
Inline Problem Solutions

J. R. Senning

Sunday 23rd October, 2016

Inline Solutions to

An Active Introduction to Discrete Mathematics and Algorithms

by Charles Cusack and David Santos, Version 2.6, 2016.

http://www.cs.hope.edu/~cusack/Notes/?Instructor=Books

Last processed: 16:10 Sunday 23rd October, 2016

1 Motivation

2 Proof Methods

2.1 Direct Proofs

2.4. 2d+ 1; c+ d+ 1; even.

2.6. 2n; 2o+ 1; some integers n and o; 2(2no+ n); 2no+ n; even.

2.7. Proof. Let a and b be even integers. Then a = 2m and b = 2n for some integers m
and n. Given that, we see that a · b = (2m)(2n) = 2(2mn). Since 2mn is an integer,
a · b is even.

2.8. The product (2n+1)(2q+1) should be 4nq+2n+2q+1 which reduces to 2(2nq+n+q)+1.
In this case the conclusion of parity happens to be correct, but the error in calculation
invalidates the proof.
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2.9. The problem lies in the second sentence: factoring 2 out of (2n + 2m + 1) does not
result in the product of 2 and an integer; the expression (n + m + 1/2) is a rational
number, not an integer.

2.13. an integer; 3x+ 2; 5x− 7; 7; 7 divides 15x2 − 11x− 14.

2.15. This proof is correct as written.

2.17. Until the conclusion, the reasoning is correct. However, if k = 1 then we have not
shown that 2 is composite, so we have not shown that all positive even integers are
composite.

2.18. Proof. By the definition of prime numbers, we know that 2 is prime, since its only
factors are 1 and 2. Suppose that a > 2 is an even integer, then a = 2k for some
integer k > 1. This means that a has factors of 2 and k, neither of which is 1, so a is
composite. Thus, the only even prime number is 2.

2.19. We don’t need to consider 0 or negative even numbers since by definition only positive
numbers can be prime.

2.23. While it is true that a|(n − 1)! and b|(n − 1)!, we cannot conclude from this that
ab|(n − 1)!. For example, 2|12 and 4|12 but 8 - 12. Also, the argument provided here
does not work if n is a perfect square.

2.25. When n > 4 is composite we can write n = a · b for some positive integers a and b,
both greater than 1 and less than n− 1. If n is not a perfect square, then a 6= b, and
we can take a to be the smaller of the two numbers.

2.26. If n is a perfect square then there is a positive integer a such that n = a2. The smallest
perfect square greater than 4 is 9, so a ≥ 3. Therefore, it is correct to say a > 2.

2.28. (1) experiment, (2) read (and study) example proofs, (3) practice, Practice, PRAC-
TICE!

2.2 Implication and Its Friends

2.33. The implication “If you read xkcd, then you will laugh” is false when (1) you do read
xkcd AND (2) you do not laugh.

2.34. The implication “If you build it, they will come” can only be false if (1) you do build
it AND (2) they do not come.

2.38. “If you do not know a programming language, then you do not know Java.”



Cusack and Santos 3

2.40. true; ¬p; false; p; q is false; p is true.

2.42. “If you do not know Java, then you do not know a programming language.”

2.43. No, a proposition and its inverse are not equivalent. Suppose you know Python but not
Java. The implication “If you know Java, then you know a programming language” is
true (because the assumption it makes does not apply), but the inverse is false (because
you do know a programming language).

2.45. “If you know a programming language, then you know Java.”

2.46. No, a proposition and its converse are not equivalent. Again, suppose you know Python
but not Java. The original implication is true but the converse is false.

2.48. (a) Hopefully there are many things that will make you happy that do not have
anything to do with watching “The Army of Darkness.” So, while watching it
may make you happy, your happiness does not depend on watching it.

(b) The original proposition says happiness follows from watching “The Army of
Darkness.” We can reason, therefore, that if one isn’t happy, they didn’t get to
watch “The Army of Darkness.” Likewise, the contrapositive says that unhappi-
ness results from not being able to watch “The Army of Darkness,” so if someone
did get to watch “The Army of Darkness,” they will be happy.

2.3 Proof by Contradiction

2.51.
√

35; 10
√

35; 3481 ≥ 3500; false

2.52. Proof 1: To use contradiction here we should assume that the conclusion is false, i.e.,
that both a and b are odd, and show a contradiction arises.

Proof 2: This proves the converse of the proposition since it assumes the conclusion is
true and shows that the premise (the original assumption, often called a hypothesis)
is true.

Proof 3: This is a correct proof by contradiction of the proposition.

2.56. 1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1

2.58. The proof began by assuming the product was odd because that is the negation of the
conclusion. If we can show that this leads to a contradiction, then we know that it
must not be the case, and therefore the product must be even.

2.59. We know that S = 0 because addition is associative and commutative so S = (a1 −
1) + (a2 − 2) + · · ·+ (an − n) = a1 + a2 + · · · an − 1− 2− · · · − n. Since the numbers
a1 through an are a permutation of 1, 2, . . . , n, we see that S = 0.
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2.62. Let n be the number of prime factors of a. Each of these prime factors appears exactly
twice in a2, so we know that the number of prime factors of a2 is even. The same
arguments holds for b2.

2.65. 1. no; 2. yes; 3. no; 4. no; 5. “p implies q” is only false when p is true but q is false; 6.
no; 7. No, “p implies q” is never false if p is false. This is because the statement does
not apply – since it must be either true or false, and it is not false, it must be true.

2.66. a > b;
a− b

2
;
a− b

2
;
a+ b

2
; multiply both sides by 2 and subtract a from both sides;

a > b; contradiction; a ≤ b

2.68. a
p2

q2
+ b

p

q
+ c; multiply both sides by q2; odd; zero; the terms with p are even and the

other term is odd and the sum of two even integers and an odd integer is odd, which
contradicts the fact that the sum is zero; the terms with q are even and the other term
is odd and the sum of two even integers and an odd integer is odd, which contradicts
the fact that the sum is zero; we know that there is no rational number solution to
ax2 + bx+ c = 0.

2.4 Proof by Contraposition

2.72. The proposition we are trying to prove is “If n is an integer and 3n + 2 is even, then
n is even” so the contrapositive is “If n is an odd integer, then 3n+ 2 is odd.”

Proof 1: Rather than working with the contrapositive, this is a proof of the converse:
“if n is an even integer, then 3n+ 2 is even.

Proof 2: This attempts to proof the correct statement and goes well until the last step.

The problem is that
6

5
k+ 1 is not an integer, so we cannot invoke the definition of odd

numbers.

Proof 3: Like Proof 2, this starts off well, and the only real problems is that technically
we cannot say 6k+ 5 is odd using the definition of odd. What should be done is to say
6k + 5 = 6k + 4 + 1 = 2(3k + 2) + 1 which is odd. This correctly shows that 6k + 5
can be written in the form 2m+ 1 for an integer m.

2.5 Other Proof Techniques

2.78. Both 3 and 5 are prime numbers, but the sum 3 + 5 = 8 is not prime. Therefore, it is
not true that the sum of any two primes is also prime.



Cusack and Santos 5

2.81. the proof is complete since s ∈ [s, 2s]; if we multiply this inequality by 2 we have
2r < 2s < 2r+1 so we see s < 2r < 2s. Thus, for any positive integer s, there is a power
of 2 in [s, 2s].

2.6 If and Only If Proofs

2.82. Since q → p is equivalent to the contrapositive statement ¬p → ¬q, we can prove
either of these to establish the second part of an iff proof.

2.83. Proof. Let x be an odd integer so that x = 2k + 1 for some integer k. Then x+ 20 =
2k+ 21 = 2(k+ 10) + 1, which is odd since k+ 10 is an integer. Conversely, if x+ 20 is
odd then x+ 20 = 2k+ 1 for some integer k. In this case x = 2k− 19 = 2(k− 10) + 1,
and since k− 10 is an integer we see that x must be odd. Therefore x is odd iff x+ 20
is odd.

2.85. Proof. Let x be an odd integer so that x = 2k + 1 for some integer k. Then x+ 20 =
2k + 21 = 2(k + 10) + 1, which is odd since k + 10 is an integer. Conversely, if x is
even then x = 2k for some integer k so x + 20 = 2k + 20 = 2(k + 10). This is even
since k + 10 is an integer. Therefore x is odd iff x+ 20 is odd.

2.86. p implies q; q implies p; p implies q; ¬p implies ¬q

2.7 Common Errors in Proofs

2.89. The writer represents two integers that may be different with the variable a. The
problem is that, as written, the proof requires that x and y must be equal. The logic
is otherwise correct, changing the representation of y to be y = 2b for some integer b
and following this through would yield a correct proof.

2.90. Here again the writer represents two integers that may be different with the variable
a. Unlike the last example this mistake allows the writer to “prove” something that
is not true. If the representation of y is changed to y = 2b for some integer b we find
that x+ y = 2(a+ b) which is divisible by 2 but not necessarily by 4.

2.91. The proof is incorrect because the result is clearly false.

2.92. In the final statement of a proof you should not work both sides of an equation. Note: It
is often helpful to do this while figuring out how to write the proof, but this work should
then be rewritten so that only one side of the equation is manipulated or operations
that equivalently change both sides (e.g. multiplying both sides by 2) are carried out.
If we are able to correctly do this, we can be sure that equation is true.
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2.93. The transitive property says that if a = b and b = c then a = c, so I think a case could
be made that it is okay to do this. However, the author is making the point that subtle
errors can creep in (e.g. saying x2 = 1 implies only x = 1 when it could also imply
x = −1). Again, I think that it is okay to work with both sides while exploring how
to write the proof, but the final version should avoid doing that.

2.8 More Practice

2.94. Proof. Let p < q be two consecutive odd primes (this means neither p nor q is 2).
Regardless of their being prime numbers, both p and q are odd so there are two
positive integers m and n such that p = 2m + 1 and q = 2n + 1. Adding we find
p+ q = (2m+ 1) + (2n+ 1) = 2(m+ n+ 1). Note that m+ n+ 1 is a positive integer
greater than 1, so p+ q is composite.

Not only is p + q composite, we have just shown that it is even. Thus (p + q)/2 is
an an integer. Since this integer is the average of p and q it must be the case that
p < (p + q)/2 < q. As p and q are consecutive primes, we know that (p + 2)/2 is
composite, and so has at least two prime factors, which we call l and k. This means
p+ q = 2lk, so p+ q has at least three, not necessarily distinct, prime factors.

2.95. Proof 1: There is an error in the final statement that makes this proof circular. For
ay/by to be rational we’d need to know that both ay and by are integers, or least rational
themselves. However, this is exactly what we’re trying to prove.

Proof 2: To say “xy is just x multiplied by itself y times” is not correct. If y is a
non-integer rational then this statement does not make since. Actually, if you think
about it, it is ambiguous at best even when y is an integer.

2.96. Disproof. Let x = 2 and y = 1/2. Then xy = 21/2 =
√

2, which is irrational. Thus, xy

may not be rational.

