
CPS352 Lecture - SQL

last revised January 12, 2023
Objectives:

1. To provide background on the SQL language
2. To review/expand upon basic SQL DML operations (select, insert, update,

delete, commit, rollback), with added coverage of subqueries, joins,
recursive queries

3. To introduce selected SQL DDL operations (create table, view)

Materials:

1. Demonstration databases: library, sample, genesis, security
2. Ability to connect to database / project operations
3. Projectable of architecture of Db2 system at Gordon
4. Db2 Manual on Canvas site
5. Birchall Book accessible from Canvas site
6. Directions for installing free personal Db2 container on own machine on web
7. Projectable of example syntax diagram from SQL Reference (connect)
8. On Canvas and projectable: Commands used to create library example

database, showing entity and referential integrity constraints. (library.sql)
9. Projectable of SQL data types - book §3.2.1, §4.5.1
10.On Canvas: SQL Syntax handout from CPS221 for review
11.For cut and paste into terminal: SQL Versions of queries used in this lecture
12.On Canvas and projectable: Handout of library creation code statements

modified to incorporate additional domain integrity constraints (libraryd.sql)
13.Intro database - creation code to project (in projectables) and executable version
14.Ability to connect to db2 as aardvark on my machine

I. Introduction

A. As you know, although there are quite a number of commercially-available
relational query language, one language has come to be especially important:
Structured Query Language. (SQL-pronounced Seequel or S Q L)

1. You worked with some basic features of SQL in CPS221.

1

2. This lecture will serve to provide a bit of background, and also to
introduce many key features of SQL that you have not seen yet.

B. SQL was originally developed for use with IBM's System R - the
earliest research implementation of the relational model. In its original
form, it was known as SEQUEL (Structured English Query Language).
Since then, it has been adopted by many commercial vendors, and has
become an ANSI standard - the only query language to be thus
standardized - and has undergone a number of revisions - each of
which is considerably more complex than its predecessor.

1. The first ANSI standard was 1986. This was revised in 1989 to
yield what is now known as SQL 89 - which many commercial
products implemented. (The SQL 89 standard is 120 pp.,)

2. The first major revision to the standard standard was SQL 92 (also
known as SQL 2). (This standard is 579 pp!) This standard
defined three levels of conformance, plus a transitional level
between entry and intermediate:

a) Entry level

b) Intermediate level

c) Full level

3. The next major revision was SQL:1999 (also known as SQL 3).

a) This standard is in multiple parts, totaling well over 1000 pages.

b) It incorporates many extensions to more easily support
multimedia and object-orientation, so we will discuss it more
fully later in the course.

c) There are those who argue that the extensions have resulted in a
model that is no longer truly relational - for example, there is a
paper I found while researching this topic on the web entitled
“Great News, The Relational Data Model is Dead!”, which is
basically about SQL 3.

2

4. The standard has since been revised in 2003, 2006, 2008, 2011 and
2016. It currently consists of 14 parts.

5. The definitive versions of the standards must be purchased from
ANSI; however, freely available draft versions of some exist. For
example, when I initially prepared this lecture, I downloaded a
draft of SQL2008 for which one part (alone) has over 1000 pages!

6. As it turns out, database software from different vendors typically
supports slightly different dialects of SQL, though the differences
are slight.

7. Actually, although SQL is based on the relational data model,
vendors of database systems based on other models have included a
facility for accessing their database using SQL.

C. SQL can be used in three ways:

1. Interactively.

2. Embedded in an application program, to allow the program to
access and or modify the database. Actually, this latter form has
two variants:

a) SQL statements may be embedded in the application program,
and processed by a suitably modified compiler or by a pre
compiler. (This is called static SQL)

b) SQL statements may be generated as character strings and
processed at run time (This is called dynamic SQL). (You have
had some exposure to this using JDBC)

3. Modules consisting of SQL statements can be stored with the tables
in the database, to be invoked under various circumstances. (The
OO idea of combining state and behavior!)

3

4. We will focus on interactive SQL for now - static SQL will come
later in the course (when you do your project)

a) Static (embedded) SQL can use any of the capabilities of
interactive SQL, plus there are some statements that are only
needed in embedded SQL. (We will use this for the programming
project in the second half of the course.)

b) We will not deal with dynamic SQL at all in this course - you
had some exposure to it by way of JDBC in CPS221.

c) We will not deal with SQL modules in this course - that's an
advanced topic beyond the scope of CPS352.

D. The version of SQL we will be studying is that implemented as part of
IBM’s Db2 product.

1. This version of SQL implements much (but not all) of the current
SQL standard. One item that is missing - which does become a
significant pain when formulating queries - is the natural join!
(But recall that the dangers resulting from adding a column to one
table that has a different meaning but the same name as a column in
the other table lead many experts to suggest not using it.) We are
using Db2 because of support for some capabilities only found in
"industrial-strength" databases and the version we have is free!

2. It is possible to install Db2 on a single computer, but more often it
is installed on multiple computers, with the databases residing on a
server computer and being accessed from client computers.

3.The following diagram shows the architecture of the way we have installed Db2
here at Gordon. The diagram uses few terms that are used in the IBM
documentation in a way that is somewhat differently from the way we used them in
our theoretical discussion - specifically, the terms “instance”, “database” and
“schema”.

