
CS352 Lecture - Concurrency

Last revised March 29, 2021
Objectives: 

 

To introduce locking as a means of preserving the serializability of concurrent 
schedules.
1. To briefly introduce other approaches to this problem (timestamps, validation, 

multi-version and snapshot schemes)
2. To introduce other important issues (phenomena related to insert/delete; weak 

levels of consistency; concurrency issues with index structures)

Materials: 

 

Projectables of examples of locking and unlocking (4)
1. Projectable of compatibility matrix for shared and exclusive locks
2. Projectable of example of deadlock
3. Projectable of example of how locking does not guarantee serializability
4. Projectable of precedes graph for the above
5. Projectable of a non-serializable schedule that can be made serializable by the 

use of a multiversion scheme
6. Projectable of a transaction that can give rise to phantom rows

I. Introduction

A. We have previously considered the notion of a transaction, and noted that,  if 
properly formed transactions are executed serially, with one completing 
before the next starts, we are guaranteed to preserve consistency in the 
database.  In particular, a SERIAL SCHEDULE composed of consistent  
transactions always preserves database consistency.

B. There are many practical reasons for not wanting to be restricted to  serial 
execution, thus allowing two or more transactions to be processed in parallel.  
(The individual steps are still done serially, but steps of  one transaction can 
be interwoven with steps of another.)
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1. Better use of system resources through overlapping IO and  
computational activities.

a) Being able to perform useful computation on the CPU while waiting  
for a disk access to complete.

b) If the system has multiple disks, then being able to do multiple disk 
accesses in parallel, given that better than 90% of the time consumed 
in a disk access is spent on head movement and rotational latency.

2. Support for access to the database by multiple users simultaneously.

3. If a transaction is interactive, and there is some delay while a human 
responds to some aspect of it, we do not want the system to be totally idle.

4. Not making the database totally inaccessible while processing a  long-
running transaction (e.g. posting interest to all savings accounts.)

C. We have seen that we can permit concurrency and still preserve consistency 
provided that we schedule overlapping transactions in a way that is 
SERIALIZABLE - i.e. equivalent to a serial schedule, and if we ensure that 
any schedule we produce is RECOVERABLE - i.e. does not allow a 
transaction to fully commit until any transaction whose data it has read  has 
already fully committed.

D. In this lecture, we look at various strategies that might be used to  ensure 
serializability.  (Some also deal with recoverability).

II. Ensuring serializability by the use of locks

A. Thus far, we have discussed methods for testing a schedule to see if it is 
serializable.  Since a concurrent system seldom "knows" ahead of time what 
sequence of transactions it will receive, a more useful goal is the 
development of a set of rules that ensures that any schedule that develops 
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over time is serializable.  One way to do this is by using a  LOCKING 
PROTOCOL of some sort.

1. We extend the DBMS primitives beyond the basic read and write to 
include primitives lock and unlock.  Basically, a lock operation excludes 
other transactions from certain kinds of access to a data item, and an 
unlock operation releases that hold. 
 
If a transaction needs a lock on a data item that it cannot get because 
some other transaction holds an incompatible lock, it is forced to wait 
until the lock can be granted.

2. These primitives do not appear as explicit DML statements, however. 
Instead, certain kinds of database operations result in appropriate locks 
being acquired as part of their implementation by the DBMS.  
 

Example: a SQL UPDATE involving a computation on some column will  
lock the column value at least from before it reads it to after it  writes the 
updated value (and perhaps longer). 
 

Note: DBMS locking differs from the kind of locking we have met in 
Java, where the programmer is responsible to explicitly request it by 
using the keyword synchronized.  DBMS locking is managed 
automatically as operations that require locks are executed.

3. In particular, locking is tied in with the notion of transactions, in the sense 
that sometimes locks acquired during a transaction will need to be held 
until the transaction is fully committed, as we shall see.