2.97. Proof 1: This is gibberish from beginning to end.

Proof 2: Describing a rational as “an integer over an integer” demonstrates a lack
of understanding as to what a rational number is – and the use of “over” to mean
“divided by” can be confusing. The conclusion sentence makes a huge leap that, even
if we make allowances for the the language, would need to be proved as it is essentially
what we’re trying to prove in the first place.

Proof 3: This is better. However, the contrapositive of the original statement would be
“if 1/x is rational, then x is irrational.” The prover almost did this, but should have
started with “Since it is rational, 1/x = p/q...” Then, of course, there is the problem
about x being zero...
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Proof 4: This is even better and is just about correct. The only real problem is that
the form b/a requires that a 6= 0. Yes, it is true that 1/x is not zero for any integer x
so we understand that a/b is not zero, and so a 6= 0, but this is a lot of reasoning to
leave to the reader in the midst of a proof, and it should be explicitly pointed out.

2.98. Proof 1: This proof attempt starts of by restating the proposition, but does so incor-
rectly. The proposition are asked to consider is “if p is a prime number, then 2p − 1 is
prime,” but the writer states the converse and tries a proof by contradiction. If p = st
is not prime, then we need to require that we can find both s and t to be integers
greater than 1 and less than p. The formula for expanding 2st − 1 is correct.

Proof 2: The first two statements made, assuming that p is prime (or at least an
integer). However, it is certainly not the case that odd numbers do not have any
factors.

2.99. Proof. Consider prime factorizations of 2p − 1 when p is prime:

p 2 3 5 7 11
prime factorization of 2p − 1 3 7 31 127 23 · 89

Thus 211 − 1 = 2047 is not prime, so not all numbers of the form 2p − 1, where p is
prime, are prime.

3 Programming Fundamentals and Algorithms

3.1 Algorithms

3.2. The body of the function is a single line:

double areaSquare(double w) {

return w * w;

}

3.7. The algorithm does not work correctly. The first line assigns the original value of y to
x, overwriting the value originally in x. The second line then assigns the current (new)
value of x to y; these values are the same. Upon termination both variables contain
the value originally stored in y.

3.12. (a) 45; (b) 8; (c) 3; (d) 6; (e) 0; (f) 7; (g) 7; (h) 7; (i) 11

3.21. −15; −7; 9; 13; 21
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3.22. The compiler could return −1 or 3.

3.23. Solution 1: The offered solution focuses on the range of the modulo function. It
ensures that the result is in the correct range, but will usually return an incorrect
value. positive values from a mod b should be unchanged, but are halved and then
shifted by (b− 1)/2. Similarly, negative values should be shifted by b but instead they
are halved and shifted by (b− 1)/2.

Solution 2: This works correctly if a mod b already returns a nonnegative value, but
does not handle the other case correctly.

Solution 3: This works correctly but uses a conditional, which we were instructed to
avoid if possible.

Solution 4: This will always return the same value as a mod b. In particular, it does
not map a negative result to the correct positive result.

3.24. A correct version of the algorithm is ((a mod b)+b) mod b. Note that while this avoids
a conditional, it is more expensive in that it requires two integer modulo operations.
A “less than zero” conditional check is probably more computationally efficient even if
it makes the code seem slightly longer. There are instances, however, where avoiding
conditionals is rather important.

3.27. 1. 9; 2. 10; 3. 9; 4. 10; 5. 9; 6. 9

3.29. Solution 1: This incorrectly rounds numbers like 0.501, which should round up to 1 but
this will round down to 0. The mistake is assuming that 0.49 is the smallest number
less than 0.5 that the computer can represent.

Solution 2: This merely truncates positive real numbers since the literal 1/2 will be
evaluated using integer division, yielding 0.

Solution 3: This incorrectly rounds numbers like 0.2 up to 1.

Solution 4: This works correctly when x ≥ 0. Consider the interval [0, 0.5]. Subtracting
0.5 results in a number from [−0.5, 0] and the ceiling function on this returns 0. Next,
consider numbers from (0.5, 1). The subtraction maps these to (0, 0.5), and the ceiling
function on this range will return 1.

3.32. Solution 1: This will always return the same truncated value as n/m does and so
does not round correctly. It also requires the use of floating point arithmetic which is
undesirable.

Solution 2: Since 1/2 will evaluate to 0, this also returns the same truncated value as
n/m does, but at least now no floating point is required.

Solution 3: This does the same thing as Solution 1.
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3.33. One possible integer-only solution is (2*n/m+1)/2.

3.36. int max(int x, int y, int z) {

return max(max(x,y),z);

}

This algorithm can be broken down into two steps. The first, computed with max(x,y),
returns the larger of x and y. All that remains is to compare this value with z and
return the larger of the two; this is what the second call to max() does.

3.37. void HelloGoodbye(int x) {

if ( x >= 4 ) {

if ( x <= 6 ) {

print("Hello");

} else {

print("Goodbye");

}

} else {

print("Goodbye");

}

}

3.38. void HelloGoodbye(int x) {

if ( x >= 4 ) {

if ( x <= 6 ) {

print("Hello");

return;

}

}

print("Goodbye");

}

3.41. The factorial function presented works correctly when n ≥ 0. When n < 0 the function
will return 1. To see why, note that since n 6= 0 control passes to the else block where
fact is initialized to 1. Since i = 1, which is greater than any negative number, the
for-loop condition is false so the loop body is not executed and the current value of
fact is returned. Since the factorial function is not defined for negative values we could
check if n < 0 and signal an error.

3.42. (a) Solution 1: Since i = 0 the first time through the loop body the value of fact

becomes 0. Once zero, it remains equal to zero so this function always returns 0.

(b) Solution 2: This works correctly for n ≥ 0

(c) Solution 3: This works correctly for n ≥ 0

(d) Solution 4: This actually computes (n − 1)! when n > 1. It would be correct if
the loop body was fact = fact*(n-i+1).



10 Inline Problem Solutions

3.43. double power(double x, int n) {

double prod = 1.0;

for (int i=0; i<n; i++) {

prod *= x; // same as prod = prod * x;

}

return prod;

}

3.48. Since n is an integer and 2 is a literal integer, the computation (n− 2)/2 is performed
using integer-only arithmetic. In C/C++ the division will result in a truncated integer
value, which is the same value that the floor function returns (at least for positive
integers).

3.49. Yes, this algorithm works correctly. The for-loop condition is i<n/2, which is equivalent
to the condition i<=(n-2)/2 used in Example 3.47.

3.51. Let’s generate a table of data:

n −3 −2 −1 0 1 2 3 4
dn/2e − 1 −2 −2 −1 −1 0 0 1 1
b(n− 1)/2c −2 −2 −1 −1 0 0 1 1

Based on this table it does appear that these two expressions are equivalent. A proof
might look like the following:

Proof. We consider two cases, n even and n odd. To start, suppose n is even so n = 2k
for some integer k. Then

dn/2e − 1 = d2k/2e − 1 = k − 1

b(n− 1)/2c = b(2k − 1)/2c = bk − 1/2c = k − 1

Now suppose n is odd so n = 2k + 1 for some integer k. Then

dn/2e − 1 = d(2k + 1)/2e − 1 = dk + 1/2e − 1 = k + 1− 1 = k

b(n− 1)/2c = b(2k)/2c = k

Thus dn/2e − 1 = b(n− 1)/2c for all integers n.

3.57. The following table shows the results of tracing the algorithm with n = 5:
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n 5 3 1
x 0 10 16
i 1 2 3

n · i 5 6 3
n · i > 4 T T F
n > 1 T T F

The value returned is 16.

4 Logic

4.1 Propositional Logic

4.3. (a) false; (b) true; (c) true; (d) false.

4.5. (a) not a proposition; (b) could be true or false depending on the person, so this is not
a proposition; (c) not a proposition; (d) true; (e) false.

4.6. (a) Proof. The statement “This is a proposition” is a true statement. It must be,
therefore, that it’s negation is also a proposition, but one that is false. The
negation is “This is not a proposition,” so we see that this is indeed a proposition
but that it is false.

(b) Proof. Assume that “This is not a proposition” is not a proposition. By defini-
tion, however, This means that the statement is a proposition, contradicting the
assumption that is not. Since the statement it makes is false, its truth value is
false.

4.10. I am not learning discrete mathematics; false (we hope).

4.11. 1. list.size() > 0; 2. list.size() != 0

4.15. I like cake and I like ice cream.

4.19. x > 0 or x < 10; true; true; x < 10; true

4.20. 1. Formally the negation of p might read “It is not the case that you must be at least
48 inches to ride the roller coaster.” This basically says there is no minimum height.
2. you must be at least 48 inches tall or at least 18 years old to ride the roller coaster;
3. you must be at least 48 inches tall and at least 18 years old in order to ride the
roller coaster.
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4.21. boolean startsOrEndsWithZero(int[] a, int n) {

return (n > 0 && ( a[0] == 0 || a[n-1] == 0));

}

4.22. This solution does work for array sizes n = 0 and n = 1. In the first case if n = 0
then the very first test will be false so the conjunction will be false and the second test
(which accesses array elements) is not executed. In the second case the first test of
the conjunction is true so the second one is evaluated. Now n− 1 = 0 so the element
a[0] is accessed twice and the returned value if this is zero otherwise the return value
is false.

4.25. XOR; OR (could be XOR); OR; OR; XOR

4.26. p ∨ q is true if either list is empty and also if both lists are empty. p ⊕ q is true only
when one of the two lists, but not both, is empty.

4.27. (a) Well, technically no, these are not the same. The first means x < 5 or x > 15 or
both, while the second means x < 5 or x > 15 but not both. (b) Yes, p ∨ q and p⊕ q
practically accomplish the same thing here, because if x < 5 is true then x > 15 will
be false, and vice versa.

4.30. (a) You will get an A. If p→ q is true, then if p is true we can conclude that q is also
true. (b) We don’t know if you got 90%. The implication p→ q is true whenever q is
true, so we don’t know the truth value of the hypothesis. (c) You may or may not get
an A. If the premise is false the proposition will be true regardless of the truth value
of the conclusion.

4.33. (a) You will get an A, since the biconditional includes the statement “if you earn 90%,
then you will get an A.” (b) You earned 90%, since the biconditional includes “if you
get an A, then you earned 90%.” (c) You did not get an A. The biconditional includes
“if you got an A, then you earned 90%” and the contrapositive of this is “if you did
not earn 90%, then you do not get an A.”

4.35. If Iron Man is on TV, then I will watch Iron Man; ¬r ∧ p → q; Iron Man is on TV
and I don’t own it on DVD, and I won’t watch it; p↔ q; r → q

4.38.
p q p→ q (p→ q) ∧ q
T T T T
T F F F
F T T T
F F T F
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4.40.
a b c ¬b a ∨ ¬b (a ∨ ¬b) ∧ c
T T T F T T
T T F F T F
T F T T T T
T F F T T F
F T T F F F
F T F F F F
F F T T T T
F F F T T F

4.43. a ∧ b ∨ c should be interpreted (a ∧ b) ∨ c

4.44. (a ∧ b) ∨ c and a ∧ (b ∨ c) are not equivalent. Suppose a = F , b = T , c = T . Then
(a ∧ b) ∨ c is (F ∧ T ) ∨ T which is true while a ∧ (b ∨ c) becomes F ∧ (T ∨ T ) which is
false.

