
CPS331 Lecture: Planning last revised September 19, 2018  
 
Objectives:  

1. To introduce the STRIPS-style planning and the STRIPS assumption
2. To introduce Means-Ends Analysis
3. To note other issues in planning - nonlinear (partial order) planning, hierarchical

planning, reactive planning.
 
Materials:  

1. Projectable of Russell and Norvig (2nd ed) figure 11.2
2. Prolog blocks world program - both character graphics frame axiom version and Java

graphics STRIPS version
3. Projectable of frame axioms from first version
4. Excerpt from Dennett article in Boden to read (pp 147-148)
5. Handout Exercise 2 on page 96 as class exercise (same as search)
6. Projectable of STRIPS-style operators for the above + solution

I. Introduction

A.Planning is defined in Cawsey as “the problem of finding a sequence
of primitive actions to achieve some goal.” Planning crops up in many
places.  
 

ASK

1. The use of a GPS or a tool like mapquest or google to plan how to
drive from one place to another.

2. Planning an airline trip from one airport to another.

3. Manufacturing scheduling.

4. Planning complex tasks (e.g. the launch of a space shuttle)

5. Robotics

 
�1

B. Planning is closely related to search, but is considered a distinct area
of AI for a number of reasons

1. Goals are often composite - i.e. there is more than one things we
want to achieve.  
 

Example: One text (Russell and Norvig) develops its examples in
terms of a scenario where we want to go shopping and purchase
milk, an electric drill and bananas (which presumably entails
visiting two separate stores). That is, the goal can be described as  
 

at(home) ^ have(milk) ^ have(drill) ^ have(bananas)

2. While a plan needs to ultimately be executed in a linear order from start
to finish, it is often expedient to develop the plan in some other order.  
 

Example: In the above, once we have gone to the grocery store we can
buy both milk and bananas, but we have to buy the drill at the hardware
store, but we may not discover that we can put buying milk and
bananas together until after we have “thought about” the drill given the
order in which the subgoals are listed.

3. Plans are often developed in a context where there may be myriads
of possible operations.  
 

Example: PROJECT Russell/Norvig figure 11.2

4. It is often desirable to think about operations hierarchically  
 

Example: In the above, the primitive operations I can do are
actually things like go to the milk display in the store, pick up a
bottle of milk, go to the check out stand, pay for my order ... but it
is helpful to first think hierarchically in terms of “buying milk” and
later decompose this into more primitive operations, at least one of
which can be shared with “buying bananas”.

5. Moreover, it is desirable to develop general algorithms that do not
depend on problem-specific heuristics.

 
�2

C. Planning has been a subject of research in AI since the earliest days.
The goal has been to develop generalized approaches to planning that
can be used with any problem, rather than developing planning
approaches to specific problems.

D.As was the case with search, we will develop the basic ideas using a
toy problem, in this case based on a microworld called the blocks
world. A microworld is very limited domain used as a “test bed” for
basic ideas. This world we will use is one in which the only objects
are children’s blocks, and the operations relate to stacking and
unstacking them.

1. We will use a particularly primitive example in which all blocks are
cubical and of the same size. Further, we will assume each block
has a unique label so we can talk about it.  
 

Example:  
 

�  
 

A possible goal might be “put block a on block d” - which, of
course, necessitates moving c out of the way.

2. This problem can be described using predicate calculus as:  
 

Initial state: on(a, b)  
on(b, table)  
on(c, d)  
on(d, table)  
clear(a)  
clear(c)  

 

Goal state: on(a, d)  
(and probably lots of other things we don’t care about)

c

b

a

d

 
�3

a) There are two possible operations we can perform: stacking one
block on top of another block, and unstacking a block that is
currently on top of another block. Traditionally, these
operations have been called puton and putontable. Each
starts from some state and produces a new “result” state.

(1)Each of these operators has certain preconditions. For
example, we cannot put one block on another unless both are
clear to begin with; and we cannot put a block on the table
unless it is clear to begin with.