4. In the discussion below, we will show locking / unlocking operations 
explicitly.  But this is only for pedagogical purposes - in reality, locking is 
done by the DBMS when an operation that requires a lock is started, and 
unlocking is done by the DBMS at the end of a transaction (or sometimes 
earlier)   (There is no such thing as a LOCK or UNLOCK statement in 
SQL!)
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B. Granularity of locks

1. One important issue in any locking system is the GRANULARITY of the 
locks - i.e. what size objects can be locked.

a) The coarsest granularity is locking at the table level - any transaction 
wishing to access the table must lock the entire table. This is seldom 
an adequate solution since it severely limits potential concurrency.

b) More desirable is locking at the row or even column level.  Either  an entire 
row can be locked, or possibly just some columns of  a row.  (Row locking 
is usually fine enough, though, and involves much less overhead.)

c) However, since data is usually read and written in physical blocks or 
pages, not by rows, locking is often implemented at the disk block or 
page level.  Thus, a transaction wishing to lock a particular row will, 
in fact, end up locking the entire page on which it is stored.  (This 
granularity works well with crash control schemes based on shadow 
paging which we will consider under the topic of crash recovery). 

2. Some systems allow multiple lock granularities - e.g. the possibility of 
locking an entire table, or just one part (row or database page).  This can 
be useful if,  for example, a transaction is performing some update 
operation on most  or all of the rows in a table - in which case locking the 
entire table is more efficient than locking the rows one by one (especially  
if consistency requires that all the rows remain locked until the 
transaction completes.)

C. Locking protocols are generally based on two kinds of locks:

1. A SHARED lock is used when a transaction wants to read an item, but 
does not want to change it.  It allows other transactions to also obtain 
shared locks, so they can read the item, provided they too do not change 
it.  The transaction obtaining a shared lock on an item must hold it as long 
as it wants to be sure that the item is not altered. 
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We will use the notation lock-s(item) 
 

Example: A transaction that simply prints a user's current balance on 
some one account need not hold a lock on that balance after it has read it. 
 

We will show this as: 
 
lock-s(balance) 
read(balance) 
unlock(balance) 
 
PROJECT 
 
Example: A transaction to print the total balance of all accounts held by a 
given user must hold a shared lock on each individual balance until it has 
read all of them.  This will ensure that any simultaneous transfer of 
money between accounts does not  result in an erroneous total amount 
being displayed. 

 

We will show this as: 

 

lock-s(balance1) 
read(balance1) 
lock-s(balance2) 
read(balance2) 
.... 
unlock(balance1) 
unlock(balance2) 
... 
 
PROJECT

2. An EXCLUSIVE lock is used when a transaction wants to write an item 
(but also will allow it to read the item).
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a) A transaction wanting to obtain an exclusive lock on a given item will 
be forced to wait until any other transaction holding any kind of lock 
on the item releases it.

b) While the exclusive lock is held, no other transaction can obtain any 
kind of lock on the item.

c) If the desired operation is a read-modify-write on an item, then the 
transaction must obtain the exclusive lock before doing the read; or 
must obtain a shared lock before the read which is then upgraded to 
exclusive before the write.  (That is, it must hold some kind of lock on 
the item at all times between the read and the write.)

d) An exclusive lock must remain in force until the transaction either 
commits or is rolled back, to prevent lost or fallacious updates. 
 
We will represent the obtaining of an exclusive lock by lock-x - e.g. if 
a transaction gives 5% interest to an account, the transaction might be 
represented as: 
 

lock-x(balance) 
read(balance) 
[ add interest amount ] 
write(balance) 
unlock(balance) 
 
PROJECT

3. To increase concurrency, some systems allow for the upgrading of locks.  
The book, for example, suggested the  possibility of allowing a read-
modify-write transaction to obtain a  shared lock before its read and to 
upgrade it to an exclusive lock  just before doing its write, instead of 
holding an exclusive lock the whole time. 

 

Example - the above case (though here this probably wouldn't be 
beneficial): 
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lock-s(balance) 
read(balance) 
[ add interest amount ] 
lock-upgrade(balance) 
write(balance) 
unlock(balance) 
 
PROJECT

4. When a transaction holds a lock some item and another transaction needs 
to acquire a lock on the same item, we say that the locks are compatible if 
both transactions can hold locks at the same time and incompatible if the 
later transaction must be forced to wait until the earlier transaction 
releases their lock.  In the case of the two types of locks we have 
considered, the rules of compatibility are as follows: 
 
PROJECT Compatibility matrix for shared and exclusive locks 
 
(Some locking systems use more than these two types of lock - in which 
case the compatibility matrix may have more rows and columns.)

D. One problem that can arise with the use of locking protocols is  
DEADLOCK.

1. Two transactions T1 and T2 are deadlocked if T1 holds a lock on a resource 
R1 and needs to obtain a lock on another resource R2 before  it can release the 
lock on R1, and if T2 similarly holds an incompatible lock on R2 and needs an 
incompatible lock on R1. 
 