4.45. The writer is correct that implications have left-to-right associativity so that a→ b→ c
should be interpreted as (a → b) → c. They are incorrect, however, in saying this is
the same as a→ (b→ c). To see this, consider a case when a and c are both false (the
value of b does not matter). Because a is false a→ (b→ c) will be true. But a→ b is
also true so that (a→ b)→ c is false.

4.2 Propositional Equivalence

4.48. (a) tautology; (b) contradiction since either p or ¬p will be false; (c) contingency since
we don’t know the values of p and q

4.50. Proof 1: The truth table is correct, but leaves the reader to infer what the meaning of
the table is.

Proof 2: This version improves on the last one by explaining to the reader what the
truth table is generated for and concludes by saying what the table shows. Some of
the wording could be better...

Proof 3: While this proof only handles the case where q is false it does (correctly
but a bit confusingly) demonstrate that in this case it is sufficient to only consider
the case when q is false. It also makes statements like “...the statement equals out to
false implies false,...” which at best are unconventional and imprecise and at worst are
meaningless.

Proof 4: This is a good proof.

Proof 5: Really???
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4.54. Proof. We prove this by showing that the truth table column corresponding to ¬(p∧q)
is identical to the column for ¬p ∨ ¬q.

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Since they are same for every row in the table, ¬(p ∧ q) = ¬p ∨ ¬q.

4.55. negation; distributive; p∨ p; p∧T ; p∧ (p∨¬p); (p∧ p)∨ (p∧¬p); (p∧ p)∨F ; identity;
p ∧ p = p

4.57. (a) Prove that p ∨ (p ∧ q) = p.

Proof.

p ∨ (p ∧ q) = (p ∧ T ) ∨ (p ∧ q) identity

= p ∧ (T ∨ q) distributive

= p ∧ T domination

= p identity

(b) Prove that p ∧ (p ∨ q) = p.

Proof.

p ∧ (p ∨ q) = (p ∨ F ) ∧ (p ∨ q) identity

= (p ∨ (F ∧ q) distributive

= p ∨ F domination

= p identity

4.60. if (x>0) x=y;

4.61. The reasoning that we don’t need to check x>0 twice is correct. However, in the original
code the condition x>0 is evaluated before the condition x<y || x>0 and this condition is
true whenever x > 0. The proposed simplification allows the assignment x=y to happen
when x ≤ 0 provided that x < y. This is different behavior than the original code.
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4.62. Notice that the the only time the inside if-statement is evaluated is when x > 0, so the
disjunction in the inner if is always true (absorption). Thus, the code can be simplified
to

if (x>0) x=y;

4.64. Solution 1: This solution erroneously assumes the list is not empty and so omits the
necessary check for that.

Solution 2: This solution applies DeMorgan’s law properly to the first compound
proposition but neglects the last condition entirely. As a result the proposed code
increments x when x < 100 while it would be decremented in the original code.

Solution 3: This is correct.

4.65. The original code actually has a subtle bug since if list.isEmpty() is true the value of
list.get(0) is accessed. Of course, this is an error if the list is empty. Thus, the final
solution in the last problem is better than the original code.

4.66. (a) p⊕ q
(b) One answer is (p ∨ q) ∧ ¬(p ∧ q), another is (p ∧ ¬q) ∨ (¬p ∧ q).

4.68. Proof 1: This only deals with one of four possible cases of truth values of p and q.

Proof 2: What does “they” refer to? What about if p and q have different truth values?

Proof 3: This is incorrect as the word “precisely” here implies the propositions p↔ q
and (p ∧ q) ∨ (¬q ∧ ¬q) are only equivalent when both p and q are true.

Proof 4: Better, but still a bit fuzzy since it refers to the propositions as “these.” This
“proof” also essentially claims the result. It suggests a good line of reasoning, but
leaves the reader to connect the dots.

4.3 Predicates and Quantifiers

The inline problems in this subsection have not been completed.

4.4 Normal Forms

4.108.
p q p↔ q
T T T
T F F
F T F
F F T

To write p ↔ q in disjunctive normal form, we use the
first and last rows from the truth table to write

(p ∧ q) ∨ (¬p ∧ ¬q).
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4.110. (¬p ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r)

4.5 Bitwise Operations

4.116. 11110000; 11110000; 00001111; 15

4.117. ∼11000110 = 00111001 which is 57 in decimal.

4.120. 11000000; 11111100; 00111100

5 Sets, Functions, and Relations

5.1 Sets

5.4. {2, 3, 5, 7}

5.7. |A| = 6, |B| = 5, |C| = 6; A and C represent the same set.

5.10. |C| =∞, |Z+| =∞, |∅| = 0

5.13. {2k : k ∈ Z}

5.14. Q = {p/q : p, q ∈ Z, q 6= 0}

5.17. (a) A ⊆ S since each element of A is a perfect square

(b) A ⊂ S since A ⊆ S but S contains elements not in A

(c) S ⊆ S since every element in S is trivially in S

(d) S 6⊂ S since there are no elements in S that are not in S.

(e) S 6⊂ A since S contains elements that are not in A, such as 25.

5.18. (a) A ⊆ B since every integer divisible by 6 is also divisible by 2.

(b) A ⊆ C since every integer divisible by 6 is also divisible by 3.

(c) B 6⊆ A since 4 ∈ B but 4 /∈ A.

(d) B 6⊆ C since 4 ∈ B but 4 /∈ C.

(e) C 6⊆ A since 3 ∈ C but 3 /∈ A.

(f) C 6⊆ B since 3 ∈ C but 3 /∈ B.
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5.21. There are 16 subsets of {a, b, c, d}:

∅ {a} {b} {c}
{d} {a, b} {a, c} {a, d}
{b, c} {b, d} {c, d} {a, b, c}
{a, b, d} {a, c, d} {b, c, d} {a, b, c, d}

5.24. {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}}

5.26. (a) |P (A)| = 24 = 16

(b) |P (P (A))| = 224 = 216 = 65536

(c) |P (P (P (A)))| = 222
4

= 265536

5.27. Increasing the cardinality of a finite set A by 1 will double the size of the power
set. The new power set contains all the subsets of the original set, and also the same
number of new subsets identical to the original subsets except each contains the new
element added to A.

5.2 Set Operations

5.30. A ∪B = Z

5.33. A ∩B = ∅

5.36. A\B = A; B\A = B

5.39. A = B; B = A

5.43. The sets A and B are disjoint. Every element of A is even and so does not belong to B.
Similarly, every element ofB is odd and so is not in A. Alternatively, A∩B = A∩A = ∅
so A and B are disjoint.

5.47. Proof 1: This proof almost starts well but has several problems. Perhaps the most
significant is that it attempts to show A\B ⊆ A∩B but neglects to show A∩B ⊆ A\B.
Another problem is the additional curly braces around A − B. This means the proof
attempt starts by assuming x ∈ {A − B}, which means that x is an element of a set
that contains the set A− B as a single element. Thus, x = A− B so saying x ∈ A is
erroneous.

Proof 2: This is very confusing and leaves out key words (e.g. using “universal” rather
than “universal set”). We also haven’t defined what a “part” of a set is. There are
other problems as well...

Proof 3: Well done!
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5.49. x ∈ (A ∪B) ∩ C
↔ x ∈ (A ∪B) ∧ x ∈ C by the definition of intersection
↔ (x ∈ A ∨ x ∈ B) ∧ x ∈ C by definition of union
↔ (x ∈ A ∧ x ∈ C) ∨ (x ∈ B ∧ x ∈ C) by the distributive property
↔ (x ∈ A ∩ C) ∨ (x ∈ B ∩ C) by the definition of intersection
↔ x ∈ (A ∩ C) ∪ (B ∩ C). by the definition of union.

5.52. The follow Venn diagram shows that, in this group of 30 people, there are 16 people
who speak at least one of the three languages and 14 who speak none of them.

E F

S

U

3
2 4

21

3

1

14

5.55. A×B = {(1, 3), (2, 3), (3, 3), (4, 3)}

5.58. A2 = {(0, 0), (0, 1), (1, 0), (1, 1)}
A3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

5.61. (a) |A×B| = 500

(b) |A× C| = 200

(c) |A2| = 100

(d) |B3| = 503 = 125000

(e) |A×B × C| = 10 · 50 · 20 = 10000

5.3 Functions

5.69. f : Z→ {0, 1} where f(x) = x mod 2

5.73. We can “work on both sides” in Example 5.72 since the algebraic operations performed
maintain strict equality between consecutive expressions on each side of the equal sign.
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5.74. Proof. Let a, b ∈ R. Then

f(a) = f(b)

5a = 5b

a = b

Since asserting f(a) = f(b) requires that a = b, we see that f is one-to-one on R.

5.77. Observe that f(1.1) = 1 and f(1.2) = 1. Since f(1.1) = f(1.2), the function f is not
one-to-one on R.

5.80. Proof. Let b ∈ R. Note that if b = 2a+ 1, we can solve for a to find that a = (b−1)/2.
Thus f(a) = 2((b− 1)/2) + 1 = b− 1 + 1 = b. Since this works for every b ∈ R, we see
that f is onto.

5.83. Observe that f(x) = bxc always returns an integer value, so it is impossible to find
any x for which f(x) = 1.5. Therefore when the domain is the real numbers, f is not
onto. Note that if f : R→ Z, then this function would be onto.

5.84. (a) The function f(x) = x2 is one-to-one on Z. (False)

Disproof. Note that f(−1) = (−1)2 = 1 and f(1) = 12 = 1. Thus, f is not
one-to-one on Z.

(b) The function f(x) = x2 is one-to-one on R. (False)

Disproof. Since Z ⊆ R, the argument just shown also works here to show that f
is not one-to-one on R.

(c) The function f(x) = x2 is one-to-one on N. (True)

Proof. Let a, b ∈ N such that f(a) = f(b). Then a2 = b2 and so
√
a2 =

√
b2.

Since a ≥ 0 and b ≥ 0 we know that
√
a2 = a and

√
b2 = b, showing that a = b.

Therefore f is one-to-one on N.

5.85. (a) f(x) = x+ 2 is both one-to-one and onto.

Proof. Suppose a, b ∈ Z such that f(a) = f(b). Then a + 2 = b + 2 so a = b,
showing that f is one-to-one. Now let b be any element of Z and choose a = b−2.
Then f(a) = f(b− 2) = b− 2 + 2 = b, showing that f is onto.

(b) g(x) = x2 is neither one-to-one nor onto.
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Proof. Note that g(−2) = 4 and g(2) = 4 so g is not one-to-one. Also note that
1 <

√
(3) < 2 so there is no integer a for which g(a) = 3, showing that g is not

onto.

(c) h(x) = 2x is one-to-one but not onto.

Proof. Suppose a, b ∈ Z such that h(a) = h(b). Then 2a = 2b so a = b, showing
that h is one-to-one. However, we observe if h(x) = 3 then 2x = 3. If x is an
integer then the left side is even while we know the right side is odd, clearly a
contradiction, so no such integer x exists. Thus, h is not onto.

