date_due
author

On second iteration through loop, add

last_name
first_name

∴ call_number, copy_number → call_number,
 copy_number, title, barcode, borrower_id,
 date_due, author, last_name, first_name

(d)Compute barcode +:

31

Initial: { barcode }

On first iteration thorough loop, add

call_number
copy_number

On second iteration through loop, add

title
borrower_id
date_due
author

On third iteration through loop, add

last_name
first_name

∴ barcode → barcode, call_number,
copy_number, title, borrower_id, date_due, author,
last_name, first_name

(3)Note that generating the closure of an attribute / set of attributes
provides an easy way to test if a given set of attributes is a
superkey: does/do the attribute(s) in the set determine every
attribute in the scheme?

(a)Both { call_number, copy_number } and { barcode } would
qualify as superkeys for our entire scheme (if it were
represented as a single table) - and therefore for any smaller
table in which they occur.

(b){ borrower_id } is a superkey for any scheme consisting of just
attributes from { borrower_id, last_name, first_name }

(c)If we had a scheme for which no set of attributes appearing on
the left hand side of an initial dependency were a superkey, we
could find a superkey by combining sets of attributes to get a set
that determines everything.

32

3. Given that we can infer additional dependencies from a set of FD's, we might
ask if there is some way to define a minimal set of FD's for a given reality.

a) We say that a set of FD's Fc is a CANONICAL COVER for some set
of dependencies F if:

(1)Fc implies F and F implies Fc - i.e. they are equivalent.

(2)No dependency in Fc contains any extraneous attributes on either
side (see the book for definition of “extraneous”, which is a non-
trivial concept!)

(3)No two dependencies have the same left side (i.e. the right sides of
dependencies with the same left side are combined)

b) It turns out to be easier - I think - to find a canonical cover by first writing F
as a set of dependencies where each has a single attribute on its right hand
side - then eliminate redundant dependencies (dependencies implied by other
dependencies) - then combine dependencies with the same left-hand side.

Example: Find a canonical cover for the dependencies in our library
database:

PROJECT steps

(1)Start with the following closure of the various attributes we found
earlier:

borrower_id " borrower_id, last_name, first_name  
call_number " call_number, title, author  
call_number, copy_number " call_number copy_number,  

 title, barcode, author,  
 borrower_id, date_due,  

 last_name, first_name  
barcode " barcode, call_number,  

 copy_number, title, author,  
 borrower_id, date_due,  
 last_name, first_name

33

(2)Rewrite with a single attribute on the right hand side of each

borrower_id " borrower_id  
borrower_id " last_name  
borrower_id " first_name  
call_number " call_number  
call_number " title  
call_number " author  
call_number, copy_number " call_number  
call_number, copy_number " copy_number  
call_number, copy_number " title  
call_number, copy_number " barcode  
call_number, copy_number " borrower_id  
call_number, copy_number " date_due  
call_number, copy_number " author  
call_number, copy_number " last_name  
call_number, copy_number " first_name  
barcode " barcode  
barcode " call_number  
barcode " copy_number  
barcode " title  
barcode " borrower_id  
barcode " date_due  
barcode " author  
barcode " last_name  
barcode " first_name

(3)Now eliminate the trivial dependencies

(Cross out on list)

borrower_id " borrower_id  
borrower_id " last_name  
borrower_id " first_name  
call_number " call_number  
call_number " title  
call_number " author  
call_number, copy_number " call_number  
call_number, copy_number " copy_number  
call_number, copy_number " title  
call_number, copy_number " barcode  

34

call_number, copy_number " borrower_id  
call_number, copy_number " date_due  
call_number, copy_number " author  
call_number, copy_number " last_name  
call_number, copy_number " first_name  
barcode " barcode  
barcode " call_number  
barcode " copy_number  
barcode " title  
barcode " borrower_id  
barcode " date_due  
barcode " author  
barcode " last_name  
barcode " first_name

(4)There are dependencies in this list which are implied by other
dependencies in the list, and so should be eliminated. Which ones?