Example: Consider two transactions: one to transfer $50.00 from a  customer's 
checking account to his savings account, and another to print the total balance 
in his two accounts. 
 

One possible schedule looks like this: 
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Transfer transaction T1 Inquiry transaction T2 
 

lock-x(checking balance) 
read(checking balance) 
calculate new balance = old - 50 
write(checking balance) 

lock-s(savings balance) 
read(savings balance) 
lock-s(checking balance) -- MUST WAIT 

 
lock-x(savings balance) - MUST WAIT 
 
PROJECT 
 
Under this schedule, the the inquiry transaction will only execute as far as the 
lock-s(checking balance) before being forced to wait and the transfer 
transaction will only execute as far as the lock-x(savings balance) before being 
forced to wait.  Now neither transaction can proceed, and thus cannot unlock 
the resource the other needs.   
 

In this case, the deadlock caused by locking actually prevents an unserializable 
schedule from being created.  If T2 were able to proceed to read the checking 
balance and then print the sum, the result would be wrong since the checking 
balance has already been reduced but the savings balance has not yet been 
increased.

2. In the operating systems portion of the software systems course, we 
discuss several ways of dealing with deadlock:

a) Deadlock prevention - design a scheme in such a way that deadlock 
can never occur.  (This is not always possible)

b) Deadlock avoidance - before any lock is granted, check to see if 
granting it might lead to a situation in which deadlock could occur.  If 
so, delay it.  (For example, in the above scenario, the system could 
force the inquiry transaction to wait when it requests the lock on 
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savings balance.  This would allow the transfer transaction to complete 
and release its locks; then the inquiry transaction could run.)  
Deadlock avoidance also generally requires some advance knowledge 
as to how a transaction will behave.

c) Deadlock detection - we allow deadlock to occur; but when it does, we 
deal with it by choosing one of the deadlocked transactions, rolling it 
back, and then restarting it after first allowing the other transaction to 
proceed past the point of the deadlock.

3. DBMS's often use the third approach of deadlock detection and recovery 
by rollback, since deadlock prevention may limit concurrency too much,  
and deadlock avoidance requires advance knowledge of a transaction's  
behavior that may not be available.  Deadlock detection and recovery is 
generally NOT regarded as a good solution for operating systems, 
because the rollback costs may be too large; but it is acceptable for 
DBMS's because:

a) Most transactions are relatively small - thus, the cost of a rollback is 
relatively small.

b) DBMS's deal with large numbers of resources (e.g. each row in the 
database); thus, the probability that two transactions will deadlock over a 
given resource is relatively small and deadlocks will be relatively rare.

c) DBMS's have to be prepared to deal with transaction rollback in any case. 
 

Example: A DBMS might well allow the deadlock described above to 
occur - at which point the inquiry transaction could be rolled back and 
restarted after the transfer transaction completes 

4. When a transaction is rolled back because of a deadlock, it is typically 
automatically restarted from scratch, so that all that happens is that its 
completion is delayed.   Some systems also allow partial rollbacks, in which a 
transaction is rolled back to the point where it requested the lock that was 
involved in the deadlock.  (This, of course, requires that the system have 
provision for "remembering" the internal details of the transaction.)
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E. Simply insisting that a transaction obtain an appropriate kind of lock on an 
item before accessing it, however, does not guarantee serializability. 

 

Example: Consider the parallel execution of a transaction to transfer $50 
from a checking account to a savings account (owned by the same person) 
and a transaction to print the total balance  in the person's accounts.  
Obviously, we don't care whether the total balance is computed on the the 
basis of the balances before the transfer or after the transfer, since the total  
balance is the same in either case.

1. However, the following is a non-serializable schedule that yields the 
wrong result, even though the locking rules we have discussed thus far 
are used.  Here we assume an initial balance in checking of $100 and 
$200 in savings - so the printed sum should be either $50 + $250 or $100 
+ $200 = $300 in either case. 

 

Transfer transaction T1 Total balance inquiry T2 
 

lock-s(savings balance) 
read savings balance (200) 

lock-x(checking balance) 
read checking balance (100) 
write checking balance (100-50=50) 
unlock(checking balance) 

lock-s(checking balance) 
read checking balance (50) 
unlock(savings balance) 
unlock(checking balance) 

lock-x(savings balance) 
read savings balance (200) 
write savings balance (200+50=250) 
unlock(savings balance)  

print sum (250) 
 
PROJECT 
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Note that each transaction obtains an appropriate lock before it does a 
read or write operation, and the inquiry transaction retains its lock on the 
savings balance until after it has read the checking balance, too, in an 
attempt to ensure that an update does not come along and alter one of the 
values and so mess the result up.  However,  this does not protect it from 
error, since the transfer  transaction has left the sum of the balances 
momentarily incorrect, but with no locks held.

