
CPS331 Lecture: Introduction to Prolog Last revised September 6, 2018

Materials:

1. Copy of Clocksin and Mellish to show
2. Handout and projectable of isa.pro program from Problem Set 3
3. Handout on using PrologJ
4. Projectable of problem and projectable and demo program for "Garden Dilemma"

puzzle

I. Background

A.Prolog is one of two programming languages widely used in AI work -
the other being LISP. LISP is the more commonly used in the US, but
Prolog is widely used here as well as in other parts of the world.

B. Prolog is programming language based on predicate calculus. The name is
a contraction for "Programming in Logic", and the language was originally
developed in conjunction with work on automated theorem proof.

C. Probably the best known book on Prolog is  
 

Clocksin, William F. and Christopher S. Mellish. Programming in
Prolog (Berlin: Springer-Verlag). Currently in its 6th edition,
copyright 2013.  
 

SHOW

D.Prolog is utterly different from any other programming language you
are likely to have studied.

1. If you are not a CS student, that means that you’re really at no
disadvantage compared to CS students when it comes to learning
the language. In fact, it has been said (and I think with a significant
element of truth) that it is easier for a philosopher to learn Prolog
than it is a Computer Scientist.

�1

2. If you are a CS student, the differences can be summed up in two
key words:

a) Prolog is higher-level than other languages you know.

b) Prolog is non-procedural. In brief, a Prolog program specifies
what is to be done, rather than specifying how to do it.

c) Therefore, in order to learn Prolog, you must consciously lay
aside some of the thought habits you have formed from working
with procedural languages.

II. Representing Facts Rules, and Queries

A.When we write in Prolog, we are typically constructing one of three
things:

1. A FACT - something that we are asserting to be true. (Similar to
the predicates in predicate calculus.)

2. A RULE - something that allows us to infer new knowledge from
existing facts and rules. (Similar to implications in predicate
calculus)

3. A GOAL - either a query to be answered based on existing facts
and rules, or a subgoal generated in the process of answering the
query.

4. Typically, the facts and rules reside in a database which you
consult. An initial query is entered interactively to initiate
computation - which typically results in further goals being
generated.

B. Let’s look at examples of these from the Prolog program you will be
working with for Problem Set 3.  

�2

 

PROJECT isa.pro

1. The program contains a number of facts.  
 

Examples: isa(snoopy, beagle). and subsequent

a) A fact has the form of a predicate calculus predicate.

b) Each fact is followed by a period.  

2. The program also contains a number of rules.  
 

Examples: the two infer rules at the end of the program

a) A rule has the general form  
 

head :- body

(1)This is equivalent to the predicate calculus implication  
 

body → head  
 

or, using the rule notation we will look at soon, the rule  
 

IF body 
THEN head  
 
The designers of Prolog reversed the order to focus attention
on the head, because Prolog uses backwards chaining - so
when we are trying to satisfy some goal, we are looking for a
rule whose head unifies with it

(2)A rule is also always followed by a period

(3)A fact can be thought of as a rule with an empty body, or as a
rule whose body consists of the single goal true (which
always succeeds)  
 

�3

i.e. isa(garfield, cat).  
 

is exactly equivalent to  
 

isa (garfield, cat) :- true.  
 

(which may actually be the way a Prolog implementation
represents it internally)

(4)In Prolog, rules often have bodies that are composed of more
than one subgoal, with the subgoals separated by “,” - which
stands for “and” in Prolog.

b) Example: the first rule in the example program says “It is
possible to infer that something holds if that something is
recorded in the database.” (call is a builtin predicate in Prolog
that attempts to satisfy a goal.)  
 

Example: turn tracing on and execute  
infer(isa(garfield, cat)).

c) Example: the second rule says “It is possible to infer that some
property holds for some entity if  
 

The entity belongs to some class (it “isa” something)  
And: We can infer that the property holds for that class  
And: Inheritance is not blocked by some negative fact  
 

Example: turn tracing on and execute  
infer(isa(garfield, carnivore)).

d) The univ operator (=..) is something we will discuss later.
What it does here is allows us to take our original goal apart into
the name of the property (Property), the entity we are
concerned about (Who), and - if present - a Value. We then
discover some Class that Who belongs to and construct a new
inference - does that Property hold for that Class?

�4

(1)Example: suppose we were trying to infer that garfield eats meat.  
 
Initial goal infer(eat(garfield, meat)). 
Since garfield is a cat, we now try to infer eat(cat, meat).  
This, in turn, leads us to try to infer eat(carnivore, meat)

(2)Turn tracing on a demonstrate

3. Computation is initiated by entering an initial goal (called a query). This
may, in turn generate new goals  
 
Example: refer to trace of infer(eat(garfield, meat))  
 
Initial goal (query): infer(eat(garfield, meat))  
Subgoal: eat(garfield, meat) - fails (not explicitly recorded in database)  
Subgoal: isa(garfield, Class) - succeeds with Class = cat  
Subgoal: eat(cat, meat) - fails (not explicitly recorded in database)  
Subgoal: isa(cat, Class) - succeeds with Class = carnivore  
Subgoal: eat(carnivore, meat) - succeeds  
Subgoal: not ~(eat(garfield, meat)) - succeeds  
 (CWA, called negation as failure in Prolog)

C. Prolog facts, rules, and goals are constructed from basic building
blocks called terms. Prolog has five basic types of term

1. Atoms

a) An atom is a symbolic name for some entity, value, or concept
our program must deal with. An atom corresponds to a
predicate calculus constant or predicate name.  
 