4

PROJECT

5

 client (any  
system w/db2)

 client (any  
system w/db2)

4. There are three types of software installations we are using:

(1)A server version of the Db2 software is installed on our
departmental server machine - joshua. A server version can
also be installed on your own computers. This is also where
all the database data physically resides. A server version can
also do anything a client version can do

(2)In the past, we installed a client version of the Db2 software on
our 12 workstations. Client computers can access a database on
the server interactively, or can run application programs that
access a database on the server. They do not contain any of the
actual database data. They do, however, contain a catalog that
records information about databases they can connect to (in this
case, databases on joshua) but a client’s catalog could actually
contain references to databases on many different servers.)

(3)This year, we will be using a version of the Db2 software
installed on individual computers that can function as either a
server or a client. You will use it as a server for part of
homework 2, but most of our uses of it will be as a client
accessing the server on joshua.

(4)It is also possible for any system that has the Db2 JDBC
driver installed to access the database via JDBC. The JDBC
driver is written in Java, and hence runs on any system that
runs Java - it does not have to be running Db2. For a JDBC
connection, full information about the server must be
provided when the connection is made.

b) The software on the server supports any number of instances.
Each instance is a totally separate entity, and has no connection
to any other instance besides residing on the same system. For
this course, we will be using an instance called db2inst1. (This
is the default name when doing a server installation - I could
have called it “aardvark” if I had wanted to!)

6

c) Each instance contains any number of individual databases. For
example, the db2inst1 instance will contain 6 databases, including
ones you will use for some homework problems plus databases you
will use for projects. Each database has its own name in the catalog
of the instance - e.g., genesis, design, library.

d) As we will note in conjunction with the homework, each
database contains any number of individual schemas.

(1)The major objects in the database (e.g. tables, views) have a two
part name of the form SCHEMA.NAME. By default, the schema
name is the username of the person who created the object.

EXAMPLE:

If I connect to a database using the username “bjork”, and then
create a table called “foo”, the full name of the table will be
bjork.foo.

If, however, I connect to the database using the username
“aardvark”, and create a table called “foo”, the full name of the
table will be aardvark.foo.

(Note: because a dot in the middle of the name is used to separate
a schema name from a database object name, Db2 has problems
with usernames that themselves contain a ., such as our Gordon
names. For that reason, we will be using shortened names
without a . in some places)

(2)Two objects that belong to different schema may have the
same name.

EXAMPLE: I could create two different tables called “foo”
under two different schema names, as described above.

(3)When you reference objects in the database, you can always use
their full, two part name. If you only specify an object name, but
not a schema name, then a default schema name is used.

7

(a)Normally, the default schema name is the name by which
you connected to the database.

(b)However, you can use the SET SCHEMA command of
SQL to specify a different default schema, as you will do
for some of the homework.

(4)Db2 comes with an extensive set of documentation (10’s of
1000’s of pages!).

SHOW MANUALS ON Canvas SITE

(a)One thing you will find in the SQL reference manual is
complete syntax diagrams for each SQL statement.

EXAMPLE: The syntax diagram for the connect statement,
used to initially establish a connection to a database:

PROJECT

8

e) The notation used in syntax diagrams is discussed on pages 1-3
of the manual - looking this over before working through the
diagrams in the manual is a good idea!

(Note: These are the page numbers appearing on each page.
When reading the manual using a pdf reader, it will give its
notion of physical page number, based on numbering the very
first physical page in the document “1” (i.e. not recognizing the
separate numbering for the introductory material.)

f) The select statement alone is the subject of a full chapter in the
manual (chapter 6 of volume 1 - queries) which is 78 pages
long! This is because its syntax is broken into portions
(subselect, fullselect, and select statement) - some of which can
appear in other statements as well!

5. The manual set also includes documentation describing the various
error messages that Db2 can produce. However, an easier way to get
information about an error is the use the ? command interactively.

DEMO: Enter a syntactically-incorrect statement and then show
accessing error information with ?

E. Also accessible on the Canvas site is a book by Graeme Birchall called
DB2 UDB Cookbook - which is a SQL book specifically based on
version 9.7 of the Db2 implementation of SQL. You will find this very
helpful as you do homework throughout the course.

SHOW

F. You will need to install a copy of Db2 on your own personal machine
using a free community edition furnished by IBM.

SHOW WEB PAGE

9

G. In addition to Db2, we also have an open-source product known as
mysql available. The latter is, in some respects, nicer to use than Db2:
it has a nicer interactive interface, and its syntax includes an explicit
natural join operator. However, because it does not support all the
features we need, we will not be using it extensively in this course.

H. Now we're ready to begin discussing the language. SQL is both a data
definition language (DDL) and a data manipulation language (DML). We
will classify statements this way, but the language itself does not draw a
distinction between the two types of statement in terms of how they are
used. DDL and DML statements can be freely intermixed with one another.

II. Basic DDL Statements

A. The set of DDL statements available in SQL is rich, and we will only
introduce them briefly here. Three that are commonly used are:

create ... - to create a new object (e.g. a schema, table, or
 view - among others.)

alter ... - to modify an existing object (e.g. a table or view)

drop ... - to delete an existing object (e.g. a table or view)

(Note the difference between these and insert, update, and delete.
These affect the structure of the tables of the database, while the
statements we looked at earlier affect the data actually stored in a table
- eg. contrast delete from sometable - which deletes all the rows from a
table (leaving behind an empty table), and drop sometable - which
drops the entire table (including its data but also its scheme)

B. For now, the only statement we will talk about is create table.  

On Canvas (and project) Creation code for library database that will be
used in examples) - Go over code.