(2)Therefore, a plan for achieving the above goal can be
represented by  
 

putontable(c)  
puton(a, d)  
 

(Of course, we figured this out by hand; the goal is to
automate this!)

(3)This is not the only possible plan, of course (though it is the
simplest)  
 

ASK for other possible plans

b) Demonstrate frame axiom version Prolog program with natural
language front end - NOTE: Run from command line, not from
PrologJ window, due to use of VT100-style graphics. (Note: the
natural language aspects of this will be discussed in a future lecture)

3. A more general form of the blocks world has been used in
conjunction with work on natural language. In this case, the blocks
often have differing sizes, shapes, and colors, but are not labelled.
This allows dialogs like this:  
 

“Pick up the large red block next to the small blue block”  
“Put it on the table.”  
 

(but that’s not our subject now)

 
�4

4. Critics of AI have criticized the use of microworlds by arguing that
techniques developed in a microworld break down when
confronted with the complexity of the real world. While this
claim has a lot of validity, it remains the case that microworlds like
the blocks world are useful for understanding basic concepts.

II. The Frame Problem

A.One of the crucial issues in planning is dealing with the impact of
operations on the world. In general, any operation changes some
things and leaves others unchanged.

1. One writer has illustrated the general problem this way:  
 

READ Excerpt from Dennett article in Boden (p 147- first two
paragraphs on 148)

2. Example: In the blocks world, when we put one block on top of another  

a) The intended effect of the operation is for it to be “on” that
block

b) But certain other things change as well  
 

ASK

(1)The block it is put on is no longer clear.

(2)It is no longer “on” the place (another block or the table) it once
was.

(3)If it was previously on some other block, that block is now
clear.

c) But the “on” and “clear” status of other blocks does not change  

 
�5

B. An early approach to handling this was by using “frame axioms”. A
frame axiom is a statement to the effect that a specific thing does not
change when a particular operation is done.

1. Example: In our blocks world, we might have the axiom:  
 
If block A is put on block B, then the status of clear(X) does not
change for any X different from B  
 
PROJECT: Frame axioms from frame axiom version of blocks
world program

2. A significant problem with this approach is that the number of
frame axioms needed can be very large. In particular, we need one
frame axiom for each (operation, sort of description) pair - e.g. we
need one for (puton, on), another for (puton, clear), another for
(putontable, on) and another for (putontable, clear). If we had 10
operations and 10 descriptions we would need 100 axioms!

C. A better approach is to expand our operator specifications to be
explicit about what does change, rather than using frame axioms to
specify what does not change. In principle, this should be simpler,
since a given operator normally only affects one or two things.

1. This approach was pioneered in a planning system called STRIPS
(Stanford Research Institute Problem Solver). Though this
particular system has since been superseded (and Stanford
Research Institute now goes by the name SRI), the name STRIPS
has stuck as a description of this particular approach.  
 
In particular, the term “STRIPS assumption” is used to describe the
assumption most planning systems make that an operator only
changes the things that it is specifically stated as changing; so
anything that is not stated remains unchanged.

2. The basic idea is this:

 
�6

a) We maintain a list of things which are true at the current point in
the planning process.

b) When describing an operator, we specify not only what it makes
true, but also what it makes no longer true - both things that
become true and things that cease to be true. This is used to add
and delete things from the description of the state.  
 

Thus, our blocks world operators might be specified in STRIPS-
style this way:

(1)putontable(Block)  
 

Precondition: on(Block,X), clear(Block),  
Add: clear(X), on(Block, table),  
Delete on(Block, X)  
 

(Note how the first precondition simply serves to facilitate
additions and deletions)

(2)puton(Block1, Block2)  
 

Preconditions: on(Block1, X) where X is table,  
clear(Block1), clear(Block2),  

Add: on(Block1, Block2)  
Delete on(Block1, X), clear(Block2)  
 

or  
 

Preconditions: on(Block1, X) where X is not table,  
clear(Block1), clear(Block2),  

Add: clear(X), on(Block1, Block2)  
Delete on(Block1, X), clear(Block2)  
 

(Note how two versions are needed - one for the case where the
block being moves starts out on the table, and one for the case
where the block being moved starts out on some other block,
because clear(table) is never included in the state since there it
is assumed that there is always some clear spot on the table.)