ASK

• call_number, copy_number " title  
 call_number, copy_number " author  

(Since the same RHS appears with only call_number on the LHS)

• barcode " title  
 barcode " author  

(These are implied by the transitive rule given that
barcode " call_number and call_number determines these).

• call_number, copy_number " last_name  
 call_number, copy_number " first_name  

(These are implied by the transitive rule given that call_number,
copy_number → borrower_id and borrower_id determines these)

• barcode " last_name  
 barcode " first_name

(These are implied by the transitive rule given that
barcode → borrower_id and borrower_id determines these)

35

• Either one of the following - but not both!

 call_number, copy_number " borrower_id  
 call_number, copy_number " date_due  

or

 barcode " borrower_id  
 barcode " date_due  

(Either set is implied by the transitive rule from the other set given
barcode " call_number, copy_number or
call_number, copy_number " barcode.)

(Assume we keep the ones with call_number, copy_number on the
LHS)

(5)Result after eliminating redundant dependencies:

borrower_id " last_name  
borrower_id " first_name  
 
call_number " title  
call_number " author  
 
call_number, copy_number " barcode  
call_number, copy_number " borrower_id  
call_number, copy_number " date_due  
 
barcode " call_number  
barcode " copy_number

(6)Rewrite in canonical form by combining dependencies with the same
left-hand side:

borrower_id " last_name, first_name  
call_number " title, author  
 
call_number, copy_number " barcode, borrower_id, date_due  
barcode " call_number, copy_number

36

c) Unfortunately, for any given set of FD’s, the canonical cover is not
necessarily unique - there may be more than one set of FD’s that satisfies the
requirement.

Example: For the above, we could have kept
barcode " borrower_id, date_due  

and dropped
call_number, copy_number " borrower_id, date_due.

V. Algorithms for Decomposing to Normal Forms

A. Now we can combine what we have said about normal forms and our more careful
study of FDs to develop algorithms for a database design. Our goals will be these:

1. Achieve a design that is in BCNF

2. Ensure that all our decompositions are lossless join

3. Ensure that our decompositions are dependency-preserving

4. However, all three may not be achievable at the same time in all cases, in
which case some compromise is needed. One thing we never
compromise, however is lossless-join, since that involves the destruction
of information.

a) We may have to accept some redundancy by settling for 3NF instead
of BCNF to preserve dependencies,

(But we will never have to settle for anything less.)

b) or we may have to give up dependency-preservation in order to
eliminate all redundancies. (We’ll see an example of this later.)

B. There is an algorithm we can use to go directly from an initial scheme (like
the Everything scheme we started with in our example) to a lossless-join
BCNF decomposition.

37

result = {R };  
done = false;  
compute F +;  
while (not done) do  
 if (there is a schema Ri in result that is not in BCNF)  
 let α " β be a nontrivial functional dependency that  
 holds on Ri such that α " Ri is not in F+,  
 and α ∩ β = ∅;  
 result = (result – Ri) ∪ (Ri – β) ∪ (α,β);  
 else  
 done = true;  

1. PROJECT

a)When the loop exits, each Ri is in BCNF

b)Each decomposition is lossless-join.

2. An important note: the test for BCNF on each of the decomposed relations
must be done using the closure of the original set of dependencies.

The book discusses an alternative test based on the closure of the attributes in
Ri.

3. The algorithm takes time exponential in the size of the original scheme,
so in practice one may use a certain amount of intuition to minimize the
effort.