1. Note specification of primary key and foreign key constraints - we
will discuss these and other constraints more shortly.

10

2. Each column in the table must have an appropriate data type. Sections
3.2.1 and 4.5.1 of the text list some of the more important data types
available (not an exhaustive set).

PROJECT

Note the syntax for specifying dates, times, and datetimes when
inserting or comparing values. Note, too, that the syntax used for
input is not he same as the way SQL displays the values by default!

3. Creation of views and granting of access will be covered in a later
lecture - just briefly walk through.

C. We will not discuss the syntax of alter or drop now. They are
documented in the SQL Reference Manual.

III.Basic DML Operations for Querying the Database

A. Probably the most fundamental DML concept in SQL is that of a query.

1. The most frequently used SQL statement is the SELECT statement:
a statement intended to get information out of the database. A
SELECT statement is basically a query, possibly with some
additional components.

2. Queries can also be embedded in certain other statements, as we shall see.

3. You were introduced to queries in CPS221, and will get lots of practice
with various sorts of queries in the homework, and both the text and
Birchall books cover them extensively; therefore, I will not spend
extensive time on them here.

On Canvas - SQL Syntax handout from CPS221 - Review

PROJECT/DEMO: SQL versions of RA Queries discussed in RA lecture
(be sure to set schema library) HAVE CLASS DO FIRST 5; note that #5
can use distinct to get a person only once. Start Db2 with -t +c - use
schema library with library.

11

4. However, I do want to spend some time on three feature that are
powerful, but potentially tricky.

B. Various kinds of Products (Joins)

In our study of relational algebra, we learned about a variety of product
(join) operations. In SQL, these are represented in the FROM clause

1. The full cartesian product

a) Represented by X in relational algebra - e.g.

A X B

means each row of A is paired with each row of B

b) In SQL, the Cartesian product is formed by listing tables in the
from clause, separated by commas - e.g.

SELECT * FROM A, B

is the SQL equivalent

2. The equijoin / theta join

a) Represented in RA by |Χ|θ - e.g.

A |Χ|θ B  
 condition

b) In SQL, the join is specified by writing JOIN .. ON  
 
SELECT * FROM A JOIN B ON condition

is the SQL equivalent

c) Note that the same result can be produced by doing a cartesian
product and then selecting only the desired rows using WHERE.
However, using JOIN .. ON is preferable, because the rows of
the cartesian product that are not needed are rejected before they
become part of a large temporary table.

12

3. The natural join

a) Represented in RA by |X| - e.g.

A |X| B

means each row of A is paired with those rows of B which have the
same values for all the columns they have in common based on
column names, and the common value appears just once in the result.

b) Many SQL dialects (but not Db2) use a form like this

SELECT * FROM A NATURAL JOIN B

c) The same effect can be achieved by using JOIN .. ON if the SQL
dialect in use doesn't support natural join - and actually is safer in any
case to avoid problems resulting from a column being added to one
table with the same name as a column in the other table - which
natural join would enforce equality on.

4. The outer join - which comes in three varieties (left, right, and full), and
which can be used with any kind of equijoin, including natural join.

a) Written as ⊐Χ|θ,, |Χθ⊏, ⊐Χθ⊏ or ⊐Χ|, |Χ⊏, ⊐Χ⊏

b) Specified in SQL by adding the words LEFT OUTER (or just
LEFT), RIGHT OUTER (or just RIGHT), or FULL OUTER (or just
FULL), to the appropriate SQL syntax.

PROJECT/DEMO: RA LECTURE QUERIES #6, 7

The relational algebra expression

A ⊐Χ|θ B  
 condition

is written

SELECT * FROM A LEFT OUTER JOIN B ON condition

in SQL

13

c) The form without OUTER is called an inner join, and SQL
actually allows the use of the keyword INNER, but this is rarely
seen.

C. Subqueries

1. One important capability of SQL is the possibility of embedding a
query as a subquery of another query.

2. Consider the following: “List the names and salaries of all
employees earning more than the average salary for all employees”

a) One way to do this would be to issue a select to get the average,
and then issue a second select to get the individuals.

b) SQL allows this to be done in one query by using a subquery

select last_name, first_name, salary  
from employee  
where salary >  

(select avg(salary) from employee);  

Note that this could also be formulated in relational algebra,
though it would be a bit messy!

c) PROJECT/DEMO RA QUERIES #8

3. It is also possible to use a subquery whose result is a set, rather than
a single value.

EXAMPLE: “List the names of all borrowers whose last name is the
same as that of the author of a book”

select last_name  
from borrower  
where last_name in (select author from book);

14

a) The subquery (select author from book) forms a set - a list of all
the authors.

b) The “in” predicate occurring in the where clause then checks to
see if the borrower’s last name is in this set.

c) This one would be hard to formulate in relational algebra. (You
could do so using a theta join - but that’s really a rather
inefficient way to actually go at computing it.)

d) Cut and paste version - connect to library

4. We can also use quantified predicates with sets created by a
subquery. “Print the name and salary of any employee earning
more than all the employees in department E11” (Using employee
in sample - connect as db2inst1)

select firstnme, midinit, lastname, salary  

from employee  
where salary > all  

(select salary from employee  
where workdept = 'E11');