 
�7

3. Example: A STRIPS-style solution to our blocks world problem

a) Initial and goal states  
 
Current: on(a, b)  

on(b, table)  
on(c, d)  
on(d, table)  
clear(a)  
clear(c)  

 

Goal: on(a, d)  

b) State after putontable(c):  
 

Current: on(a, b)  
on(b, table)  
on(c, d)  
on(d, table)  
clear(a)  
clear(c)  
on(c, table)  
clear(d)  

 

Goal: on(a, d)

c) State after puton(a, d):  
 

Current: on(a, b)  
on(b, table)  
on(c, d)  
on(d, table)  
clear(a)  
clear(c)  
on(c, table)  
clear(d)  
on(a, d)  
clear(b)  

 

Goal: on(a, d)

 
�8

d) Since our goal on(a, d) is now part of the state, we’re done.
(We don’t care about the other aspects of the description)

III.Means-Ends Analysis

A.So far, we have begged the question of how do we decide what
operator to apply (which is, after all, the interesting question!)

B. STRIPS and most other planners make use of a strategy called means-
ends-analysis., which is a form of backward-chaining.  
 

The STRIPS approach is this: to repeat the following process until the
current state matches the goal:

1. Look at the goal (which is typically composite) and select some
component that is unsatisfied in the current state

2. Find an operator which (by appropriate instantiation of variables)
has this component in its “Add” list.

a) Add any preconditions of the operator that are not satisfied in
the current state to the goal.

b) Add the things that are on the “Add” list for the operator to the
current state, and delete the things on the “Delete” list for the
operator from the current state if they are there, or record that
they should be deleted when they become true later.

c) Mark the things that are on the “Add” list for the operator which
appear in the goal as satisfied.  

 
�9

C. Example: blocks world problem  

1. Initial and goal states:  
 
Current: on(a, b)  

 on(b, table)  
 on(c, d)  
 on(d, table)  
 clear(a)  
 clear(c)  

 
Goal: on(a, d)

2. Fulfill by on(a, d) using the puton operator with B1  
instantiated to a, B2 to d, and B3 to b  

 
First precondition satisfied by on(a, b)  
Second precondition satisfied by clear(a)  
Add third precondition to goal (clear(d))  
Add: on(a, d), clear(b)  
Delete: on(a, b)  
Can’t delete clear(d) since not there yet, but note that it  
should be deleted later  

 
New conditions  
 
Current: on(a, d)  

 on(b, table)  
 on(c, d)  
 on(d, table)  
 clear(a)  
 clear(b)  
 clear(c)  

 

Goal: clear(d)

 
�10

3. Fulfill clear(d) by using the putontable operator with B1  
instantiated to c and B2 to d  

 

First precondition satisfied by clear(c)  
Second precondition satisfied by on(c, d)  
Add: on(c, table) [clear(d) deleted]  
Delete: on(c, d)  

 

New conditions  
 

Current: on(a, d)  
 on(b, table)  
 on(c, table)  
 on(d, table)  
 clear(a)  
 clear(b)  
 clear(c)  

 

Goal: (empty)

D.Demo: STRIPS Blocks world planner program. (This one doesn’t have a
natural language front end, but will be used for a homework problem)

E. PROJECT operators.pro

F. Means-Ends Analysis is an example of what is sometimes called
“weak method” problem solving.

1. It was first introduced in 1963 as part of an AI program known as
General Problem Solver (GPS). It was the claim of the program’s
authors that this approach could be used to solve any problem, but
it has since been recognized that this was a gross overstatement.