(d) r(x) = bx/2c is not one-to-one but is onto.

Proof. Notice that r(2) = b2/2c = 1 and r(3) = b3/2c = 1 so r is not one-to-
one. However, if we let b be any integer and choose a ∈ Z so that a = 2b then
r(a) = b2b/2c = b, we see that r is onto.

5.87. (a) False. We only know that |A| ≥ |B|, so A and B need not have the same
cardinality nor be equal.

(b) False. Consider f(x) = 1 with A = Z. This is neither one-to-one nor onto.

(c) True. Since f is a one-to-one correspondence, every element in A is paired with
an element of B and vice-versa. This requires that |A| = |B|

(d) False. f(1) is multivalued, something not allowed for a function.

(e) True. Example 5.79 proved that f is onto. To see that f is one-to-one, let a, b ∈ R
so that a3 = b3. Since

3
√
a3a and

3
√
b3 = b, we see that a = b, showing that f is

one-to-one.

(f) False. Since f(x) is not defined when x < 0, it is not true to say the domain of
f is R, thus f as defined here is not a valid function. If, however, we restrict the
domain to be {x : x ∈ R, x ≥ 0}, then f is one-to-one (no two different positive
reals have the same square root) but not onto since the square root function does
not return any negative values.

(g) True. The codomain is the set that contains all the output values of a function
while the range is the set of output values.

(h) False. Many functions that are one-to-one are not onto. One example is shown
in (c) of Example 5.85.

(i) False. For f to be onto, we would need to be able to find an x ∈ Z such that
y = ax + b for any y ∈ Z. Suppose a = 2 and b = 1 and notice that y = 2x + 1
so that y must be odd if x is an integer. Thus, y cannot be an arbitrary integer.
This contradiction shows that f is not onto.
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(j) False. The preceding argument works again here if Z is replaced by N.

(k) True (provided a 6= 0). Let x, y ∈ R such that f(x) = f(y). Then ax + b =
ay + b→ ax = ay → x = y as long as a 6= 0 so f is one-to-one. Note as well that
if x = (y − b)/a for any y ∈ R then f(x) = y, showing that f is onto.

5.93. If we set a = 3 and b = −5 then we can use the work shown in Exercise 5.87 part (k)
to prove that f is a one-to-one correspondence and therefore is invertible. Finding the
inverse can be done by setting y = 3x− 5 and solving for x:

3x− 5 = y

3x = y + 5

x =
y + 5

3
.

Thus f−1(x) = (x+ 5)/3.

5.96. (f ◦ g)(x) = bx/2c
(g ◦ f)(x) = (bxc)/2

5.101. (a) False. In Exercise 5.87 part (i) we showed that f : Z → Z is not onto and so is
not a one-to-one correspondence. Therefore f is not invertible.

(b) False. Same reasoning again, using Exercise 5.87 part (j) and replacing Z by N.

(c) True (provided a 6= 0). Exercise 5.89 part(k) shows that f : R→ R is a one-to-one
correspondence so f is invertible.

(d) False. 1/x2 is the reciprocal of x2, not the inverse.

(e) False. This is true if n is an odd positive integer.

(f) False. The function n
√
x is not defined on N since N cannot be the codomain. For

example, x = 2 ∈ N but
√

2 6∈ N.

(g) True. Let x, y ∈ R+. Then n
√
x = n

√
y implies ( n

√
x)n = ( n

√
y)n so x = y and the

function is one-to-one. Also, note that for any y ∈ R+, if we set x = yn then
y = n
√
x so the function is onto. Thus, n

√
x is invertible on R+.

(h) False, as written. Notice that g(x) = 1/x is not defined on Z when x 6= 1 since
the value it yields is not an integer. If, however, we consider functions f and g
defined on Q then it is true that f ◦ g = g ◦ f :

(f ◦ g)(x) =

(
1

x

)2

=
1

x2
= (g ◦ f)(x).
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(i) False. f ◦ g 6= g ◦ f since

(f ◦ g)(x) = ((x+ 1) + 1)2 = (x+ 2)2 = x2 + 4x+ 4,

(g ◦ f)(x) = (x+ 1)2 + 1 = x2 + 2x+ 1 + 1 = x2 + 2x+ 2

and x2 + 4x+ 4 6= x2 + 2x+ 2.

(j) False. Note that

(f ◦ g)(1.5) = bd1.5ec = b2c and (g ◦ f)(1.5) = db1.5ce = d1e = 1.

Since these are different values, we see that f ◦ g 6= g ◦ f .

(k) False. Observe that f(1.5) = 1 but g(1) = 1 6= 1.5.

(l) True. Notice that (f ◦ g)(x) = (
√
x)2 = x and (g ◦ f)(x) =

√
x2 = x so both of

these composite functions are the identity function ιR+ .

5.4 Partitions and Equivalence Relations

5.109. I would use samples from the following sets:

{(x, b) ∈ Z× Z : x < b}, {(x, b) ∈ Z× Z : x > b}, {(x, b) ∈ Z× Z : x = b}.

5.110. Many answers are possible. One is: Define

A = {x ∈ Z : x ≡ 0 (mod 3)},
B = {x ∈ Z : x ≡ 1 (mod 3)},
C = {x ∈ Z : x ≡ 2 (mod 3)}.

Since Z = A ∪ B ∪ C while ∅ = A ∩ B ∩ C, we see that {A,B,C} is a partition of Z
with more than one subset.

5.112. Proof. Let R be the universal set and note that I = Q since I = R\Q. From Theo-
rem 5.40 we see that Q ∩ I = Q ∩Q = ∅ and Q ∪ I = Q ∪Q = R, which proves that
{Q, I} is a partition of R.

5.117. R is a relation on Z because R ⊆ Z× Z.

5.118. Note that {(1, 2), (345, 7), (43, 8675309), (11, 11)} ⊆ Z+ × Z+ so this set is a relation
on Z+.

5.120. (a) T is not reflexive since no person is (strictly) taller than theirself.
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(b) N is reflexive since each person has the same name as theirself.

(c) C is reflexive since each person has been to the same city as theirself.

(d) K is not reflexive since a person cannot know theirself (except, perhaps in a
philosophical, existential sense).

(e) R is not reflexive since, to be reflexive, a relation containing {Barack Obama,George W. Bush}
would also need to contain {Barack Obama,Barack Obama}. Since R does not
contain this element, it is not reflexive.

5.122. (a) T is not symmetric since if a is taller than b then b cannot be taller than a.

(b) N is symmetric since if a’s name starts with the same letter as b’s, then obviously
b’s name starts with the same letter as a’s.

(c) C is symmetric: if a and b have been to same city, then it is true to say b and a
have been to the same city.

(d) K is not symmetric. I’m pretty sure George Clooney does not know who I am,
but I know who he is.

(e) R is not symmetric sinceR does not also contain {George W. Bush,Barack Obama}.

5.124. (a) No, we cannot tell if R is anti-symmetric. It is possible for and anti-symmetric
relation to contain ordered pairs of the form (x, y) and (y, x), but only if x = y.
Ordered pairs like (1, 1) may be found in anti-symmetric relations.

(b) Yes, we can tell that R is not anti-symmetric. If R contains both (1, 2) and (2, 1),
it cannot be anti-symmetric. Note that we might call this a symmetric pair, but
the presence of this pair does not mean that R is symmetric.

5.125. It is the contrapositive of the original definition.

5.126. (a) T is anti-symmetric since if a is taller than b then b cannot be taller than a.

(b) N is not anti-symmetric since if a’s name starts with the same letter as b’s, then
obviously b’s name starts with the same letter as a’s.

(c) C is not anti-symmetric: if a and b have been to same city, then it is true to say
b and a have been to the same city.

(d) K is not anti-symmetric, assuming there are at least two people who know each
other.

(e) R is anti-symmetric sinceR does not also contain {George W. Bush,Barack Obama}.

5.127. (a) No, a relation may be neither symmetric nor anti-symmetric. Consider R =
{(1, 2), (2, 3), (3, 2)}. This is not symmetric since it contains (1, 2) but not (2, 1).
It is not anti-symmetric since it contains both (2, 3) and (3, 2).
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(b) No, see the previous answer.

(c) Yes. For example consider R = {(1, 1), (2, 2), (3, 3)}. This relation is symmetric
since for every (x, y) ∈ R we find that (y, x) ∈ R. The relation is also anti-
symmetric since if x 6= y then (x, y) and (y, x) are not both in R.

5.128. Let R = {(1, 1), (2, 2), (3, 3)} be a relation on {1, 2, 3}. As argued in the last example,
R is both symmetric and anti-symmetric.

5.130. (a) T is transitive since if a is taller than b and b is taller than c then a must be taller
than c.

(b) N is transitive since if a’s name starts with the same letter as b’s and b’s name
starts with the same letter as c’s, then a’s name must start with the same letter
as c’s.

(c) C is not transitive: Suppose a and b have both been to Boston and that b and c
have both been to New York City. It may still be possible that a has not been
to New York City or that c has not been to Boston, so (a, c) is not necessarily in
the relation C.

(d) K is not transitive. Suppose Paul and Will know each other, and Will and Ally
know each other. This does not imply that either Paul knows Ally or that Ally
knows Paul.

(e) R is transitive. This is perhaps best understood by considering that there is
nothing that violates transitivity. Barack Obama is paired with George W. Bush,
but George W. Bush is not paired with other person X, so the fact that Barack
Obama is not paired with X is not a problem.

5.133. (a) T is not an equivalence relation since it is neither reflexive nor symmetric.

(b) N is an equivalence relation because it is reflexive, symmetric, and transitive.

(c) C is not an equivalence relation since it is not transitive.

(d) K is not an equivalence relation because it is not reflexive, symmetric, or transi-
tive.

(e) R is not an equivalence relation because it is neither reflexive nor symmetric.

5.135. (a) T is not an partial order since it is not reflexive.

(b) N is not an partial order since it is not anti-symmetric.

(c) C is not an partial order since it is neither anti-symmetric nor transitive.

(d) K is not an partial order because it is not reflexive, symmetric, or transitive.

(e) R is not an partial order because it is not reflexive.
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5.136. Proof. Let sets A, B, and C belong to the collection of sets X. The relation R is
reflexive since every set A is a subset of itself: A ⊆ A. We know that R is anti-
symmetric since if both A ⊆ B and B ⊆ A then A = B by Theorem 5.44. Finally
we see that R is transitive because if A ⊆ B and B ⊆ C, then A ⊆ C by the definition
of the ⊆ operation.

5.137. (a) R is not reflexive since the ordered pairs (1, 1), (3, 3), and (4, 4) are not present.
To be reflexive, every ordered pair (a, a) for which a ∈ {1, 2, 3, 4, 5} must be
present in R.

(b) R is not symmetric since (1, 2) ∈ R but (2, 1) 6∈ R. (Other counter examples
exist).