4. Example: Applying this to our original Everything scheme

PROJECT

a) result = { Everything(borrower_id, last_name, first_name,  
 call_number, copy_number, barcode,  
 title, author,  
 date_due)  
 }  

38

 
F+:

borrower_id " borrower_id, last_name, first_name  
call_number " call_number, title, author  
call_number, copy_number " call_number copy_number,  

 title, barcode, author,  
 borrower_id, date_due,  

 last_name, first_name  
barcode " barcode, call_number,  

copy_number, title, author,  
 borrower_id, date_due,  
 last_name, first_name

b) Everything violates borrower_id " borrower_id, last_name,
first_name because it is not trivial and borrower_id is not a superkey.

Decompose to get

result = { Everything(borrower_id,  
 call_number, copy_number, barcode,  
 title, author,  
 date_due),  
 Borrower(borrower_id, last_name, first_name)  
 }

c) Though Borrower is now OK because the only FD that applies to it is
trivial. However, Everything violates call_number "
call_number, title, author  
 because it is not trivial and call_number is not a superkey.

Decompose to get
 
result = { Everything(borrower_id,  
 call_number, copy_number, barcode,  
 date_due),  
 Borrower(borrower_id, last_name, first_name),  
 Book(call_number, title, author)  
 }

39

d) Now Book is now OK because the only FD that applies to it is trivial.
and Everything satisfies BCNF because the in FDs that apply the LHS
is a superkey for it - so we're done.

C. The book also gives an algorithm for creating a 3NF scheme which can be
used if the BCNF decomposition is not dependency-preserving (which the
above is, so we wouldn't need to use it in this case.)

1. PROJECT

Let Fc be a canonical cover for F;  
i = 0;  
for each functional dependency α " β in Fc do  
 if none of the schemas Rj, 1≤j ≤i contains αβ then  
 i= i+1;  
 Ri =αβ  
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate
key for R then begin  
 i=i +1;  
 Ri = any candidate key for R;  
/* Optionally, remove redundant relations */  
repeat  
 if any schema Rj is contained in another schema Rk  
 /* delete Rj */  
 Rj = Ri;  
 i=i-1;  
return (R1, R2, ..., Ri)

2. Clearly this produces a dependency-preserving decomposition,

a) We include a scheme based on each dependency in the canonical cover
unless it is already included in another scheme.

b) Each scheme is based on a dependency, so its LHS is necessarily a
superkey for that scheme.

40

3. Applying this to our example - PROJECT

Fc =

borrower_id " last_name, first_name  
call_number " title, author  
 
call_number, copy_number " barcode, borrower_id, date_due  
barcode " call_number, copy_number  

a) i = 1: to include the first FD in the canonical cover, add

R1 = (borrower_id, last_name, first_name)

b) i = 2: to include the second FD in the canonical cover, add

R2 = (call_number, title, author)

c) i = 3: include the third FD in the canonical cover, add

R3 = (call_number, copy_number, barcode, borrower_id,
date_due)

d) i = 4: last FD is contained in R3, so no need to add anything. is a
candidate key for the original set of attributes, so no need to add
anything.

e) No redundant schemas to remove

f) Return same as what we have gotten previously:  
 
R1 = (borrower_id, last_name, first_name)
R2 = (call_number, title, author)  
R3 = (call_number, copy_number, barcode, borrower_id,
date_due)

41

VI.Normalization Using Multivalued Dependencies

A. So far, we have based our discussion of good database design on functional
dependencies. Functional dependencies are a particular kind of constraint
imposed on our data by the reality we are modeling. However, there are
certain important real-world constraints that cannot be expressed by
functional dependencies.

1. Example: We have thus far avoided fully dealing with the problem of the
relationship between a book and its author(s).

2. Initially, we developed our designs as if the following dependency held:

call_number → author

3. Although we dropped that dependency, we don’t want to say that there is
no relationship between call_number and author - e.g. we would expect to
see QA76.9.D3 S5637 (the call_number for our text book) in the database
associated with Korth, Silberschatz, or Sudarshan, but we would not expect
to see it associated with Peterson (who happens to be a joint author with
Silberschatz on another widely-used text book, but not this one!).