Cut and paste version - connect to sample/set schema db2inst1

5. “Print the name and salary of any employee earning more than
some employee in department A00”

select firstnme, midinit, lastname, salary  

from employee  
where salary > any  

(select salary from employee  
where workdept = 'A00');

Cut and paste version

D. Union, Intersection, Difference

PROJECT/DEMO RA QUERIES 11-13 - metion UNION ALL w/#1

15

E. Use of functions/computations in select clause; group by/having

PROJECT/DEMO RA QUERIES 14-17

F. Recursive Queries

1. An interesting kind of problem arises when it is necessary to
perform a recursive query in SQL.

a) For example, suppose we had a table listing a person's name and
the name of his/her parent.

person(name, parent)  
 
For simplicity we will use just first names, and each row will
record just one parent (so a given person might appear in the
table twice - one row for each parent).

DEMO: Connect to genesis database as russell.bjork- and list
contents of person table. (Schema is russell.bjork)  

(1)It is easy to print the names of all the children of a given
parent:

select name  
 from person  
 where parent = ____

PROJECT AND DEMO cut and paste version

(2)A more complicated case arises if we want all of a given parent's
grandchildren. In this case, we need to join the table with itself,
and make use of the rename operation:

select p.name  
from person p join person q  
 on p.parent = q.name  
where q.parent = ___  

PROJECT AND DEMO cut and paste version

16

(3)We could, of course, use a similar approach to list someone's great-
grandchildren (in which case the table is joined with itself twice)

b) Now consider the following more challenging problem: print
the names of all of a given person’s descendants, regardless of
how many generations are involved. This is, of course, a
recursive query, based on the following recursive definition.

A is a descendant of B if B is A's parent, or A's parent is a
descendant of B

2. At one point, it was impossible to formulate a query like this in
SQL, because SQL does not provide for recursion. (Instead, one
would need to embed a SQL query in a host language that did
support recursion, or use some other query language like Datalog).

3. Current versions of SQL provide for handling case like this by
using a union between a base table and a recursive table to create a
temporary table using a with clause.

For example, here is a SQL formulation of this query

with descendant(name) as  
 (select name  

from person  
where parent = _____  

 union all  
select person.name  

from person, descendant  
where person.parent = descendant.name  

)  
select *  

from descendant;  
 
PROJECT cut and paste version, but don't execute yet.  

Two things are going on here

17

a) The with clause is used to create a temporary table. A temporary
table is one that exists just for the duration of the query. Thus, in
the with clause, we have to specify the table's name, its scheme, and
an “as” clause that defines its content. (In this case, it is a table
containing all the descendants of a given person, and has just a
single column, though it could have multiple columns if needed). A
“select *” is used to print this table out.

b) The content of the table is defined by using a “union all”
between the base case and the recursive case of the definition

c) Use of join .. on is not allowed in a definition like this-
since it references a table defined by a union - hence the use of
where is required here.

d) Demonstration: Execute version projected

IV.DML Statements for Modifying the Database

A. In CPS221, we looked at a few DML statements for modifying the database.
We will review them here - also looking at an additional variant of insert we
didn't discuss then plus two new statements: commit and rollback.

B. Start up Db2 with the +c option before doing any of the following (will
explain why later) Connect to library as db2inst1 and set schema library

C. INSERT - Three forms

1. Simplest form: insert explicit values into all columns

insert into borrower values ('98765','raccoon', 'ralph');  

select * from borrower;  

(Note that values are matched with columns positionally - first value goes
with first column etc.)

PROJECT AND DEMO cut and paste version

18

2. It is possible to explicitly specify column names if one is unsure of
actual order of columns

insert into borrower (first_name,last_name, borrower_id)  
values ('ursula', 'unicorn', '87654');  

select * from borrower;  

PROJECT AND DEMO cut and paste version 
 

This form of insert can also be used if one does not have values for all
the columns (and the column allows null values)

insert into book (call_number, title)  
values ('ABC', 'Author is unknown');  

 
PROJECT AND DEMO cut and paste version 

This fails because first_name was declared not null

insert into borrower (last_name, borrower_id)  
values ('xerus', '55555');  

 
PROJECT AND DEMO cut and paste version

3. Finally, it is possible to embed a select into an insert to copy information.

Example: suppose we want to make all of our employees eligible to be
borrowers if they are not currently such

insert into borrower  
select right(ssn, 4), last_name, first_name  

from employee  
where not (last_name, first_name) in  
 (select last_name, first_name from borrower);

PROJECT AND DEMO cut and paste version 
 
(Note: this is a pretty poor way to generate borrower id's - but it
illustrates the point!)