(c) R is anti-symmetric since (1, 2) ∈ R but (2, 1) 6∈ R, (1, 3) ∈ R but (3, 1) 6∈ R,
(1, 5) ∈ R but (5, 1) 6∈ R, (2, 2) ∈ R and (2, 2) ∈ R but 2 = 2, (3, 5) ∈ R but
(5, 3) 6∈ R, and finally (5, 5) ∈ R and (5, 5) ∈ R but 5 = 5. Alternatively, we
could just observe that for every ordered pair (x, y) in R, x ≤ y. Therefore no
ordered pairs (y, x) are in R except those for which x = y.

(d) R is transitive: (1, 2) ∈ R and (2, 2) ∈ R but we (trivially) see that (1, 2) ∈ R.
Similarly (1, 3) ∈ R and (3, 5) ∈ R but (1, 5) is also in R. Finally, (1, 5) ∈ R and
(5, 5) ∈ R but (again trivially) (1, 5) ∈ R.

(e) R is not an equivalence relation since it is not reflexive or symmetric.

(f) R is not a partial order since it is not reflexive.

5.139. ((a, b), (a, b)); bc; da; ((c, d), (a, b)); symmetric; ad = bc; cf = de; c = de/f ; ad =
bde/f ; af = be; ((a, b, (e, f)).

6 Sequences and Summations

6.1 Sequences

6.3. (a) x0 = 2, (b) x1 = −1, (c) x2 = 5, (d) x3 = −7, (e) x4 = 17

6.4. (a) x0 = 2, x1 =
1

2
, x2 =

5

4
, x3 =

7

8
, x5 =

17

16
(b) x0 = 2, x1 = 2, x2 = 3, x3 = 7, x4 = 25

(c) x2 =
1

3
, x3 =

1

5
, x4 =

1

25
, x5 =

1

119
, x6 =

1

721

(d) x1 = 2, x2 =

(
3

2

)2

, x3 =

(
4

3

)3

, x4 =

(
5

4

)4

, x5 =

(
6

5

)5
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6.7. We note that

x0 = 1, x1 = 5 · 1 = 5, x2 = 5 · 5 = 52, x3 = 5 · 52 = 53, . . .

so it appears that xn = 5n, for n = 0, 1, 2, . . .

6.8. We note that

x0 = 1, x1 = 1 · 1, x2 = 2 · 1, x3 = 3 · 2 · 1, x4 = 4 · 3 · 2 · 1, . . .

so it appears that xn = n!, for n = 0, 1, 2, . . .

6.9. The examples shown are all correct, but the conclusion reached essentially assumes

that

⌊
1 +
√

5

2
× an−1

⌋
=

⌊
1 +
√

5

2

⌋
× an−1. This happens to be true when an−1 is 2,

4, or 8, but fails to be true when it is 16.

Computing a5 would have been sufficient to show that an 6= 2n, but in other cases one
might have to try many examples before finding a counterexample. This once again
shows that any number of examples do not prove a pattern.

6.11. The recursive definition of {xn} is x0 = 1, xn = 5xn−1 for n = 1, 2, . . .. To see that
xn = 5n is a closed form of the same sequence, we first note that x0 = 50 = 1 so
it works for the initial condition. Now we substitute it into the recursive definition,
replacing xn−1 with 5n−1:

5xn−1 = 5(5n−1) = 5n = xn

Since the closed form works for both the initial condition and satisfies the recurrence
relation, we know it expresses the terms in the sequence correctly.

6.12. The recursive definition of {xn} is x0 = 1, xn = n · xn−1 for n = 1, 2, . . .. To see that
xn = n! is a closed form of the same sequence, we first note that x0 = 0! = 1 so it works
for the initial condition. Now we substitute it into the recursive definition, replacing
xn−1 with (n− 1)!:

n · xn−1 = n · (n− 1)! = n! = xn

Since the closed form works for both the initial condition and satisfies the recurrence
relation, we know it expresses the terms in the sequence correctly.

6.13. The analysis and solution offered are correct as long as n ≥ 0. The definition of
ferzle(n), however, allows for n < 0 and the proposed solution does not cover this case
correctly. When n < 0, ferzle(n) should return 3.
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6.14. int ferzle(int n) {

// if (n<=0) return 3 else return 2n+3;

return ( n <= 0 ? 3 : 2*n+3 );

}

6.18. Requiring xn > xn−1 is equivalent to requiring xn < xn+1 for some index n. This is
because when n is incremented so n + 1 → n the first inequality becomes the second.
Both of these indicate that a given term in the sequence is strictly less than the term
that immediately succeeds it.

6.20. Proof. We show the sequence is strictly increasing by showing that xn+1 − xn > 0 for
n = 1, 2, . . ..

xn+1 − xn =
(n+ 1)2 + 1

n+ 1
− n2 + 1

n

=
n(n2 + 2n+ 2)− (n+ 1)(n2 + 1)

n(n+ 1)

=
n3 + 2n2 + 2n− n3 − n2 − n− 1

n(n+ 1)

=
n2 + n− 1

n2 + n

= 1− 1

n2 + n

> 0

as long as n > 0. Thus xn+1 > xn so the sequence is strictly increasing.

6.21. (a) xn = n, n = 0, 1, 2, . . . is strictly increasing since n+ 1 > n.

(b) xn = (−1)nn, n = 0, 1, 2, . . . is non-monotonic since it alternates with x0 > x1,
x1 < x2, x2 > x3, x3 < x4, etc.

(c) xn =
1

n!
, n = 0, 1, 2, . . . is decreasing since (n + 1)! ≥ n! so xn+1 ≤ xn. It is not

strictly decreasing because 0! = 1! so x0 = x1. However, this sequence is strictly
decreasing when n > 0.

(d) xn =
n

n+ 1
, n = 0, 1, 2, . . . is strictly increasing. Notice that

xn+1 − xn =
n+ 1

n+ 2
− n

n+ 1
=

(n+ 1)2 − n(n+ 2)

(n+ 1)(n+ 2)
=

1

(n+ 1)(n+ 2)
> 0

which shows that xn+1 > xn.
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(e) xn = n2 − n, n = 1, 2, . . . is strictly increasing. Observe that

xn+1 − xn = [(n+ 1)2 − (n+ 1)]− [n2 − n]

= n2 + 2n+ 1− n− 1− n2 + n

= 2n > 0

for all n > 0. Thus xn+1 > xn.

(f) xn = n2 − n, n = 0, 1, 2, . . . is increasing. We just showed that this sequence is
strictly increasing when n > 0 but notice that x0 = 02−0 = 0 and x1 = 12−1 = 0
so this sequence is not strictly increasing.

(g) xn = (−1)n, n = 0, 1, 2, . . . is non-monotonic. The values of the sequence alternate
between +1 and −1.

(h) xn = 1 − 1

2n
, n = 0, 1, 2, . . . is strictly increasing since xn+1 − xn =

1

2n
− 1

2n+1
=

1

2n+1
> 0.

(i) xn = 1 +
1

2n
, n = 0, 1, 2, . . . is strictly decreasing since xn+1 − xn =

1

2n+1
− 1

2n
=

− 1

2n+1
< 0.

6.24. In this progression a = − 2

317
and r =

2

316
· 317

−2
= −3. The 17-th term is

− 2

317
· (−3)16 = −2

3
.

6.26. We are told ar5 = 20 and ar9 = 320. Since ar 6= 0 we can compute

ar9

ar5
= r4 =

320

20
= 16

so |r| = 2. In this case |a| = |20/r5| = 20/32 = 5/8. The absolute value of the third
term is

|ar2| = 5

8
· 22 =

5

2
.

6.30. (a) The difference between consecutive terms is 7 and the starting term is 2 so the
8-th term will be 2 + (8− 1) · 7 = 51. Thus the ‘correct’ answer is (d).

(b) The word ‘correct’ is in quotes since the question implies that the pattern shown
in the listed terms continues. The answer is correct assuming the sequence is an
arithmetic progression.
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6.31. (a) The sequence in 6.7 is geometric since each term is generated from the previous
term by multiplying by 5 (i.e. 5 is the common ratio).

(b) The sequence in 6.8 is neither geometric nor arithmetic. There is no common
ratio nor is their a common difference.

(c) The sequence from 6.13 generated by ferzle(n) when n ≥ 0 is arithmetic. The
initial term is 3 and common difference is 2.

6.2 Sums and Products

6.34.
100∑
k=0

yk

6.36.
50∑
k=0

y2k

6.38. (a) 2, (b) 11, (c) 100, (d) 101

6.43. (a) 10, (b) 2200

6.46. (a) 10, (b) 2200, (c) 900, (d) 909

6.47. There are 75− 25 + 1 = 51 terms in the sum, each of which is 10. The sum should be
51× 10 = 510.

6.50. (a)
20∑
k=1

k =
20(20 + 1)

2
= 210

(b)
100∑
k=1

k =
100(100 + 1)

2
= 5050

(c)
1000∑
k=1

k =
1000(1000 + 1)

2
= 500500

6.51. Solution 1: This is incorrect since it uses the formula (n−1)n/2 rather than n(n+1)/2.

Solution 2: This is incorrect since k is factored out of the sum even though k is not
constant. Only constant factors may be factored out of a sum.

6.52. It is true that
n∑

k=0

k =
n∑

k=1

=
n(n+ 1)

2
. While the first sum has n + 1 terms and the

second sum has only n terms, the “extra” term in the first sum corresponds to k = 0
and so is zero.
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6.55.
100∑
i=1

2− i =
100∑
i=1

2−
100∑
i=1

i = 200− 100 · 101

2
= 200− 5050 = −4850.

6.57. The sum of the first n odd positive integers is n2.

Proof. The sum of the first n odd positive integers is equal to the sum of the the first
2n positive integers minus the sum of the first n even integers. Thus

2n∑
k=1

k −
n∑

k=1

2k =
2n(2n+ 1)

2
− 2

n(n+ 1)

2

= (2n2 + n)− (n2 + n)

= n2.

6.59.
20∑

k=10

k =
20∑
k=1

k −
9∑

k=1

k =
20 · 21

2
− 9 · 10

2
= 210− 45 = 165.

6.60. Solution 1: This computation is nearly correct, but the summation that is subtracted
should go from k = 1 to 29. The answer computed here is really

∑100
k=31 k.

Solution 2: This computation makes the same set-up error as the previous solution
attempt, but also incorrectly computes

∑n
k=1 as (n− 1)n/2.

Solution 3: This solution is correct as written.

6.61. The computation is incorrect for two reasons. First, the second sum should be
∑29

k=1 k.
Second,

∑30
k=1 k should be 30 · 31/2, not 29 · 30/2. However, the answer is correct

since the second error made actually corrects for the first error; i.e., the computation
29 · 30/2 correctly calculates

∑29
k=1 k.

6.63. A cheeky answer would be “because it is correct for the sum to have a lower index of
2.” However, the intent of the question is probably to point out that since both k and
k − 1 appear in the denominator, neither can be 0, so k 6= 0 and k 6= 1.
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6.64.

n∑
k=1

(k3 + k) =
n∑

k=1

k3 +
n∑

k=1

k

=
n2(n+ 1)2

4
+
n(n+ 1)

2

=
n(n+ 1) · n(n+ 1)

4
+
n(n+ 1) · 2

4

=
n(n+ 1)(n2 + n+ 2)

4

6.66. (a)
n∑

i=1

i∑
j=1

1 =
n∑

i=1

i =
n(n+ 1)

2
.