2. To prevent such inconsistencies, some protocol must be used to govern 
the ORDER in which a transaction acquires and releases locks.

3. One strategy that is widely used is called the TWO-PHASE locking 
protocol.  In this protocol, we require that a transaction cannot acquire 
any new locks after it has once released a lock that it has held.  Thus, a  
transaction will execute in two phases:

a) In the GROWING phase, it may acquire new locks, but may not 
release any.  (Converting a lock from a lower level to a higher level - 
eg from shared to exclusive - is also allowed in this phase.)

b) In the SHRINKING phase, it may release locks it holds, but not 
acquire new ones.  The shrinking phase begins, then, with the first 
unlock operation done by the transaction. 

 

Example: The inquiry transaction above is two-phase, but the transfer 
transaction is not.  Notice how a non two-phase transaction is able to 
destroy the consistency of another transaction, even though it is two-
phase.  To ensure consistency, EVERYBODY must obey the protocol

c) Why does the two phase protocol work?  

(1)Observe that, for any schedule S, we can construct a directed graph 
using the precedes relationship: there is an edge from Ti to Tj iff in 
S Ti acquires a  lock on some resource A BEFORE Tj acquires an 
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incompatible   lock on the same resource.  We say that Ti 
PRECEDES Tj in S (written Ti -> Tj). 

 

If this graph is acyclic, then the schedule is serializable. 

 

Example: The precedes relationship for the above schedule: 

 

 

 

PROJECT 
 

This graph is not acyclic, and the schedule is not serializable.

(2)The two-phase protocol guarantees serializability because the precedes 
graph for any set of two-phase transactions is acyclic. To see this, 
consider two transactions T1 and T2 that must both   hold incompatible 
locks on the same item or items.  The only way the precedes graph could 
contain a cycle involving these two transactions is if T1 locks some item 
T2 needs before T2 does, and T2 locks some item T1 needs before T1 
does.  But in this case, T1 and T2 will deadlock, since neither can release 
the lock it holds while it still needs to acquire another.  One will then be 
rolled back, and  the cycle in the precedes graph will be destroyed.

d) The two-phase protocol can be extended to also ensure recoverabilty, 
as follows:

(1)The STRICT two-phase protocol requires that all exclusive locks 
acquired by a transaction be held until the transaction commits.

(2)The RIGOROUS two-phase protocol requires that all locks (both  
shared and exclusive) acquired by a transaction be held until the 
transaction commits. 

 

Both guarantee cascadeless recoverability, because no transaction  
can ever read data written by an uncommitted transaction.
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e) The latter two variants of the two-phase protocol are widely used,   
though they must be accompanied by some scheme for deadlock   
detection and recovery, since two-phase locking can lead to deadlock.

(1) In this case, deadlock serves to prevent the system from completing 
an unserializable schedule.

(2)Deadlock is not a major problem, because a transaction that is rolled 
back due to deadlock can generally be restarted - usually with 
minimal cost unless it is a long-running transaction (in which case 
measures may be implemented to prevent other transactions from 
getting in its way.)

4. While the two-phase locking protocol is widely used, it is not the only 
possibility.  The book discusses an alternative tree-based approach which 
we will not pursue here..  (This has the additional advantage of 
preventing deadlock, but it allows less concurrency.)

III.Other Ways of Ensuring Serializability

A. Locking is a widely-used way of ensuring serializability.  But it is not the 
only possibility.

B. Another approach is based on TIMESTAMPs.  As each transaction enters the 
system, it is given a unique timestamp which is some sort of clock reading or 
serial number that is different for each transaction.

1. We refer to the timestamp of some transaction T as TS(T).

2. We associate with each data item (e.g. each row in a table or each 
database page) two timestamps - R-timestamp, which is the timestamp of 
the last transaction that read it, and W-timestamp, which is the timestamp 
of the last transaction that wrote it.
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3. We observe the following rules:

a) A transaction may not read a data item if the W-timestamp of that item 
is greater than the transaction's timestamp.  If it attempts to do so, it  
must be rolled back.

b) A transaction may not write a data item if either the R-timestamp or 
the W-timestamp of that item is greater than the transaction's 
timestamp.  If it attempts to do so, it  must be rolled back.  