B. At this point, we introduce a new kind of dependency called a
MULTIVALUED DEPENDENCY. We will define this two ways - first more
intuitively, then more rigorously.

1. We say that a set of attributes A MULTI-DETERMINES a set of
attributes B iff, in any relation including attributes A and B, for any given
value of A there is a set of values for B such that we expect to see all of
those B values (and no others) associated with the given A value and any
given set of values for the remaining attributes. (The number of B values
associated with a given A value may vary from A value to A value.)

2. We say that a set of attributes A MULTI-DETERMINES a set of attributes
B iff, for any pair of tuples t1 and t2 on a scheme R including A and B such
that t1[A] = t2[A], there must exist tuples t3 and t4 such that

42

t1[A] = t2[A] = t3[A] = t4[A] and
t3[B] = t1[B] and t4[B] = t2[B] and
t3[R-A-B] = t2[R-A-B] and t4[R-A-B] = t1[R-A-B]

Note: if t1[B] = t2[B], then this requirement is satisfied by letting t3 = t2
and t4 = t1. Likewise, if t1[R-A-B] = t2[R-A-B], then the requirement is
satisfied by setting t3 = t1 and t4 = t2. Thus, this definition is only
interesting when t1[B] <> t2[B] and t1[R-A-B] <> t2[R-A-B].

PROJECT

3. We denote the fact that A multidetermines B by the following notation:

A ->> B

(Note the similarity to the notation for functional dependence.)

REFER TO ON SLIDE GIVING DEFINITION

4. Example: Consider the following "all-key" scheme:

Author_info(call_number, copy_number, author)

a) This scheme is BCNF

b) It actually contains the following MVD:

call_number ->> author

(That is, every copy of a book with a given call number has the exact
same authors - something which is always true, even with revised
editions with different authors since such a revised edition would have
a different call number)

c) Thus once we know that the author values associated with QA76.9.D3
S5637 (the call number for our textbook) are Korth, Silberschatz, and
Sudarshan, the multivalued dependency from call_number to author
tells us two things:

43

(1)Whenever we see a tuple with call_number attribute
QA76.9.D3 S5637, we expect that the value of the author attribute
will be either Korth or Silberschatz or Sudarshan - but never some
other name such as Peterson.

(2)Further, if a tuple containing QA76.9.D3 S5637 and Korth (along
with some copy number) appears in the database, then we also
expect to see another tuple that is exactly the same except that it
contains Silberschatz as its author value, and another tuple that is
exactly the same except it contains Sudarshan as its author.

(3)As an illustration of this latter point, consider the following instance:

QA76.9.D3 S5637 1 Silberschatz
QA76.9.D3 S5637 1 Korth
QA76.9.D3 S5637 1 Sudarshan
QA76.9.D3 S5637 2 Silberschatz
QA76.9.D3 S5637 2 Sudarshan

PROJECT

The multi-valued dependency call_number ->> author requires that we
must add to the relation instance the tuple

QA76.9.D3 S5637 2 Korth

This can be shown from the rigorous definition as follows:

Let t1 be the tuple:

QA76.9.D3 S5637 2 Silberschatz

t2 be the tuple:

QA76.9.D3 S5637 1 Korth

since these tuples agree on the call_number value, our definition
requires the existence of t3 and t4 tuples such that

• t1, t2, t3 and t4 all agree on call_number QA76.9.D3 S5637

44

• t3 agrees with t1 in having author Silberschatz, and t4 agrees with t2
in having author Korth
• t3 agrees with t2 on everything else - i.e. copy_number 1, and t4
agrees with t1 on everything else - i.e. copy_number 2

Thus t3 is

QA76.9.D3 S5637 1 Silberschatz

And t4 is

QA76.9.D3 S5637 2 Korth

While the former occurs in the database, the latter does not, and so
must be added.

(4)On the other hand, suppose our database contains just one copy -
i.e.