(b)
n∑

i=1

i∑
j=1

j =
n∑

i=1

i(i+ 1)

2
=

1

2

[
n∑

i=1

i2 +
n∑

i=1

i

]
=

1

2

[
n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2

]
=
n(n+ 1)(n+ 2)

6

(c)
n∑

i=1

n∑
j=1

ij =
n∑

i=1

(
i

n∑
j=1

j

)
=

n∑
i=1

i
n(n+ 1)

2
=
n(n+ 1)

2

n∑
i=1

i =
n2(n+ 1)2

4

6.69. (a) 1 + 3 + 32 + 33 + · · ·+ 349 =
350 − 1

3− 1
=

350 − 1

2

(b) 1 + y + y2 + · · ·+ y100 = 1−y101
1−y

(c) 1− y + y2 − y3 + · · · − y99 + y100 =
1− (−y)101

1 + y

(d) 1 + y2 + y4 + · · ·+ y100 = 1 + y2 + (y2)2 + · · ·+ (y2)50 =
(y2)51 − 1

y2 − 1
=

1− y102

1− y2

6.72. x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

6.73. 21 + 22 + 23 + 24 + · · ·+ 2n+1; 20; 2n+1; −20 + 2n+1.

6.75. a
n∑

k=0

rk; a
1− rn+1

1− r
.
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6.76. Proof. Suppose r 6= 1 and a are real numbers and let S =
n∑

k=0

ark. Then

rS − S =
∑

k = 1n+1ark −
n∑

k=0

ark

(r − 1)S =
(
ar + ar2 + · · ·+ arn + arn+1

)
−
(
a+ ar + ar2 + · · ·+ arn

)
= arn+1 − a

Dividing both sides by r − 1 yields S =
arn+1 − a
r − 1

. Therefore

n∑
k=0

ark =
arn+1 − a
r − 1

or
n∑

k=0

ark =
a− arn+1

1− r
.

7 Algorithm Analysis

7.1 Asymptotic Notation

7.6. (a) −3n ≤ 0 when n > 1; (b) 20 < 20n2 when n > 1.

7.7. While it is true that 10 ≤ 10n2 when n ≥ 1, it is not true that −12n ≤ −12n2 for
these same values of n. The approach used here would work if all terms were summed.

7.8. (a) Yes, c = 50 could be used; (b) No, c = 2 would not work since the coefficient of n2

is 5 in the expression we are trying to bound; (c) Yes, we could use n0 = 100 since this
value is larger than the n0 = 1 used in Example 7.5; (d) No, n0 = 0 would not work
since this would allow n = 0 and it is not true that 20 ≤ 0.

7.9. If n ≥ 1 we have

5n5 − 4n4 + 3n3 − 2n2 + n ≤ 5n5 + 3n3 + n since − 4n4 − 2n2 ≤ 0

≤ 5n5 + 3n5 + n5 since n3 ≤ n5 and n ≤ n5

= 9n5

Since we have shown that 5n5− 4n4 + 3n3− 2n2 +n ≤ 9n5 for all n ≥ 1, we know that
5n5 − 4n4 + 3n3 − 2n2 + n = O(n5).
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7.10. n0 = 1, c = 9.

7.13. If n ≥ 1 we know n + 1 ≥ 0 so 4n2 + n + 1 ≥ 4n2. Since 4n2 + n + 1 ≥ 4n2 for all
n ≥ 1, we know that 4n2 + n+ 1 = Ω(n2).

7.14. n0 = 1, c = 4.

7.17. If need to satisfy both n ≥ 0 and n ≥ 1, it is sufficient to require n ≥ 1, since this
restriction satisfies both requirements.

7.22. Since g(n) appears in the denominator, it must be nonzero. As we are interested in
the limit as n → ∞ it is not a problem if g(n) = 0 for some particular value(s) of n,
only that g(n) 6= 0 for all values of n larger than some integer; this is what it means
to say g is eventually non-zero.

7.23. If big-O notation is equivalent to ≤ in some ways, then o would be equivalent to <
and ω would be equivalent to >.

7.24. (a) If f(n) = Θ(g(n)), it is not possible that f(n) = o(g(n)) since f(n) cannot grow
at the same asymptotic rate as g(n) and at a rate asymptotically slower than
g(n).

(b) If f(n) = O(g(n)), it is possible that f(n) = o(g(n)) since the first statement says
f grows no faster than g(n) and the second says f grows more slowly than g(n).

(c) If f(n) = O(g(n)), it is not certain that f(n) = o(g(n)) since the second statement
says f grows more slowly than g(n) while the first says f can grow at the same
rate as g(n).

(d) If f(n) = o(g(n)), it is possible that f(n) = O(g(n)) since the second statement
says f grows no faster than g(n) and the first says f grows more slowly than g(n).

7.25. Solution 1: While not strictly incorrect, this “proof” makes many rather loose and
unsubstantiated claims and no attention is given to the values of n for which the result
shown applies. It is possible to show that akn

k + ak−1n
k−1 + · · ·+ a0 = Θ(nk), but this

should be done carefully with pair of inequalities. This is also a stronger result than
we are asked to prove, and merely showing that the expression has an O(nk) bound
will involve less work.

Solution 2: This is a good proof!

7.26. We can’t say much, only that g could grow faster than f , but this does not have to be
true.

7.27. (a) False. Note that n = O(n2) but n does not grow faster than n2.
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(b) False. By definition both f and g must grow at the same asymptotic rate.

(c) False. The function f can grow at the same rate as g but it could also grow more
slowly.

(d) False. We know that f grows at least as fast as g, but they could grow at the
same rate.

(e) False. Note that n = O(n2) but n 6= Ω(n2).

(f) True. If f(n) = Θ(g(n)) then both f(n) = O(g(n)) and f(n) = Ω(g(n)).

(g) False. The function f could grow at the same rate as g but it could also grow
more slowly so that it is not in Θ(g(n)). For example n = O(n2) but n 6= Θ(n2).

(h) False. Consider that n = O(n2) while n2 6= O(n).

7.37. c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.;
1

c2
f(n);

1

c1
f(n); c3h(n) ≤ g(n) ≤ c4h(n) for all

n ≥ n1.; c2; c2c4; max{n0, n1}.; c1c3h(n); c2c4h(n); Θ(h(n)) Θ; transitive.;

7.39. (a) True. If f is bounded from above by g then g is bounded from below by f .

(b) True. If f and g grow at the same rate then f is bounded from above and from
below by g.

(c) True. If f1 and f2 are bounded from above by g1 and g2 respectively, then f1 + f2
must be bounded from above by the larger of g1 and g2.

(d) False. Note that n = O(n2) but n 6= Θ(n2).

(e) False. Note that n = O(n2) but n2 6= O(n).

(f) True. If f is bounded above by g, then g is bounded from below by f .

(g) True. This is a theorem that follows immediately from the definition of Θ.

(h) True. If f is bounded from above by g and g is bounded from above by h, then
f must be bounded from above by h.

7.42. Proof. We need to find positive constants c1, c2, and n0 such that

c1n
2 ≤ 1

2
n2 − 3n ≤ c2n

2 for all n ≥ n0

Dividing by n2, we get

c1 ≤
1

2
− 3

n
≤ c2.

Notice that if n ≥ 10,

1

2
− 3

n
≥ 1

2
− 3

10
=

5− 3

10
=

1

5
,
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so we can choose c1 = 1/5. If n ≥ 10, we also have that 1
2
− 3

n
≤ 1

2
, so we can choose

c2 = 1/2. Thus, we have shown that

1

5
c1n

2 ≤ 1

2
n2 − 3n ≤ 1

2
c2n

2 for all n ≥ 10 .

Therefore, 1
2
n2 − 3n = Θ(n2).

7.43. If n ≥ 10 then 1
n
≤ 1

10
. Multiplying both sides of this inequality by −3 we have

− 3
n
≥ − 3

10
. Finally, adding 1/2 to both sides gives 1

2
− 3

n
≥ 1

2
− 3

10
.

7.45. (a) Theorem 7.18

(b) No, knowing f(n) = O(g(n)) does not imply f(n) = Θ(g(n)). To be able able to
draw this conclusion we would also need to know that f(n) = Ω(g(n)).

7.46. Proof. Recall that n! is defined for all integers n ≥ 0 to be n! = n(n−1)(n−2) · · · (2)(1).
There are n factors, each of the form n− k for k = 0, 1, . . . , n− 1, present when n > 0.
For each factor we know n− k ≤ n. Thus

n! = n(n− 1)(n− 2) · · · (2)(1) ≤ nn

so we see that n! = O(nn).

7.49. Proof. Suppose f(x) = O(g(x)) and g(x) = O(h(x)). Then there exist constants c1,
c2, n1, and n2 such that

f(x) ≤ c1g(x) for all x ≥ n1 and g(x) ≤ c2h(x) for all x ≥ n2.

Clearly both these inequalities are also true for x ≥ n0 if n0 = max{n1, n2}. Replacing
g(n) in the first inequality using the second, we have

f(x) ≤ c1c2h(x) for all x ≥ n0,

or, if c0 = c1c2,
f(x) ≤ c0h(x) for all x ≥ n0,

proving that f(x) = O(h(x)).

7.53. (a) lim
n→∞

log10 n =∞

(b) lim
n→∞

n3 =∞

(c) lim
n→∞

3n =∞

(d) lim
n→∞

(
3

2

)n

=∞
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(e) lim
n→∞

(
2

3

)n

= 0

(f) lim
n→∞

n−1 = 0

(g) lim
n→∞

8675309 = 8675309

7.57. Theorem 7.51 was used to conclude that lim
n→∞

n2 =∞ and Theorem 7.55 was then used

to conclude that lim
n→∞

1

n2
= 0.

7.58. Proof. Notice that

lim
x→∞

3x3

x2
= lim

x→∞
3x =∞

so 3x3 = Ω(x2) by Theorem 7.50 (case 2).

7.63. Proof. Notice that

lim
n→∞

n(n+ 1)/2

n2
= lim

n→∞

n2 + n

2n2
= lim

n→∞

(
1

2
+

1

2n

)
=

1

2

so n(n+ 1)/2 = Θ(n2) by Theorem 7.50 (case 3).

7.64. (a) Proof. Notice that

lim
x→∞

2x

3x
= lim

x→∞

(
2

3

)x

= 0

so 2x = O(3x) by Theorem 7.50 (case 1).

(b) Proof. We need to show that constants c and n0 can be found so that 2x ≤ c · 3x

for all x ≥ n0. We note that

2x

3x
=

(
2

3

)x

≤ 1 for all x ≥ 1.

Therefore 2x ≤ 1 · 3x for all x ≥ 1. If we set c = 1 and n0 = 1 then we see that
2x = O(3x) by the definition of big-O.

7.70. Proof 1: The writer writes 7x − 5x > 0, where they should say 7x/5x > 1. It’s not
the difference between the two functions that matters, but rather their relative growth
rates. The argument is also rather loose in general.