2. “Weak method” refers to something quite distinct from “weak AI”.
It is used in contrast to “strong method” - which is a problem
solving method that uses knowledge about the specific problem to
control search. (For example, when we used heuristics for the
eight-puzzle we were using a strong method.)

 
�11

G.Class Exercise - redo exercise 2 on page 96 of book (previously done
as a search problem) using STRIPS  
 
HANDOUT

1. Develop STRIPS style operators, then PROJECT

2. Solve using forward chaining (not means-ends analysis) - with the
following restrictions:

a) Never select an operator whose preconditions are not true

b) Never select an operator which produces a cycle.

c) If multiple operators are available, select first.

3. PROJECT solution

IV.Some Other Issues

A.Planning is an active research field, and there are many important
issues that arise. We are just going to mention a few. Modern
planning systems are built on the basic ideas of STRIPS, with
significant improvements.

1. The use of the “STRIPS assumption” to keep track of the changes
an operation makes on the world.

a) Each operator explicitly lists the things in the world that it
changes (the Add and Delete lists of STRIPS).

b) If something is not listed, it is assumed not to change.

2. The use of Means-Ends Analysis, perhaps augmented with
heuristics.

 
�12

B. We noted at the outset that goals are often composite. Sometimes, the
goals are more or less independent of one another, in the sense that an
overall plan can be constructed by combining pieces for each part.
However, this is not always the case.

1. Sometimes, the relative order in which the goals are tackled is
critical. Consider the following examples from the simple planner
we just looked at:  
 

on(black, orange), on(yellow, black) DEMO  
 

The reverse order  
 

on(yellow, black), on(black, orange) Reset, then DEMO  
 

The simple planner messes up on the second case because it takes a
very simplistic approach to planning composite goals: plan the first,
then plan the second, then put the pieces together- which breaks if
the plan for the second undoes what the first did, as in this case.  
 

In this particular case, we can find a correct solution if we order the
subgoals correctly.

2. Sometimes, though, we need to overlap the achievement of the
goals.

a) Recall the example we looked at at the start of our discussion -
the composite goal at(home) ^ have(milk) ^ have(drill) ^
have(bananas). If both milk and bananas come from the same
store, then it makes sense to have the plans overlap - i.e. for the
sake of efficiency we want:  
 

go to the grocery store  
go to the dairy department and pick up milk  
go to the produce department and pick up bananas  
go to the checkout counter  
 

rather than  
 
 

 
�13

go to the grocery store  
go to the dairy department and pick up milk  
go to the checkout counter  
... 
go to the hardware store  
... 
go to the grocery store  
go to the produce department and pick up bananas  
go to the checkout counter

b) In the above example, the overlap was needed as a matter of
efficiency - the second plan would still work. There are times,
though, when overlap is essential. Consider the following
blocks world problem 
 

on(yellow, orange), on(pink, yellow). DEMO

(1)Here, reversing the order doesn’t help. DEMO

(2)There is no way to formulate a plan for this goal in terms of
two independent pieces - the only possible plan requires
overlap

(3)This problem has come to be known as the Sussman
anomaly (after Gerald Sussman, who first discovered it)

3. Problems like these are addressed by a strategy known as non-
linear or partial order planning. The key ideas are these:

a) We search through a space of partial plans for achieving our
goals.

(1)Each partial plan represents an incomplete piece of our
overall plan; eventually, we will combine them into a
complete plan.

 
�14

(a)Each partial plan may have as-yet unsatisfied
preconditions.

(b) Initially, there are just two partial plans:  
 

Start - which represents the initial conditions  
Finish - which has all the components of the goal as
preconditions

(c)Means-ends analysis is used to build up the partial plans
by creating new partial plans to satisfy the preconditions
of existing ones.

(2)Partial planning uses the principle of deferred commitment -
which says that, in formulating a plan, we defer choices
about specifics as long as possible  
 

Example; if we were formulating a partial plan for buying
milk, we might defer the decision as to exactly which
grocery store to go to.