19

D. UPDATE

1. General form: update table set (column = value) where condition

2. Example: Give all employees supervised by aardvark a 10% raise:

select * from employee;

update employee  
set salary = salary * 1.1  
where supervisor_ssn =  

(select ssn  
from employee  
where last_name = 'aardvark');

select * from employee;  
 
PROJECT AND DEMO cut and paste version

E. DELETE

1. General form: delete from table where condition

2. Example:

Delete the borrower entry for raccoon:

delete from borrower where last_name = 'raccoon';

select * from borrower;  
 
PROJECT AND DEMO cut and paste version

3. What would happen if we did a delete without specifying a
condition? (no where clause)

ASK

delete from employee;

select * from employee;

20

F. COMMIT and ROLLBACK

1. It appears that - at this point - we have mangled the database. But
we really haven't.

Issue the following commands:

rollback;

select * from employee;  
select * from borrower;

2. As we noted at the start of the course, a very important concept in
SQL is the notion of a TRANSACTION

a) We will discuss this concept more later in the course. For now,
we will think of a transaction as a unit of work such that either
all the operations in it must succeed or all must fail.

b) A transaction is normally terminated by entering one of the
following statements:

commit  
or
rollback

c) The former causes all changes to the database made during the
transaction to become permanent; the latter undoes all of them.

(Note: until a transaction is committed or rolled back, its effects
will NOT be visible to other users of the database)

d) The system starts an initial transaction when the connection to
the database is first made; and starts a new transaction when
one is either committed or rolled back. If execution terminates
for any reason (user specified or crash) with some transaction
still in process, it is automatically rolled back.

DEMO:

21

Terminate session
Start new session (with +c flag)
Insert a new row into borrowers
Show it's there with select *
Terminate session without committing
Start a new session
Do select * to show it's no longer there

e) Suppose someone does two hours’ worth of data, then
terminates their session without committing. What happens?

ASK

Because this is generally not a good thing, most interactive
command processors include an automatic commit mode, in
which each command typed by the user is automatically
committed - which is generally appropriate for interactive input.

In Db2 SQL, this is the default mode of operation for the
command line processor. For the last couple of demonstrations,
I had to disable it. That's what the +c on the command line did:

db2 - start Db2 with automatic commit enable
db2 +c - start Db2 with automatic commit disabled

V. Integrity Constraints

A. When designing a database, it is possible to specify various
CONSTRAINTS that data in the database must satisfy. As we shall
see, SQL provides a number of mechanisms that allow these
constraints to be incorporated in the system's metadata so that they can
be enforced by the DBMS. We will look at them in the following
order, which is slightly different from that in the book:

1. Entity integrity `s

2. Referential integrity constraints

22

3. Domain integrity constraints

4. Use of assertions and triggers to specify more general constraints.

B. Most of these are specified as part of the statement that creates a table,
as we shall see.

C. Recall that an entity is a member of an entity SET, and therefore must
be unique among all the elements of that set. This translates into the
notion of a "key" that we discussed earlier. ENTITY INTEGRITY
constraints are concerned with ensuring that each row in a table is
distinct from all other rows in the same table in the necessary way(s).

1. The process of designing a relational database should result in
each table having a primary key. This should be incorporated into
the declaration for the table by means of a PRIMARY KEY
constraint. This has the following characteristics:

a) No two rows in the table will be allowed to have the same
value(s) in the specified column(s).

b) If the primary key is a single column, the constraint can be
specified as part of the declaration of the column.

Example: the various tables in the handout.

c) If the primary key is composite (consists of more than one
column, then the constraint must be expressed as a table
constraint.

Example: Suppose (as is more often the case) that books have
both a call number and a copy number, and the two columns
together constitute the primary key. Then we could define the
book table as follows:

create table book ( 
call_number call_number_type not null,  
copy_number smallint not null,  

23

title char(30) not null,  
author char(20),  
primary key (call_number, copy_number)  
)  

PROJECT BUT DO NOT EXECUT E cut and paste version

(Note the presence of the comma after the declaration of
the author attribute, which signals that either a new
 column or a table constraint is coming. In the absence of
the comma, the primary key constraint would be taken as
applying to the author column - but would be syntactically
invalid since columns are named explicitly.)

d) A given table can only have one primary key, of course.

2. A Related sort of constraint is the UNIQUE constraint.

a) Like the PRIMARY KEY constraint, the UNIQUE constraint
specifies that the same value or values cannot appear in two
different rows in the table in a particular column or set of
columns.

b) Like the PRIMARY KEY constraint, the UNIQUE constraint
can appear either as a column constraint or a table constraint -
and in the latter case can specify any number of columns to be
treated as a unit.

Example: In defining the borrower and employer tables, I chose
to require that each borrower have a unique name, and likewise
each employee. That may not be a good idea in general - but in
a small library with only 4 borrowers it works! (Actually, I
what I wanted to do is to illustrate the constraint!)

PROJECT BUT DON'T RE-EXECUTE cut and paste version
of borrower and employee creation code

24

Note: It is a peculiarity of this example that the primary key
constraints all apply to only single columns, and so can be
expressed as column constraints, while the unique constraints
happen to have to be table constraints. This is not generally the
case, of course.

c) Unlike the PRIMARY KEY constraint, a table can have any
number of UNIQUE constraints defined for it.

d) The UNIQUE constraint is typically applied to any candidate
key(s) not chosen as the primary key.

D. Thus far, the constraints we have described all pertain to data within a
single table, and can be enforced by looking at that table alone. The
next sort of constraint we need to consider pertains to REFERENTIAL
INTEGRITY.

1. It is frequently the case that the logic of a system demands that an entry
cannot logically occur in one table without a related entry occurring in
another table:

Example: A checked_out row for a book should not occur unless
corresponding entries exist in the book table and the borrower table.