Proof 2: The writer makes the mistake of applying the log function to both numerator
and denominator. In general it is not true that a/b = log a/ log b.

Proof 3: This is essentially correct as it uses sound reasoning. It implicitly uses
Theorems 7.50 and 7.51 to draw the conclusion, but does not explicitly address why
the bound is not tight.
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7.72. (a) Proof. Notice that, for n ≥ 2,

n ln(n2 + 1) + n2 lnn ≤ n ln(n2 + n2) + n2 lnn since 1 ≤ n2

= n ln(2n2) + n2 lnn

= n ln 2 + n lnn2 + n2 lnn

≤ n lnn+ 2n lnn+ n2 lnn since 2 ≤ n

= 3n lnn+ n2 lnn

≤ 3n2 lnn+ n2 lnn since n ≤ n2

= 4n2 lnn

Therefore n ln(n2 + 1) + n2 lnn = O(n2 lnn).

(b) Proof. By inspection we notice that for large n the first term resembles n lnn2,
which equals 2n lnn, while the second term is n2 lnn. Since 2n < n2 for large n,
we can conjecture that the upper bound will be O(n2 lnn). Notice

lim
n→∞

n ln(n2 + 1) + n2 lnn

n2 lnn
= lim

n→∞

ln(n2 + 1)

n lnn
+ 1

= lim
n→∞

2n/(n2 + 1)

lnn+ 1
+ 1 by l’Hôpital’s Rule

=
limn→∞(2n/(n2 + 1))

limn→∞(lnn+ 1)
+ 1

= 0 + 1

= 1

This result shows that n ln(n2 + 1) + n2 lnn = Θ(n2 lnn) by Theorem 7.50. Thus
n2 lnn is not only an upper bound, it is also a tight bound.

7.74. Proof. We conjecture the bound will be n10 since that is the dominant term in (n2−1)5.

lim
n→∞

(n2 − 1)5

n10
= lim

n→∞

(
n2 − 1

n2

)5

= lim
n→∞

(
1 +

1

n2

)5

=

(
1 + lim

n→∞

1

n2

)5

= (1 + 0)5

= 1

Thus, by Theorem 7.50, we know (n2 − 1)5 = Θ(n10).
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7.75. Proof. We note that 2n+1 + 5n−1 = 2 · 2n + 5n/5 so that it appears that the bound will
be 5n.

lim
n→∞

2n+1 + 5n−1

5n
= lim

n→∞

2 · 2n + 5n/5

5n

= lim
n→∞

[
2 ·
(

2

5

)n

+
1

5
·
(

5

5

)n]
= 2 · 0 +

1

5
· 1

=
1

5

By Theorem 7.50 we see that 2n+1 + 5n−1 = Θ(5n).

7.2 Asymptotic Notation

7.78. Proof. Suppose that a < b are real numbers. Notice that

lim
n→∞

na

nb
= lim

n→∞
na−b = 0

since a− b < 0. By Theorem 7.50 we know that na = o(nb).

7.81. Proof. Suppose that 0 < a < b are real numbers. Notice that

lim
n→∞

an

bn
= lim

n→∞

(a
b

)n
= 0

since 0 < a/b < 1. By Theorem 7.50 we know that na = o(nb).

7.86. (a) False; (b) True; (c) False; (d) True; (e) True; (f) False.

7.89. Proof. Let b > 0 and c > 0 be real numbers. Notice that lim
n→∞

logc(n)

nb
is of the

appropriate form for l’Hôpital’s Rule since the numerator and denominator both grow
without bound as n→∞. Recall that

d

dx
logc(x) =

d

dx

ln(x)

ln(c)
=

1

x ln(c)

so

lim
n→∞

logc(n)

nb
= lim

n→∞

1

(n ln c)(bnb−1)
= lim

n→∞

1

bnb ln c

=
1

b ln c

(
lim
n→∞

1

nb

)
=

1

b ln c
· 0 = 0

since nb will grow without bound. By Theorem 7.50, logc(n) = o(nb).
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7.94. (a) Θ; (b) o; (c) Θ; (d) o; (e) Θ; (f) ω; (g) o; (h) o; (i) o; (j) o;

7.96. (a) Θ(n7); (b) Θ(n8); (c) Θ(n2); (d) Θ(3n); (d) Θ(2n); (f) Θ(n2); (g) Θ(n.000001);
(h) Θ(nn);

7.97. Here f(x)� g(x) means f(x) = o(g(x)) and commas separate functions with the same
growth rate.

10000� log x, log x300 � log300 x

� x.000001 � x, log 2x � x log x� xlog 3

� x2 � x5 � 2x � 3x

7.3 Algorithm Analysis

7.98. Wall-clock time and CPU time are not the same since different CPUs run at different
rates, and a given CPU may also be task switching between multiple jobs so that
wall-clock time may be longer than the time spent by the CPU on a job.

7.99. There are two main reasons why we cannot be sure that Stu’s algorithm is more
efficient. First, the computers Stu and Sue used may run at different rates. Second,
We don’t know what problem size was used and it is possible that Sue’s algorithm will
prove to be more efficient as the problem size grows.

7.100. Wall-clock time may not be a reliable indicator of performance if the computer is not
dedicated to running a single job as the operating system may interrupt the job to
run others. Depending on how this scheduling is done and the overall load on the
computer, wall-clock time can be quite variable.

7.101. In general the CPU-time of jobs on the same computer can be used to give a reliable
measure of performance since this is a measure of how much time the CPU actually
spent working on the job.

7.103. If the input matrix is n×m then the size of the input would be nm.

7.109. For our analysis we will focus on the max = max(max,a[i]) assignment and count this as
one instruction. In this example the best case, worst case, and average case complexities
are all the same. This is because the algorithm always makes n comparisons regardless
of the contents of the array. Thus, the complexity for all three cases is Θ(n).

7.112. In this algorithm the body of the inner loop is always executed k = 50 times, so if we
count the assignment as a single operation then this loop always does 50 operations.
The outer loop is done n times, so there are 50n operations in total, which is Θ(n).
This is the best, worst, and average complexity for this algorithm.
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7.113. We consider the assignment instruction inside the inner loop as a single instruction
and note that the inner loop is done n2 times. The outer loop is done n times, so the
assignment instruction is done n · n2 = n3 times. Thus, the worst-case complexity is
Θ(n3).

7.116. (a) AreaTrapezoid has constant complexity since it always carries out the same number
of instructions regardless of the input.

(b) factorial has complexity Θ(n) (the assignment in the inner loop is done n times)
and so does not have constant complexity.

(c) absoluteValue has constant complexity since it always carries out the same number
of instructions regardless of the input.

7.121. The complexity is only Θ(n) because the body of the inner loop is always executed
six times. If the sum=sum+i line is counted as one instruction, this algorithm does 6n
instructions and so has complexity Θ(n).

7.126. (a) The factorial algorithm has complexity Θ(n) (the assignment in the inner loop
is done n times) and so does not have quadratic complexity.

(b) Since the proposed algorithm essentially does a linear search through a dataset of
size n2, this algorithm will have complexity Θ(n2).

7.133. As noted, in the best-case the code inside the conditional statement never executes.
The complexity is still Θ(n2) because at most this only reduces the number of opera-
tions done by a constant factor and Θ(cn2) = Θ(n2).

7.136. When a linked list is used as the underlying data structure, both set(i,x) and get(i)

will have complexity Θ(i) since a linear traversal from the start of the list must be
performed to find the desired location in the list.

7.138. In some answers below there are two answers given. The first assumes that the number
of elements in the structure is stored or can be computed in Θ(1) while the second
assumes that the size must be computed.

Stack array linked list

push Θ(1) Θ(1)
pop Θ(1) Θ(1)
peek Θ(1) Θ(1)
size Θ(1) Θ(1) or Θ(n)
isEmpty Θ(1) Θ(1)

7.139. The note in 7.138 applies here as well.
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Queue array linked list circular array

enqueue Θ(1) Θ(1) Θ(1)
dequeue Θ(n) Θ(1) Θ(1)
first Θ(1) Θ(1) Θ(1)
size Θ(1) Θ(1) or Θ(n) Θ(1)
isEmpty Θ(1) Θ(1) Θ(1)

7.140. The note in 7.138 applies here as well. Additionally, we assume the list has both a
head and tail pointer.

List array linked list

addToFront Θ(n) Θ(1)
addToEnd Θ(1) Θ(1)
removeFirst Θ(n) Θ(1)
contains Θ(n) Θ(n)
size Θ(1) Θ(1) or Θ(n)
isEmpty Θ(1) Θ(1)

7.141. Suppose h where h ≤ n is the height of the tree. When the tree is balanced h = log2 n.

BST unbalanced balanced

insert/add Θ(h) Θ(log n)
delete/remove Θ(h) Θ(log n)
search/contains Θ(h) Θ(log n)
maximum Θ(h) Θ(log n)
successor Θ(h) Θ(log n)

7.142.

Hash Table average worst

insert/add Θ(1) Θ(n)
delete/remove Θ(1) Θ(n)
search/contains Θ(1) Θ(n)

Solution 1: Just because the function evaluates an exponential, does not mean it has
exponential complexity.

Solution 2: The answer is not well formed since it does not use big-O notation. Also,
if we assume the writer meant to say O(ni), they have used i as part of there answer
even though only n should be used.
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Solution 3: The end result here is correct, but the reasoning is not quite right. The
loops are nested, and the final value of i is n−1. This means the number of operations
done by power(a,i) over all invocations is (n− 1)n/2. Since the constant divisor does
not matter in asymptotic complexity we see that this is O(n2). Just because final result
matches the correct result does not make this problem correct. The reasoning is not
and so the overall answer is not correct.

7.143.7.144. The number of operations done in the inner loop is 1 + i if we count the addition
necessary to update sum. Thus, the operation done are

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

thus the worst-case complexity is O(n2). This is also the best and average case com-
plexity.

7.145. double addPowers(double a, int n)

{

if (a == 1) return n;

double sum = 1;

for (int i = 1; i < n; i++)

{

sum = sum * a + 1;

}

return sum;

}

The loop body contains two operations and it done n− 1 times. The operation count
is 2(n− 1 which is Θ(n).

7.146. We offer two non-loop solutions. The first uses recursion instead of a loop.

double addPowers(double a, int n)

{

if (a == 1) return n;

if (n == 0) return 0;

else return a * addPowers(a, n-1) + 1;

}

}

Counting operations is similar to the loop version. There are n function calls after the
original one and on n−1 of these there is a multiplication and an addition. Thus there
are 2(n − 1) operations done. Here we have neglected the fact that a function call is
most likely a more expensive operation than a multiplication or addition, so although
the code has the same actual operation count as the loop-based codes, it is probably
worse because of the repeated function call overhead.
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For a more efficient no-loop version, recall the partial sum of a geometric series is given
by

a+ ar1 + ar2 + · · ·+ arn =
a(1− rn+1)

1− r
.

Thus we can code the function as

double addPowers(double a, int n)

{

if (a == 1) return n;

else return (1 - power(a,n)) / (1-a);

}

This is Θ(n) since power(a,n) requires n operations.