 

There is a variant of this known as Thomas's write rule (discussed in 
the book) which instead ignores a useless write in the case where only 
the W-timestamp of the item is greater than the transaction's timestamp 
- in which case the write is just ignored instead of rolling the 
transaction back.

c) If a transaction is rolled back, it is restarted with a fresh timestamp 
(which is necessarily larger than the timestamps of the item is failed to 
access) and it is started over from the beginning. 

4. The protocol operates to ensure that the actual schedule is equivalent to a 
serial schedule in which Ti completes before Tj starts iff TS(Ti) < TS(Tj).

C. Both locking and timestamp protocols operate by STOPPING a transaction 
from doing a read or write that would result in a non-serializable schedule.  
Alternately, we might allow a transaction to read and write as it needs to, 
without interference; but then, before it commits, we check to see if the 
outcome is  serializable.  This can be very advantageous if the majority of  
transactions are read-only ones that do not interfere with one another.  Such 
an approach is known as VALIDATION. 
 
We will not discuss the details of this approach (which are quite complex) 
beyond noting is that the basic idea is that when a transaction partially 
commits a validation test is performed to see if it has read or written anything 
it should not have in light of the timestamps.  If so, it is rolled back.
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D. Yet another approaches ensures serializability by a Multi-Version scheme.

1. Consider the following excerpt from a non-serializable schedule: 

 

T1 T2 
write(A) 

read(A) 
write(B) 

read(B) 
 
PROJECT 

 

As it stands, this is a non-serializable schedule.  The write(A) in T2 
followed by the read(A) in T1 requires that, in any  equivalent serial 
schedule, T2 must precede T1; but the write(B) in T1 followed by read(B) 
in T2 requires the opposite.

2. Suppose, however, that when T1 writes B we retain the OLD value of B along 
with the new value.  (We keep two versions of B in the database.)  Then,  when 
T2 reads B, we can give it the OLD value, producing a schedule  equivalent to 
the serial schedule T2; T1. The effect is the same as if the read(B) in T2 
preceded the write(B) in T1, though the opposite was  actually the case.

3. This approach to concurrency control is called a MULTIVERSION 
SCHEME.  It uses timestamping in two ways:

a) Each transaction has a timestamp, as in previous schemes, recording  
its START time.  The scheme will ensure that any schedule is 
equivalent to a serial schedule in which Ti precedes Tj if TS(Ti) < 
TS(Tj).

b) Each VERSION of each item has two timestamps, as in previous 
schemes:
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(1)W-Timestamp(Q) is the timestamp of the transaction that wrote it.

(2)R-Timestamp(Q) is the highest timestamp of any transaction that 
has read this version of item Q.

c) When a transaction T does a read for some item Q, the relevant  
version of the item is the one with the greatest W-Timestamp such that 
W-Timestamp(Q) <= TS(T). 

d) When a transaction T does a write for some item Q, but a “later” 
transaction has already read Q, it must be rolled back and restarted.  
(In fact, cascading rollback is now possible).

E. Snapshot Schemes

1. Another approach that has become fairly widely used is called snapshot 
isolation.

2. In effect, each transaction is given its own version of the database to use, 
by using a multiversion approach.  Each transaction is isolated from all 
others by having its writes be deferred by recording them in memory until 
the transaction commits, at which point the writes are all done atomically 
to the actual database.

3. At the time a transaction becomes partially committed, validation is used 
to determine if the transaction is allowed to commit or must be rolled 
back if its actions were inconsistent with the actions of some other 
committed transaction - e.g. it wants to write something that another 
committed transaction has already read an earlier version of.

4. There are a fair number of complexities that must be dealt with to ensure 
serializable results in all cases - as the book discusses.  But this approach 
has gained popularity because it maximizes opportunities for concurrency 
while conflicts that force rollbacks are - in fact - relatively rare.
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IV.Further Issues  (Omit if not enough time)

A. Concurrency Issues Arising from Delete and Insert

1. Thus far, we have dealt with concurrency-related issues arising from the 
operations of read() and write() on some item in the database.

a) The SQL UPDATE statement always does a write, and often does a 
read as well (e.g. SET SALARY = SALARY*1.05).  The SELECT 
statement does a read, which may be preparatory to a write either to 
the same item or another item.  The same is true for corresponding 
operations using other data models.

b) What about the DELETE and INSERT operations?