2. The requirement that a matching row occur in another table for
each value occurring in a certain column (or set of c

3. Referential integrity constraints are expressed in SQL by using a
FOREIGN KEY constraint, which is specified by the use of the
reserved words FOREIGN KEY and/or REFERENCES.

a) Again, can be either a column constraint or a table constraint.

(1)If the former, a references clause is used as part of the
column definition, and applies to that column only.

25

(2)If the latter, FOREIGN KEY is separated off by commas
from other column definitions, and is followed by a
parenthesized list of the columns constrained.

b) A foreign key constraint always has a references clause.

(1)May be just the name of another table - in which case the
value in the column(s) being constrained must occur in the
primary key column(s) of the referenced table.

(2)May explicitly list the column(s) in the referenced table where
the value is to be found - necessary if the foreign key is not the
primary key of the referenced table. (Columns can be explicitly
listed even if they are the primary key - no harm done.)

(3)If the foreign key constraint is expressible as a column
constraint, the word references is all that is needed.

c) Examples:

(1)Note references clauses in checked_out and reserve_book in
the projected example.

(2)Suppose we stored both a call number and a copy number for
a book, and, as a result, it had a composite primary key -
declared as in an example above. Then our declaration for
checked_out would have to look like:

create table checked_out ( 

borrower_id char(5) not null  
references borrower,  

call_number char(10) not null,  
copy_number smallint not null,  
date_due date,  
foreign key (call_number, copy_number)  

references book  
)  

26

 
PROJECT BUT DO NOT DEMO cut and paste version

(3)Suppose we want to require that no one can be added to the
employee table unless already in the borrower table (perhaps
because employees automatically have borrower privileges). Since
last_name, first_name is NOT the primary key of borrower, this
would have to be written as follows:

create table employee ( 

ssn char(11) not null primary key,  
last_name char(20) not null,  
first_name char(20) not null,  
salary integer,  
supervisor_ssn char(11),  
foreign key (last_name, first_name)  
 references borrower(last_name, first_name)  

)  
 
PROJECT BUT DO NOT DEMO cut and paste version 
 
(The fact that the columns happen to have the same names
in both tables is not essential. Moreover, the order of
the columns is important. If the references clause
were written (first_name, last_name), then we could only
add Emily Elephant as an employee if Elephant Emily were
a borrower!)

4. Support for referential integrity adds to new issues that need to be
addressed.

a) Note that changing that data in a REFERENCED table may
cause an error because of a constraint in a REFERRING table.

Example: checked_out has a foreign key constraint that
references the borrower_id column of borrower. Thus, a change
to borrower could cause a violation of a constraint for an
existing row in checked_out

27

(1)To cope with this possibility, the DBMS keeps a record of
which columns are referenced by constraints in other tables,
and checks updates of such a column (as well as deletions of
an entire row) in the referenced table to be sure doing so does
not cause a constraint violation in the referring table.

(2)Sometimes, it makes sense to allow a change in the referenced
table and handle the potential constraint violation by also
changing the referring table.

Example: Suppose we have a weak entity like fine. The
definition for a fine table might look like this:

create table fine ( 

borrower_id char(10) references borrower,  
 ...

PROJECT BUT DO NOT DEMO cut and paste version

As it stands, we cannot delete a borrower who has unpaid fines.

However, it might make sense to provide that if a borrower is
deleted from the borrower table, then any fine(s) that the
borrower owes are also automatically deleted.

In this case, the foreign key constraint in the fine table could
have a CASCADE clause:

create table fine ( 

borrower_id char(10) references borrower  
on delete cascade,  

 ...

PROJECT BUT DO NOT DEMO cut and paste version

which specifies that if a row is deleted from the borrower table,
then any rows referencing that row in the fine table are also to
be deleted.

28

(3)The book discusses the possibility of a similar option for
update, where the values in the referencing table are
automatically updated to reflect changes to the referenced
table. Db2 does not support this, however.

E. Domain Integrity Constraints constrain the values that can be stored in
a particular column of a table. These are called domain integrity
constraints because they constrain the domain of values from which a
given attribute can be drawn.

1. The SQL standard incorporates a number of facilities for doing so
that we will consider. In SQL, these are enforced whenever a new
row is inserted into a table, or an existing row is updated. Some of
these constraints are specified in the CREATE TABLE statement
that creates a given table; others are specified by explicitly creating
new domains.

2. The most commonly-used domain integrity constraint is the NOT
NULL constraint, which prohibits storing a null value into a given
column.

A not null constraint is specified as part of the declaration of a
column.

Example: Library creation code: note columns that are and are not
declared not null and discuss reasoning for each

Note: Any attribute that is part of a primary key or is declared to be
a candidate key MUST be declared not null - otherwise the primary
key / unique constraint is rejected by the DBMS.

3. As discussed in the book, the SQL standard also has a CREATE
DOMAIN statement that allows the user to create a named domain
which can then be used to declare columns in tables. While Db2
does not support this, it does have a similar facility called CREATE
DISTINCT TYPE.

29

a) Example:

On canvas/project - library database creation modified to use
named domains

b) An advantage of using this mechanism is that data types are
defined in terms of their SEMANTICS (meaning) - not just their
physical representation.

Example: Both a telephone number (without area code) and an
old-style Gordon student id are 7-digit numbers - however, it
wouldn't make sense to formulate a join like

student join borrower on student.id =
borrower.phone!