QA76.9.D3 S5637 1 Silberschatz
QA76.9.D3 S5637 1 Korth
QA76.9.D3 S5637 1 Sudarshan

PROJECT

This satisfies the multivalued dependency call_number ->> author
as it stands.

To see this, let t1 be the first tuple and t2 the second. Since they
agree on call_number but differ on author, we require the presence
of tuples t3 and t4 which have the same call_number, and with

t3 agreeing with t1 on author (Silberschatz)
t4 agreeing with t2 on author (Korth)
t3 agreeing with t2 on everything else (copy_number = 1)
t4 agreeing with t1 on everything else (copy_number = 1)

Of course, now t3 and t4 are already in the database (indeed, t3 is
just t1 and t2 is just t4) so the definition is satisfied.

45

(5)MVD’s correspond to multi-valued attributes in an ER diagram -
e.g. consider the the following diagram:

PROJECT

what dependencies does this translate into?

ASK

A → B
A ->> C

C. Note that, whereas we think of a functional dependency as prohibiting the
addition of certain tuples to a relation, a multivalued dependency has the
effect of REQUIRING that we add certain tuples when we add some other.

1. Example: If we add a new copy of QA76.9.D3 S5637, we need to add
three tuples - one for each of the authors.

2. It is this kind of forced replication of data that 4NF will address.

3. Before we can introduce it, we must note a few additional points.

D. Multivalued dependencies are a lot like functional dependencies, however,
their closure rules are a bit different

1. A functional dependency can be viewed as a special case of a
multivalued dependency, in which the set of "B" values associated with a
given "A" value contains a single value. In particular, the following
holds:

if A → B, then A ->> B

A B C

46

a) To show this, note that if we have two tuples t1 and t2 such that t1[A]
= t2[A], and A → B, then t1[B] must = t2[B]. But we have already
seen that the t3 and t4 tuples required by the definition for A ->> B are
simply t1 and t2 in the case that t1[B] = t2[B]; so any relation
satisfying A → B must also satisfy A ->> B.

b) Of course, a functional dependency is a much stronger statement than
a multi-valued dependency, so we don’t want to simply replace FD’s
with MVD’s in our set of dependencies.

2. We consider an FD to be trivial if its right-hand side is a subset of its left hand
side. We consider an MVD to be trivial if either of the following is true:

a) Its right-hand side is a subset of its left-hand side

i.e. For any MVD on a relation R of the form 𝛂 ->> 𝛃,

if 𝛂 ⊇ 𝛃 the dependency is trivial

b) OR: The union of its left hand and right hand sides is the whole scheme

i.e. For any MVD on a relation R of the form 𝛂 ->> 𝛃,

if 𝛂 ∪ 𝛃 = R, the dependency is trivial.

This is because, for any scheme R, if 𝛂 is a subset of R then 𝛂 ->> R - 𝛂
always holds. To see this, consider the definition of an MVD:

Assume we have two tuples on R t1 and t2 s.t. t1[a] = t2[a] The MVD
definition requires that R must necessarily contain tuples t3 and t4 s.t.

t1[a] = t2[a] = t3[a] = t4[a]
t3[R - a] = t1[R - a]
t4[R - a] = t2[R - a]
t3[R - (R - a)] = t2[R - (R - a)]
t4[R - (R - a)] = t1[R - (R - a)]

But since R - (R - 𝛂) is just 𝛂, t3 is simply t1 and t4 is t2.

47

3. Just as we developed the notion of the closure of a set of FD’s, so we can
consider the notion of the closure of a set of FD’s and MVD’s. Given a
set of FD’s and MVD’s D, we can find their closure D+ by using
appropriate rules of inference. These are discussed in chapter 28 of the
text.

PROJECT: Rules of inference for FD’s and MVD’s

a) Note that this set includes both the FD rules of inference we
considered earlier, and new MVD rules of inference

b) Note, in particular, that though there is a union rule for MVD’s just
like there is a union rule for FD’s, there is no MVD rule analogous to
the decomposition rule for FD’s.

e.g. given A → BC, we can infer A → B and A → C.