2. The book shows that a delete operation is similar in principle to a write 
operation in terms of the table row being deleted. 

3. The book shows that an insert operation is similar in principle to a write 
operation in terms of the table row being inserted  

4. However, another issue that arises with delete or insert is the phenomenon 
of “phantom rows”.

a) Consider a query like the following, which - in general - looks at  
multiple rows: 
 

select count(*) from borrower   
where last_name = 'Aardvark' 
 
PROJECT 
 

At the implementation level, the DBMS uses some sort of iterator to 
iterate over the relevant rows.  (This is similar in principle to the 
cursor of embedded SQL, but internal to the DBMS)
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b) Now suppose a concurrent transaction does an insert (or delete) of a 
row with name = 'Aardvark', or updates an existing row to change the 
name to Aardvark or to change 'Aardvark' to something else.

c) If the insert, delete or update happens ahead of the cursor (e.g. before 
it gets to the row in question), the operation impacts the count.  But if 
the insert, delete or update happens behind the cursor (e.g. after it has 
passed the row in question), the operation has no impact on the count.

d) In terms of serialization order, if the insert, delete or update happens ahead 
of the cursor, then the insert/delete/update transaction in which it occurs 
must be BEFORE the count transaction; if the insert, delete, or update 
happens behind the cursor, the the insert/delete/update transaction must be 
AFTER the count transaction.  Our concurrency control mechanism must 
take this into account in terms of locking or testing for serializability.   
 

However, in the case where the insert/delete/update occurs behind the 
cursor, the changes to the row in question do not actually affect the way we 
count the row in the count transaction, so we have a case where the two 
transactions may conflict over a row that is not even part of one of them!  
(A “phantom row”).

e) How can we expect a transaction to lock (or test the timestamps) of a 
row that is not even part of it?   

(1)One solution involves in allowing an additional kind of lockable 
entity - the right to insert, delete, or update rows in a table.

(a)The insert, delete, or update transaction must obtain an 
exclusive lock  on this right before doing its operation.

(b)The count transaction, or any transaction like it that scans rows 
in the table must obtain a shared lock on this right to ensure that 
no rows are inserted, deleted, or update while it is iterating over 
the table.
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(c)Note that this lock is NOT the same as a multi-granularity lock 
on the table itself.  We do not need to lock other transactions 
totally out of the table, if they do not depend on the table not 
changing under them (e.g. they are accessing a specific row 
based on primary key.)

(2)The book discusses an alternative based on locking B+ tree index 
leaves rather than the whole table, which allows more concurrency.

B. Weak Levels of Consistency

1. We have looked at a number of techniques for ensuring that any actual 
schedule produced by executing transactions concurrently is serializable.  
Basically, such techniques rely on one or the other of  the following 
strategies:

a) Making a transaction wait for some lock to be released before it can 
proceed.

b) Rolling back a transaction that attempts an operation that would  
otherwise make the resulting schedule non-serializable. 
 

Of necessity, either sort of measure reduces the rate at which 
transactions can be processed - either by making a transaction wait, or 
by making it start over.  Thus, concurrency control and maximizing 
throughput can conflict with one another.

2. Often times, there will be transactions for which an approximately correct 
answer is close enough.  In such cases, we may choose to forgo  strict 
enforcement of serializability to improve throughput.  The book discusses 
this at some length, but we will not discuss this further, except to recall 
that SQL incorporates an ability to specify that a given query is to be run 
with weakened serializability requirements being enforced. 
 
Db2 allows the specification of different serializability levels at the level 
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of individual packages of compiled code in the database. The terminology 
and precise levels of isolation provided is a bit different from that 
discussed in the book - see the manual for details.  (You will see output 
about this when binding packages to the database for your programming 
project)

C. Locking and Index Structures

1. All of our discussion of locking has focussed on issues related to the 
actual locking of data in the tables themselves.  In the case of a table that 
has one or more indexes, we also need to consider the impact of various 
operations on the index structure.

2. In the case of a dense index, every insert or delete operation necessarily 
impacts the index as well.  Updates to a column that is the basis for an 
index also impact the index.  (In effect, an update involves deleting the 
old entry and inserting a new one.)

3.  In the case of a sparse index, insert, delete and update operations  may or 
may not impact the index.

4. The book discusses locking issues involved with indexes.  We will not 
pursue these here.
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