(1)For this reason, a distinct domain (type) is not compatible
with a different domain - even if they have the same internal
representation (e.g. INTEGER or CHAR(x))

(2)It is possible to explicitly cast a value from one type to
another.

(a)The book discusses the SQL standard syntax for type casting

(b) Db2 has a cast syntax that is slightly different - but the
idea is the same.

(3)A downside of this is additional cumbersomeness when
using constants. For this reason, Db2 supports using
WITH WEAK TYPE RULES when creating a domain - as was
done in the example.

c) This type of constraint differs from all the others we will
discuss in that it can be checked as a matter of the SYNTAX of
a query - thus, if we are using static SQL, it can be checked at
compile time.

30

4. The standard SQL data types, because they are based on physical
representations for data, sometimes do not adequately restrict the
values that can appear in a given column.

a) Examples:

(1)A letter grade in a course could be stored in a field declared
CHAR(2). In fact, though, only a very small number of one
or two character strings are valid grades.

(2)The first character in a call number has to be a letter.

b) To deal with situations like this, it is possible to specify a CHECK
clause that tests a value about to be stored into a field. A check clause
can be specified as part of a table definition. (It can also be specified
in a domain declaration, which is the preferred place since it then
applies to every column defined in terms of that domain)

(1)Example: (Assume student_id_type and course_id_type already
defined)

create table enrolled_in ( 
student_id student_id_type,  
course_id course_id_type,  
grade char(2) check  

(grade is null or  
 grade in ('A', 'A-', 'B+', 'B', 'B-',  

'C+', 'C', 'C-', 'D+', 'D', 'D-',  
'F'))  

)  
 

PROJECT BUT DO NOT DEMO cut and paste version

(2)Example: Definition of book in library creation code

Note would need to convert call_number from a user-defined
domain to an ordinary string using a cast before applying left
if it were not for the use of weak type rules.

31

c) When a table definition includes a check constraint, any data
being stored into the column(s) in question is checked to be sure
it satisfies the constraint whenever an insert or update is done.

F. An additional features applies to most of the types of constraints we
have discussed thus far: A constraint may be given a name by
preceding the constraint specification with CONSTRAINT constraint-
name

example - the last example above

... constraint employee_borrower  

foreign key (last_name, first_name)  
references borrower(last_name, first_name)  

 
PROJECT BUT DO NOT DEMO cut and paste version

1. The constraint name is included by SQL in any error message
reporting that the constraint has been violated. This is especially
useful when using embedded SQL, since a program can now
determine which constraint was violated when an operation fails.

2. If you don't specify a name for a constraint, SQL creates a default
name.

G. To specify more complex integrity rules, it is possible to store general
ASSERTIONS in the database - representing invariants that are to be
enforced whenever data in the database is modified.

1. The book gives an example of an assertion.

2. Db2 and most other implementations do not support assertions, so
we won't discuss this further.

32

H. In the period between SQL92 and SQL99, many SQL implementations
added "triggers" - procedures to be executed whenever a specific event
occurs. Although these were included in the SQL99 standard, many
DBMS's use a syntax that is somewhat different from the standard
because the implementation added the facility before the standard was
written.

1. A trigger is a statement that the DBMS is to execute whenever a
certain kind of modification to the database occurs.

2. The book noted some examples. Here's another one:

Faculty at Gordon are allowed to request that books be ordered for the
library. When the book comes in, the requesting faculty member might
be notified. (This is not the way this is currently done at Gordon ...) This
could be handled by a trigger on the book table, which adds a row to a
table listing people to be notified - e.g.

create trigger book_arrived after insert on book  

-- appropriate action  
- syntax implementation-specific  

 
PROJECT BUT DO NOT DEMO cut and paste version

3. Key features of a trigger definition:

a) A trigger name - because a trigger is an object in the database
that can be subsequently altered or dropped.

b) One of the words "before" or "after" to specify whether the
triggered action is done before or after the operation in question.
(The "before" option allows a trigger to prevent an action from
occurring if it fails.)

c) A clause specifying the table whose modification will cause the
triggered action to occur - one of "insert on xxx", "update on
xxx", or "delete on xxx".

33

I. Some concepts we will consider later in the course are also closely
related to the idea of data integrity.

1. The concept of an ATOMIC TRANSACTION is really an integrity
concept. A properly-coded transaction preserves the integrity of the
data by ensuring that data that is consistent before the transaction
starts does not become inconsistent as a result of the transaction.

2. Crash control measures that we will explore later help to ensure
that data integrity is not damaged due to hardware or software
failure.

3. Concurrency control measures that we will explore later help to to
protect the integrity of the data against anomalies arising from
simultaneous updates.

J. To summarize this section:

1. Data integrity is concerned with ensuring the ACCURACY of the
data. In particular, the concern is with protecting the data from
ACCIDENTAL inaccuracy, due to causes like:

a) Data entry errors

b) System crashes

c) Anomalies due to concurrent and/or distributed processing

2. SQL incorporates a number of mechanisms to permit the DBMS to
help preserve data integrity:

a) Facilities to help preserve entity integrity:

(1)Primary key constraints

34

(2)Unique constraints

b) Facilities to help preserve referential integrity: foreign key
constraints

c) Facilities to help preserve domain integrity:

(1)Not null constraints

(2)User-defined domains

(3)Check constraints

d) Facilities to enforce more complex requirements:

(1)Assertions

(2)Triggers

e) I would argue that, as a matter of good design practice, EVERY
DATABASE DESIGN should incorporate appropriate entity
integrity, and referential integrity constraints - which also
implies the need to use the not null domain integrity constraints.
Other constraints are perhaps less critical in databases where a
high degree of support for maintaining data integrity is not
essential - but become important in "industrial strength"
applications.