Examples from isa.pro: garfield, cat, meat

�5

b) In Prolog, there are four ways of writing an atom

(1)A name composed of letters (either case), digits, and the
underscore character. The first character must be a lower
case letter.  
 
We have already seen some examples from isa.pro  
Also: a_red_apple, a11, aBC  
 
But not: _a, 1a, ABC  

(2) A sequence of one or more special characters from the
following list: 
 

+ - * / ~ < > = \ ` ^ : . ? @ # $ & %  
 

Examples from isa.pro: ~ (in facts), :-, =.. (in rules at end)  
But not: a, a

(3)The following one or two character strings:  
 

 ! ; [] {} (in some contexts:) ,  
 

Examples from isa.pro: , (in rules at end)

(4)Any string of characters enclosed by single quotes. (A ' may be  
embedded by doubling or escaping it with a backslash.)  
 

Ex: (from Eliza): 'don''t'

2. Numbers. an integer or a real number, written in the conventional
way. 
 
Ex: 1, 127, -123, 1.0 3.14159 6.02e23  
 
These are also correspond to predicate calculus constants.

�6

3. Variables

a) A Prolog variable (which corresponds to a predicate calculus
variable) is a sequence of letters (either case), digits, and
underscores. The first character must be an upper case letter or
an underscore.  
 

Examples from isa.pro: Fact, Property, Who, Value, Class  
Also: X, XYZ, _XYZ, _xyz, This_is_a_long_name

b) Variable names of the form _0, _1, _2 etc. are generated
internally by Prolog during execution. Therefore, you should
not use these names explicitly.

c) A single underscore, by itself, is an anonymous variable. If it
occurs several times in a given formula, each occurrence is
treated as different.  
 

Ex: In the rule p(X) :- q(X)  
the two occurrences of X must unify to the same object.  
 

But in the rule p(_) :- q(_),  
the two variables could unify differently.

d) Prolog variables typically appear in rules and goals. They are
permitted, but less common, in facts. In a rule (or a fact) a variable is
regarded as universally quantified; in a goal, it is regarded as
existentially quantified.  
 

Ex: dog(X) :- barks(X) is the rule “X is a dog if X barks”  
dog(X), as a fact, would claim that everything is a dog!  
dog(X), as goal, would ask “is there some such that  

X is a dog?”

e) As Prolog is attempting to satisfy a goal, it assigns values to variables
- a process technically known as instantiation  
 

�7

Example: isa(garfield, X) results in X becoming instantiated to cat  
(Demo)  

4. Structures.

a) A Prolog structure consists of an atom (called its functor),
followed by a parenthesized list of comma-separated arguments.
The number of arguments is called its arity  
 

Ex: isa(garfield, cat) is a structure of arity 2  
The functor is isa.  
The arguments are garfield and cat  
 
When writing a structure in this way, it is essential that no
spaces separate the functor and the left parenthesis - e.g.  
 
roams(X) is a legitimate structure, but roams (X) is not,
and would cause the Prolog reader to report a syntax error

b) There is an alternate way of writing structures for certain atoms that
are defined as operators.  
 

Example from isa.pro: ~purr is equivalent to ~(purr)  
Property =.. [PropertyName, Who | Value]  

is equivalent to  
=..(Property, [PropertyName, Who | Value]  

(1)Certain operators (e.g =..) are builtin to Prolog

(2)The user can define atoms as operators - e.g. the definition for ~ at
the start of isa.pro

c) A Prolog structure can be used to correspond to a predicate
calculus predicate. (There are other uses we won’t talk about)

�8

5. Lists

a) A Prolog list consists of a left bracket, followed by a series of
comma-separated arguments, followed by a right bracket.  
 

Example from eliza:  

[thank, you, for, chatting, with, me, '.', have,
a, nice, day,'!']

b) An empty list can be written as a left bracket followed
immediately be a right bracket - with no space in between  
 

Ex: [], but not []

c) A vertical bar, followed by a single argument, can appear just
before the right bracket. The argument following the bar stands
for the entire rest of the list - and is itself a list  
 

Example: From isa.pro: [PropertyName, Class | Value]  
 

This is would match [eat, carnivore, meat]  
with PropertyName instantiated to eat, Class instantiated to
carnivore, and Value instantiated to [meat] - (note list)  
 

This would also match: [roam, beagle]  
with PropertyName instantiated to roam, Class instantiated to
beagle, and Value instantiated to [] (the empty list)

d) The builtin operator =.. (pronounced univ) can be used to convert
between structures and the corresponding list -  
 

Example in isa.pro:  
 

Suppose we invoke the final rule with the goal
infer(eat(garfield, meat))  
 

The first univ would instantiate PropertyName to eat, Who to
garfield, and Value to [meat] (note that it would be a list)  

�9

 

Since the isa call would instantiate Class to cat, the second univ
would instantiate ClassProperty to eat(cat, meat)  
 
This would result in the new goal infer(eat(cat, meat)), which would in
turn create the new goal infer(eat(carnivore, meat)), which would
match a fact in the database. (We demonstrated this earlier)

D.Instead of using the standard predicate calculus symbols for operators,
Prolog uses symbols for operators that occur on standard computer
keyboards.

