Trigonometric Identities

Jonathan Senning, jonathan.senning@gordon.edu
September 1999. Revised 2000, 2003, 2006, 2010, 2019.

1 Trigonometric Identities you must remember

The "big three" trigonometric identities are

$$
\begin{gather*}
\sin ^{2} \theta+\cos ^{2} \theta=1 \tag{1}\\
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \tag{2}\\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \tag{3}
\end{gather*}
$$

Using these we can derive many other identities. Even if we commit the other useful identities to memory, these three will help be sure that our signs are correct, etc.

2 Two more easy identities

From equation (1) we can generate two more identities. First, divide each term in (1) by $\cos ^{2} \theta$ (assuming it is not zero) to obtain

$$
\begin{equation*}
\tan ^{2} \theta+1=\sec ^{2} \theta \tag{4}
\end{equation*}
$$

When we divide by $\sin ^{2} \theta$ (again assuming it is not zero) we get

$$
\begin{equation*}
1+\cot ^{2} \theta=\csc ^{2} \theta . \tag{5}
\end{equation*}
$$

3 Identities involving the difference of two angles

From equations (2) and (3) we can get several useful identities. First, recall that

$$
\begin{equation*}
\cos (-\theta)=\cos \theta, \quad \sin (-\theta)=-\sin \theta . \tag{6}
\end{equation*}
$$

From (2) we see that

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin (\alpha+(-\beta)) \\
& =\sin \alpha \cos (-\beta)+\cos \alpha \sin (-\beta)
\end{aligned}
$$

which, using the relationships in (6), reduces to

$$
\begin{equation*}
\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta . \tag{7}
\end{equation*}
$$

In a similar way, we can use equation (3) to find

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos (\alpha+(-\beta)) \\
& =\cos \alpha \cos (-\beta)-\sin \alpha \sin (-\beta)
\end{aligned}
$$

which simplifies to

$$
\begin{equation*}
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta . \tag{8}
\end{equation*}
$$

Notice that by remembering the identities (2) and (3) you can easily work out the signs in these last two identities.

4 Identities involving products of Sines and Cosines

If we now add equation (2) to equation (7)

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
+(\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta)
\end{aligned}
$$

we find

$$
\sin (\alpha-\beta)+\sin (\alpha+\beta)=2 \sin \alpha \cos \beta
$$

and dividing both sides by 2 we obtain the identity

$$
\begin{equation*}
\sin \alpha \cos \beta=\frac{1}{2} \sin (\alpha-\beta)+\frac{1}{2} \sin (\alpha+\beta) . \tag{9}
\end{equation*}
$$

In the same way we can add equations (3) and (8)

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
+(\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta)
\end{aligned}
$$

to get

$$
\cos (\alpha-\beta)+\cos (\alpha+\beta)=2 \cos \alpha \cos \beta
$$

which can be rearranged to yield the identity

$$
\begin{equation*}
\cos \alpha \cos \beta=\frac{1}{2} \cos (\alpha-\beta)+\frac{1}{2} \cos (\alpha+\beta) . \tag{10}
\end{equation*}
$$

Suppose we wanted an identity involving $\sin \alpha \sin \beta$. We can find one by slightly modifying the last thing we did. Rather than adding equations (3) and (8), all we need to do is subtract equation (3) from equation (8):

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
-(\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta)
\end{aligned}
$$

This gives

$$
\cos (\alpha-\beta)-\cos (\alpha+\beta)=2 \sin \alpha \sin \beta
$$

or, in the form we prefer,

$$
\begin{equation*}
\sin \alpha \sin \beta=\frac{1}{2} \cos (\alpha-\beta)-\frac{1}{2} \cos (\alpha+\beta) . \tag{11}
\end{equation*}
$$

5 Double angle identities

Now a couple of easy ones. If we let $\alpha=\beta$ in equations (2) and (3) we get the two identities

$$
\begin{align*}
\sin 2 \alpha & =2 \sin \alpha \cos \alpha \tag{12}\\
\cos 2 \alpha & =\cos ^{2} \alpha-\sin ^{2} \alpha \tag{13}
\end{align*}
$$

6 Identities for Sine squared and Cosine squared

If we have $\alpha=\beta$ in equation (10) then we find

$$
\begin{aligned}
\cos \alpha \cos \alpha & =\frac{1}{2} \cos (\alpha-\alpha)+\frac{1}{2} \cos (\alpha+\alpha) \\
\cos ^{2} \alpha & =\frac{1}{2} \cos 0+\frac{1}{2} \cos 2 \alpha .
\end{aligned}
$$

Simplifying this and doing the same with equation (11) we find the two identities

$$
\begin{align*}
\cos ^{2} \alpha & =\frac{1}{2}(1+\cos 2 \alpha) \tag{14}\\
\sin ^{2} \alpha & =\frac{1}{2}(1-\cos 2 \alpha) \tag{15}
\end{align*}
$$

7 Identities involving tangent

Finally, from equations (2) and (3) we can obtain an identity for $\tan (\alpha+\beta)$:

$$
\tan (\alpha+\beta)=\frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)}=\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta-\sin \alpha \sin \beta}
$$

Now divide numerator and denominator by $\cos \alpha \cos \beta$ to obtain the identity we wanted:

$$
\begin{equation*}
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} . \tag{16}
\end{equation*}
$$

We can get the identity for $\tan (\alpha-\beta)$ by replacing β in (16) by $-\beta$ and noting that tangent is an odd function:

$$
\begin{equation*}
\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} . \tag{17}
\end{equation*}
$$

8 Summary

There are many other identities that can be generated this way. In fact, the derivations above are not unique - many trigonometric identities can be obtained many different ways. The idea here is to be very familiar with a small number of identities so that you are comfortable manipulating and combining them to obtain whatever identity you need to.

9 Table of Identities

1. $\sin ^{2} \theta+\cos ^{2} \theta=1$
2. $\tan ^{2} \theta+1=\sec ^{2} \theta$
3. $1+\cot ^{2} \theta=\csc ^{2} \theta$
4. $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
5. $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
6. $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
7. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
8. $\sin \alpha \cos \beta=\frac{1}{2} \sin (\alpha-\beta)+\frac{1}{2} \sin (\alpha+\beta)$
9. $\cos \alpha \cos \beta=\frac{1}{2} \cos (\alpha-\beta)+\frac{1}{2} \cos (\alpha+\beta)$
10. $\sin \alpha \sin \beta=\frac{1}{2} \cos (\alpha-\beta)-\frac{1}{2} \cos (\alpha+\beta)$
11. $\sin 2 \alpha=2 \sin \alpha \cos \alpha$
12. $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$
13. $\cos ^{2} \alpha=\frac{1}{2}(1+\cos 2 \alpha)$
14. $\sin ^{2} \alpha=\frac{1}{2}(1-\cos 2 \alpha)$
15. $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
16. $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$