However, given A ->> BC, we cannot necessarily infer A ->> B or A
->> C unless certain other conditions hold.

c) In general, the closure for a set of dependencies is huge!

E. Just as the notion of functional dependencies led to the definition of various
normal forms, so the notion of multivalued dependency leads to a normal
form known as fourth normal form (4NF). 4NF addresses a redundancy
problem that otherwise arises if we have two independent multivalued
dependencies in the same relation - e.g. (in our example) the problem of
having to add three tuples to add a new copy of a book with three authors.

A normalized relation R is in 4NF iff for any MVD A ->> B in R it is either
the case that the MVD is trivial or else A functionally determines all the
attributes of R (in which case the MVD is actually an FD)

1. Example: (call_number, copy_number, author) is not 4NF, since
call_number ->> author is a nontrivial MVD that is not an FD

2. Note that every 4NF relation is also BCNF. BCNF requires that, for each
nontrivial functional dependency A → B that must hold on R, A is a
superkey for R.

48

But if A → B, then A ->> B. Further, if R is in 4NF, then for every
nontrivial multivalued dependency of the form A ->> B, A must be a
superkey. This is precisely what BCNF requires.

F. An algorithm is given in the book for converting a non 4NF scheme to 4NF

result: = {R};  
done = false;  
compute D+;  
/* Let Di denote the restriction of D+ to Ri */  
while (not done)  
 if (there is a schema Ri in result that is not in 4NF)  
 let α "" β be a nontrivial multivalued dependency that  
 holds on Ri such that α"Ri is not in Di and α∩β=φ;  
 result = (result-Ri)∪(Ri-β) ∪(α,β);  
 else  
 done = true;

1. Note: upon completion, each Ri is in 4NF, and decomposition is lossless-join

2. The algoritm basically operates by isolating MVDs in their own relation, so
that they become trivial.

3. Example: application of this algorithm to our library database (with multiple
authors).

a) Our canonical cover for F+, with added MVDs for author

borrower_id " last_name, first_name  
call_number " title  
call_number ->> author  
call_number, copy_number " barcode,borrower_id, date_due  
barcode " call_number, copy_number,borrower_id, date_due  
 
PROJECT

(1)The cover does not include call_number ->> copy_number

49

(a)It is not the case that if we have two different copies of some
call_number, each copy_number value appears with each
barcode - just with the one for that book.

(b)Likewise, it is not the case that if we have two different copies
of some call_number, each copy_number value appears with
each borrower/date_due - just to the one (if any) that pertains
to that particular copy.

(2)The definition of 4NF - and the 4NF decomposition algorithm - are both
couched solely in terms of MVD’s. However, since every FD is also an
MVD, we will use the above set, remembering that when we have say

borrower_id " last_name, first_name  

we necessarily also have

borrower_id ->> last_name, first_name

(3)The algorithm calls for using D+ - the transitive closure of D, the
set of FD’s and MVD’s. As it turns out, all we really need to know
for this problem is Fc (the canonical cover for the FD’s) plus the
MVD’s. (The transitive closure of the set of MVD’s is huge!)

PROJECT steps in decomposition

b) Initial scheme:

{ (borrower_id, last_name, first_name, call_number,  
 copy_number, barcode, title, author date_due)  
}

c) Not in 4NF - LHS of first dependency is not a superkey - change to

{ R(borrower_id, call_number, copy_number, barcode,  
 title, author, date_due)  
 R1(borrower_id, last_name, first_name)  
}

50

d) R not in 4NF - LHS of second dependency is not a superkey - change
to

{ R(borrower_id, call_number, copy_number, barcode,  
 author, date_due)  
 R1(borrower_id, last_name, first_name),  
 R2(call_number, title),  
}

e) R is not in 4NF - LHS of third dependency is not a superkey - change to

{ R(borrower_id, call_number, copy_number, barcode,  
 date_due)  
 R1(borrower_id, last_name, first_name),  
 R2(call_number, title),  
 R3(call_number, author)  
}

f) Result is now in 4NF - we’re done

VII.Higher Normal Forms

A. For most applications, the kinds of dependencies we have considered are
thoroughly adequate.

B. Two normal forms have been proposed as generalizations of the ones we
have studied thus far. However, we will not discuss them further here. They
come from situations having certain kinds of constraints that cannot be
expressed as FDs or MVDs.