1. The comma is used for “and”.  
 

Example: the rule above

2. The semicolon is used for “or”. However, this is rather rare.

3. Negation is written as “not”or “\+”, depending on the dialect of Prolog
being used. (The dialect we are using recognizes either, and treats them
as equivalent.)

III.Handling Queries

A.We said earlier that a Prolog QUERY has the form of a fact, but is entered to
the interpreter rather than appearing in a program.  
 

Example: the queries we used to initiate computation in the isa program

1. The interpreter reports whether the query is true (a fact, or can be
inferred from one or more rules).  
 

Example: Demo using isa.pro  
 

infer(isa(garfield, cat)), infer(isa(garfield, dog)).

�10

2. If the query contains one or more variables, the interpreter also reports the
value(s) of the variable(s) that make the query true.  
 
Demo: infer(eat(mickey, X))

3. If the query contains one or more variables, the interpreter will allow the
user to ask about other ways to satisfy the query by using different values
for the variables.  
 
Example: find all solutions to infer(isa(garfield, X))

B. Backtracking

1. Sometimes, in attempting to satisfy a query, Prolog will attempt
one or more approaches that don’t “work”. In this case, Prolog will
backtrack until it finds an approach that does work.  
 
Example: Suppose we want to know what individuals eat cheese.  
 

This could be answered by the compound query:  
 

individual(X), infer(eat(X, cheese)).

a) Prolog finds the two solutions mickey and minnie  
 

DEMO

b) It is instructive to see the process involved in finding those two
solutions. To see this, we can add some code to write out each
individual being tried.  
 

individual(X), write(X), nl, infer(eat(X, cheese)) 
 

DEMO 
 
Note that Prolog tries individuals in the order in which they appear in
the database. It therefore tries snoopy, nermal, and garfield before

�11

mickey but cannot infer that any of them eat cheese. In each case,
the failure of the “eat” goal forces backtracking to occur.

2. We will see a more significant use of backtracking in our final
example.

3. Actually, when we enter “;” at after Prolog reports a variable
binding, we are actually initiating backtracking as well - the “;” in
effect says “I’m not satisfied with that answer - please give me
another.”

IV.Using our Prolog.

A.DISTRIBUTE, GO OVER "Using" handout

B. Prolog operates in two modes:

1. In question answering mode, anything typed is taken as a goal to be
satisfied. This is denoted by the ?- prompt. You may think of input
in this mode as being preceded by "Please tell me ..."  
 

DEMO: Y is 2 + 2.

2. In consultation mode, Prolog treats all input as facts/rules to be
entered in the database for later use in answering questions. You
may think of input to this mode as being interpreted as if it were
prefixed by "The following is true ...".

a) Prolog may consult a disk file, as we have done in the examples
thus far, or it may consult you directly from the keyboard  
 

The easiest way to consult a file (though there are others) is to
choose Consult from the Interpreter  

�12

b) To consult from the console, type [user]  
 
DEMO: [user].

(1)The prompt changes consulting during the consultation.  
 
DEMO: isa(bullwinkle, moose).  

isa(moose, mammal).  
eats(X, grass) :- isa(X, moose).

(2)When through, click the EOF button to return to query
mode.  
 
DEMO using above: infer(eat(X, grass)).  
 
(Note: we used a rule for eat, instead of fact, to illustrate that
both rules and facts can be added in consultation mode!)

c) You should not consult the same file twice - this may result in
duplication of predicates and/or errors  
 
DEMO: Turn off directive enforcement, then consult isa.pro
again, then try infer(isa(garfield, X)). Note that each
answer comes out twice!  

d) Instead, after changing a file, you can reconsult it - which
results in replacing old definitions with new ones.  
 
DEMO: Edit isa.pro to change isa fact for garfield to dog  

Reconsult isa.pro  
Try infer(isa(garfield, X))

C. In either mode, comments may be entered enclosed in /* */, or
preceded by % (single line comment).  

�13

 
Note examples in isa.pro

D.If it is necessary to abort processing of a Prolog query (e.g. because
there is an infinite loop, you can click the Abort button.  
 
DEMO: 
 
repeat, write(hello), nl, fail.  
Abort the above.

E. To exit the interpreter, the simplest way is to just close the console
window.

V. A More Complicated Example

A.PROJECT Garden Dilemma Puzzle

B. DEMO - solve(F, L, B), printSolution(F, L, B).

C. PROJECT, discuss Prolog program

1. Basic strategy of the “solve” goal - generate and test. Backtracking
is used to generate all permutations until one is found that works.

2. “list processing” predicates

VI.There is a lot more that could be said about Prolog, but for our purposes
this should be sufficient for now  

�14