7.148. Solution 1: This has nearly the same operation count as the code in Example 7.147 but
computes the sum from m to n−1, so it does not correctly compute the sum. The first
loop takes about 1 + 4n operations while the second takes about 1 + 4m operations.
With the first and last statements the total operation count is 1 + 4n+ 1 + 4m+ 2 =
4 + 4(n+m) = 4(1 + n+m). This is Θ(n+m).

Solution 2: This also computes the sum from m to n − 1, so it is not correct. The
loop body is executed n−m times so the operation count, including the first and last
operations, is 2 + 4(n−m) = Θ(n−m).

Solution 3: This solution requires 8 operations and so is Θ(1). Unfortunately it is also
not correct as it once again computes the sum from m to n− 1.

7.149. int sumFromMToN(int m, int n)

{

return (n*(n+1) - (m-1)*m) / 2;

}

This is correct since

n∑
i=m

i =
n∑

i=1

i−
m−1∑
i=1

i =
n(n+ 1)

2
− (m− 1)m

2
=
n(n+ 1)− (m− 1)m

2
.

The function performs two multiplications, two additions, one division, one subtraction,
and one function return for a total of 7 operations. This is Θ(1).

7.152. (a) If ll2 is a LinkedList with m elements the call c.contains(elementData[r]) takes
Θ(m) time, which is the same for the ArrayList example, so the complexity is
Θ(nm).
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(b) If hs2 is a HashSet with m elements the call c.contains(elementData[r]) takes
Θ(1) time in the average case but Θ(m) time in the worst-case. Thus the average
complexity is Θ(1·n+n) = Θ(n), while the worst-case complexity is again Θ(nm).

7.154. (a) If ll2 is a LinkedList with m elements the call to c.contains takes Θ(m) time.
The total worst-case complexity for the loop body is is Θ(log n + m). The loop
executes n times so the overall worst-case complexity is Θ(n(log n+m)).

(b) If ts2 is a TreeSet with m elements the call to c.contains takes Θ(logm) time. The
total worst-case complexity for the loop body is is Θ(log n+ logm) = Θ(log nm).
The loop executes n times so the overall worst-case complexity is Θ(n(log nm)).

7.156.

n bn/2c
decimal binary decimal binary

12 1100 6 110
13 1101 6 110
32 100000 16 10000
33 100001 16 10000
118 1110110 59 111011
119 1110111 59 111011

7.157. To obtain the binary representation of bn/2c, the binary representation of n is shifted
to the right one place, discarding the least-significant bit.

8 Recursion, Recurrences, and Mathematical Induc-

tion

8.1 Mathematical Induction

8.2. (a) N - If the domain of the propositional function is Z then there is no “starting
point.”

(b) Y, but really N - Since domain of the propositional function is Z+ induction
might work here. However, the statement is false so we cannot use induction (or
any other technique) to prove it. Consider the positive integer 1, which cannot
be written as the sum of two positive integers.

(c) Y - Again, we have Z+ as the domain, so this is ordered in a way that lends itself
to induction.
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(d) Y - Ditto (this is a classic induction problem)

(e) N - Domain has no starting point.

8.4. modus ponens

8.5. If P (5) is true and P (k) → P (k + 1) when k ≥ 1, we can conclude that P (6) is also
true.

8.6. If P (a) is true and P (k) being true implies P (k+1) is true whenever k ≥ a, then P (n)
is true for all n ≥ a.

8.7. Oh yeah!

8.10. For every integer n ≥ 1,
n∑

i=1

i =
n(n+ 1)

2
.

Proof. Proof: Let P (k) be the statement “
n∑

i=1

i =
n(n+ 1)

2
.” We need to show that

P (n) is true for all n ≥ 1.

Base Case: When k = 1 we have
1∑

i=1

i = 1 = 1(1+1)
2

= 1 . Therefore, P (1) is true .

Inductive Hypothesis: Let k ≥ 1 and assume that P (k) is true . That is,

assume that
k∑

i=1

i =
k(k + 1)

2
when k ≥ 1 .

[This is not part of the proof, but it will help us see what’s next. our goal
in the next step is to prove that P (k + 1) is true. That is, we need to

show that
k+1∑
i=1

i =
(k + 1)(k + 2)

2
.]
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Inductive Step: Notice that

k+1∑
i=1

i =
k∑

i=1

i + (k + 1)

=
k(k + 1)

2
+ (k + 1) (by the inductive hypothesis)

= (k + 1)

(
k

2
+ 1

)
=

(k + 1)(k + 2)

2

Thus P (k + 1) is true.

Summary: We showed that P (1) is true and that whenever k ≥ 1, P (k)→ P (k+ 1),
therefore P (n) is true for n ≥ 1 by induction.

8.11. (a)
k∑

i=1

i · i! = (k + 1)!− 1

(b)
k+1∑
i=1

i · i! = (k + 2)!− 1

(c)
k∑

i=1

i · i!

(d) (k + 1)!− 1

(e)
k+1∑
i=1

i · i!

(f) (k + 2)!− 1

8.14. Prove that for all n ≥ 1,
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Proof. Let P (k) be the statement “
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
.” We need to prove that

P (n) is true for all n ≥ 1.

Base Case: When k = 1 we have
1∑

i=1

i2 = 12 =
1 · 2 · 3

6
= 1. Therefore P (1) is true.
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Inductive Hypothesis: Let k ≥ 1 and assume that P (k) is true. That is, as-

sume that
k∑

i=1

i2 =
k(k + 1)(2k + 1)

6
when k ≥ 1. We want to show that

k+1∑
i=1

i2 =

(k + 1)(k + 2)(2k + 3)

6
.

Inductive Step: Notice that

k∑
i=1

i2 =
k∑

i=1

i2 + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

= (k + 1)

(
k(2k + 1)

6
+ k + 1

)
= (k + 1)

2k2 + k + 6(k + 1)

6

= (k + 1)
2k2 + 7k + 6

6

= (k + 1)
(k + 2)(2k + 3)

6

=
(k + 1)(k + 2)(2k + 3)

6

Thus P (k + 1) is true.

Summary: We showed that P (1) is true and that whenever k ≥ 1, P (k)→ P (k+ 1),
therefore P (n) is true for all n ≥ 1 by induction.

8.16. Use induction to prove that for all n ≥ 1,

1 · 2 + 2 · 22 + 3 · 23 + · · ·+ n · 2n = 2 + (n− 1)2n+1

Proof. We use mathematical induction. When n = 1 we have 1·2 = 2 and 2+(1−1)22 =
2 + 0 = 2 so the statement is true when n = 1. Next we will assume that

1 · 2 + 2 · 22 + 3 · 23 + · · ·+ k · 2k = 2 + (k − 1)2k+1

holds for some k ≥ 1 and show that this implies that

1 · 2 + 2 · 22 + 3 · 23 + · · ·+ k · 2k + (k + 1) · 2k+1 = 2 + k2k+2.
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Observe that

1 · 2 + 2 · 22 + 3 · 23 + · · ·+ k · 2k = 2 + (k − 1)2k+1

1 · 2 + 2 · 22 + 3 · 23 + · · ·+ k · 2k + (k + 1)2k+1 = 2 + (k − 1)2k+1 + (k + 1)2k+1

= 2 + (k − 1 + k + 1)2k+1

= 2 + 2k · 2k+1

= 2 + k2k+2.

It follows by induction that 1 · 2 + 2 · 22 + 3 · 23 + · · ·+ n · 2n = 2 + (n− 1)2n+1 for all
n ≥ 1.

8.18. This proof is basically correct. I would suggest two changes:

(a) The basis step starts by stating that 1 · 1! = (1 + 1)!− 1, which is the result we’re
trying to prove here. It would be much better to start by showing that 1 · 1! = 1
and then showing that (1 + 1)! − 1 = 1 separately and then pointing out that
these are equal.

(b) Given that we’re trying to prove a statement about n, it would be better in the
inductive step to use a different variable such as k. This prevents the inductive
hypothesis from nearly matching the statement we are trying to prove. The key
concept is that in the inductive hypothesis we are working with an existential
quantification (some integer k ≥ 1), while the statement we’re ultimately trying
to prove is a universal quantification (all integers n ≥ 1).

8.19. If k > 1 then k 6= 1 so P (k)→ P (k + 1) cannot be used to show P (1)→ P (2).

8.21. This choice made the algebra less messy.

8.25. One problem is with the statement “assume that any collection of n goats are all
the same color.” If we’re going to use induction we have to say “assume we have a
collection of n goats that are all the same color.” This is very different than saying
assuming that as long as we have n goats they’ll all be the same color.

Another problem occurs when going from the base n = 1 case to the two-goat case.
Suppose n = 1 and introduce a second goat. Now the first group contains one goat,
numbered “1.” The second group also contains one goat, numbered “2.” Notice that
goat 2 is not in both collections.

8.26. Proof 1: The statement we’re trying to prove states that the number of binary palin-
dromes of length 2n is 2n for all n ≥ 0. The base case here should be n = 0, not
k = 1 as stated in the proof. The writer should have used n rather than k and, more
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importantly, started with 0 rather than 1. Another problem has to do with how the
inductive step is carried out. Since we’re working with palindromes, when constructing
a string of length 2(k+1) from a string of length 2k, we should either prepend 0 to the
front and append at 0 to the end, or do the same with 1. Putting 00 or 11 at either
the beginning or the end will not generally result with a palindrome.

Proof 2: This is awful, with only very first statement making any sense. The statement
of the base case is fine, but the statement “Now assume it is true for all n.” is not.
To what does “it” refer? We’re trying to prove a statement for all n ≥ 0, how can
we justify assuming “it” is true for all n? Also, in this context the statement “adding
a bit to either end” should be avoided - the operation is concatenation, not addition.
Similarly problematic is “...which multiplies the total number by 22 permutations”. A
permutation is a rearrangement of an ordered tuple, so we can count permutations,
but we cannot multiply by them. It’s also not at all clear where the number 22 comes
from. Throughout this attempted proof the writer uses “it” and “they” but it is not
at all clear to what they refer.

Proof 3: This attempt is better in that I believe the writer is reasoning correctly. They
have not, however, explained their reasoning clearly and unambiguously. As in Proof
2, here again the word “it” inappropriately.

8.27. Proof. We begin by noting there is exactly one empty string. It has length 0 and is
trivially a palindrome, so there is exactly one binary palindrome of length 0. Since
20 = 1, we see that statement holds for n = 0.

We now assume that there are 2k binary palindromes of length 2k for some k ≥ 0.
For each of these, we can prepend and append a leading and trailing bit to generate a
new string of length 2(k + 1). For the new string to be a palindrome the new leading
and trailing bits must be the same. Since we have two choices, either 0, or 1, each
original palindrome of length 2k can be used to generate two binary palindromes of
length 2(k + 1). Thus, there are 2 · 2k = 2k+1 binary palindromes of length 2(k + 1).
This completes the induction.

8.2 Recursion

8.3 Solving Recurrence Relations

8.4 Analyzing Recursive Algorithms
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