C. These are discussed in sections 28.2 and 28.3 of the online part of the text.

51

VIII.Database Design

A. There are two general approaches to overall database design:

1. Start with a universal relation - a relation containing all the attributes we
will ever need - and then normalize it.

a) This has been the approach we followed in the examples in this series
of lectures, where we started with a single universal relation and
finished up with a 4NF decomposition.

b) This is often the way a naive user designs a database.- though the
naive user may not get around to normalization!

2. Start with an ER diagram. If we do this, we may still need to do some
normalization. This can lead to modifying our ER diagram, or we can simply
do the normalization as part of creating the relational scheme.

Example: Our recall that our running library example could be represented by
the following initial ER diagram:

PROJECT

52

Check
 Out

date_due

Borrower

borrower_id
last_name
first_name

Book

call_number
copy_number
barcode
title
author

From this, we might generate the following initial scheme:

Borrower(borrower_id, last_name, first_name)  
Book(call_number, copy_number, barcode, title, author)  
Checkout(borrower_id, call_number, copy_number, date_due)  

PROJECT

(Note that, in general, a one-to-one or one-to-many relationship in an ER
diagram can often be converted to a relational design in which the key of the
“one” is folded into the table representing the “many” entity, thus avoiding the
need for a separate table.)

a) Even if we assume only one author per book, as we have done most of the
time, this is not a BCNF design. Why?

ASK

Book contains a partial dependency - title and author depend just on
call_number, not on the whole key. Normalizing this leads to

Borrower(borrower_id, last_name, first_name)  
BookInfo(call_number, title, author)  
Copy(call_number, copy_number, barcode)  
Checkout(borrower_id, call_number, copy_number, date_due)  

PROJECT

b) If we allow a book to have multiple authors we also have to deal with the
MVD call_number ->> author

What would this lead to?

ASK

Borrower(borrower_id, last_name, first_name)  
BookTitle(call_number, title)  
BookAuthor(call_number, author)  
Copy(call_number, copy_number, barcode)  
Checkout(borrower_id, call_number, copy_number, date_due)  

PROJECT

53

3. Note that these two approaches lead, after normalization, to similar but
not identical designs.

a) How does the design that comes from normalizing our original ER
diagram differ from the design we came to by normalization of a
universal relation?

ASK

The former has a separate Checkout table, rather than keeping
borrower_id and date_due in the Book table.

b) Which is better?

ASK

The latter design avoids the necessity of storing null for the borrower
id of a book that is not checked out, at the expense of having an
additional table. Thus,

(1)To record the return of a book under the first model, we set the
borrower_id attribute of the Book tuple to null.

(2)To record the return of a book under the second model, we delete
the Checked_out tuple

B. Although we have stressed the importance of normalization to avoid
redundancies and anomalies, sometimes in practice partially-denormalized
databases are used for performance reasons, since joins are costly.

1. The problem here is to ensure that all redundant data is updated
consistently, and to deal with potential insertion and deletion anomalies,
perhaps by use of nulls.

2. Note that views can be used to give the illusion of a denormalized design
to users, but do not address the performance issue, since the DBMS must
still do the join when a user accesses the view

54

3. A sophisticated DBMS may support materialized views in which the view
is actually stored in the database, and updated in synch with the tables on
which it is based. (In db2, these are called summary tables.)

55