(3)We maintain information about relationships between partial
plans - eg.

(a)Ordering constraints, that specify that partial plan must be
done before another

i) We call the technique “partial order” planning
because, in general, these constraints don’t specify a
total ordering between plans. For example, at some
point we may have ordering constraints that specify
the following  
 
 
 
 
 
 
 
 
 
 

 
�15

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This says that both P3 and P4 must be done before we
are finished, but they can be done in either order. Both
P1 and P2 must be done before P3 can be done,
though they can be done in either order

ii) Ordering constraints arise because sometimes one
partial plan will undo the work done by another. If
some plan achieves a component of our final goal, it
must be done after any plan that would undo its result.

(b)Causal links, that record information about partial plans needed
to accomplish preconditions of other plan. These become
necessary because some partial plan may undo a precondition of
some other plan. In this case, it must either be done before or
after both plans, but cannot be done in between them.  
 

(This is known as goal-protection)

(4)The ultimate goal is an overall plan in which the partial plans
have been merged into a single plan that satisfies all
preconditions

C. Another component of an overall strategy may be hierarchical
planning. Instead of operators being restricted to just being primitive
actions, many operators are composite - i.e. they are templates for
collections of primitive actions  

 
�16

Start Finish

P1

P2

P3

P4

 
Example: we may have an operator buy(milk) which stands for the
sequence of operations go to store, go to dairy section, pick up milk,
go to checkout counter, checkout. This is a general template which
must ultimately be made more specific by specifying the store; but
(following the principle of deferred commitment) may be used in a
partial plan with the store being specified later.

D.Sometimes, planning is used in a context where the environment is
changing, or it is not certain that a given operator will necessarily
accomplish its goal. A reactive planner continually updates the plan as
it is being carried out in light of actual conditions in the environment.  

 
�17

Appendix: STRIPS-style solution to Farmer, Rabbit, Dog, Lettuce

Represent state as FP (farmer position) etc - with values E, W  

Initial state:

FP = E
RP = E
DP = E
LP = E

(Goal state is all four = W)

Rules:

 Row with Dog

Preconditions: FP = X, DP = X, RP != LP
Delete: FP = X, DP = X
Add: FP = opposite(X), DP = opposite(X)

Row with Rabbit:

Preconditions: FP = X, RP = X
Delete: FP = X, RP = X
Add: FP = opposite(X), RP = opposite(X)

Row with Lettuce:

Preconditions: FP = X, LP = X, RP != DP
Delete: FP = X, LP = X
Add: FP = opposite(X), LP = opposite(X)

Row Alone:

Preconditions: FP = X, RP != DP, RP != LP
Delete: FP = X
Add FP = opposite(X)

 
�18

Only rule whose preconditions are satisfied is Row with Rabbit

FP = E W
RP = E W
DP = E
LP = E

Only rule whose preconditions are satisfied that does not lead to a cycle is Row Alone

FP = E W E
RP = E W
DP = E
LP = E

Only rules whose preconditions are satisfied that do not lead to a cycle are Row with
Dog, Row with Lettuce. Choose Row with Dog

FP = E W E W
RP = E W
DP = E W
LP = E

Only rule whose preconditions are satisfied that does not lead to a cycle is Row with
Rabbit

FP = E W E W E
RP = E W E
DP = E W
LP = E

Only rule whose preconditions are satisfied that does not lead to a cycle is Row with
Lettuce

FP = E W E W E W
RP = E W E
DP = E W
LP = E W

 
�19

Two rules satisfy the preconditions and do not lead to a cycle: Row Alone, Row with Dog
If we choose Row Alone

FP = E W E W E W E
RP = E W E
DP = E W
LP = E W

Now the only rule whose preconditions are satisfied that does not lead to a cycle is Row
with Rabbit

FP = E W E W E W E
RP = E W E
DP = E W
LP = E W

We’re at Goal!

 
�20