(Of course, the design project you are doing will make excellent
use of facilities to ensure integrity!)

35

VI.Views

A. One important facility provided by relational DBMS systems is the
notion of a VIEW.

1. A view is created by a statement of the form:

create view viewname as query

(where the query is typically a SELECT statement.)

PROJECT BUT DO NOT DEMO examples in database creation
code posted for Intro lectures

2. A view can be used just like a table in queries - but instead of the data
being stored as a table, it is created "on the fly" when the query is run

B. One use for a view is to provide simple access to the results of a
complex query.

1. Example: in our library schema, we might want to make it easy to
produce a report listing the titles of all books checked out. This could
be done by

create view books_out as  
select title from book join checked_out on  

book.call_number = checked_out.call_number  
 
A desk attendant could see a list of books checked out by doing the
simple query select * from books_out, instead the more complex
query used in defining it.

PROJECT cut and paste version

DEMO (with AUTOCOMMIT DISABLED)

a) Create the view called books_out that lists the titles of all books
that are checked out - as above

b) Do select * from it.

36

c) Note that creating a view does not store new data in the
database. Rather, a reference to the view is handled by
"running" the defining query. Any changes in the underlying
tables will therefore be reflected automatically the next time the
view is accessed.

DEMO: drop a checkout, then repeat select * from view.

2. Note that the action of altering the database scheme with a DDL
statement like create view is also under transaction control!

DEMO: rollback and the attempt a select * from the view.

C. Views can be used to give selective access for inserting, deleting, or
updating data as well as reading data.

1. That is, an insert, update, or delete operation can be performed on
a view, and will result in changes to the underlying table - provided
the person doing the operation is authorized to perform the
operation on the view, and the creator of the view is authorized to
perform the operation on the base table(s).

2. Modifying the database through views does, however, present
some interesting problems:

a) If a new row is inserted into a view, what happens to columns
that are not part of the view?

Answer: they are given the value NULL - which may not be
desirable. (And the operation will fail totally if any of these
columns is declared NOT NULL.)

b) There is the problem of DISAPPEARING ROWS. What if a
user inserts or updates a row through a view in such a way that
the row doesn't (or no longer) satisfies the conditions for being
included in the view?

37

Answer: the row is still in the table, but the one who put it there
can't see it!

To prevent this, it is possible to specify WITH CHECK OPTION
when defining a view that is intended to be modifiable. In this
case, any row that is created or changed as a result of an insert
or update is checked to ensure that it still satisfies the view
conditions; if it does not, the operation is not allowed.

c) If the view involves a join or union, inserting into or deleting
from or even updating the view becomes problematical.

(1)What if we insert into a view involving a join? Do we add
rows to both tables? What if one table has a row that could
participate but the other does not?

(2)What if we insert a row into a view involving a union? Into
which table does it go?

(3)What if we delete a row from a view involving a join? Do
we delete the corresponding rows from both tables? Or just
one? Which one?

(4)What if we update a column that is the basis of a join
between tables? Which table do we change?

(5) Issues like these lead to most DBMS implementations either
severely restricting or forbidding insertions, deletion, and even
updating a view involving a join or union.

For example, Db2 defines the notion of an "insertable view", a
"deletable view" and an "updatable view", with precise conditions
the view must satisfy in order to allow these operations. (See the
manual for the details, which get quite technical!)

38

VII.SQL Security Facilities

A. Persons responsible for databases needed to be concerned with
preserving both the integrity and security of the data.

1. As we have seen, data integrity is concerned with ensuring the
ACCURACY of the data. In particular, the concern is with
protecting the data from ACCIDENTAL inaccuracy.

2. Data security, on the other hand, is concerned with ensuring only
AUTHORIZED ACCESS to the data. In particular, we don't want
unauthorized persons to be able to read sensitive data, and we don't
want malicious persons to be able to damage the data by unauthorized
insertions, deletions, or updates. In particular, the concern is with
protecting the data from DELIBERATE improper access or alteration..

B. System security is. of course, a HUGE topic - one that could easily be
the subject of multiple courses at the undergraduate or graduate level,
as well as being an ongoing focus of reserarch. Here, though, we
want to limit our consideration to SQL facilities that allow controlling
access to the content of the database.

1. We assume, as a starting point that the DBMS is running in an
environment and under an operating system that provides a basic
foundation for security, including:

a) Appropriate physical security

b) Trustworthy system administrators and users (human security)

c) User authentication (minimally login passwords - but may be
more than this)

d) Protection for files (operating system security)

e) Network security

39

2. The DBMS builds on this by allowing access to information in a
single file (or collection of files) - the database - based on user
identity - i.e. making it possible to limit a given user to accessing a
subset of the entire database. (A finer-grained level of access
control than the all-or-nothing sort of file access typically provided
by an operating system.)

3. We assume that the rest of the system has ensured that the database
can only be accessed through the DBMS, and that a person who
accesses the database is who he/she claims to be. (These are far
from trivial considerations - especially in a networked environment -
but they are the focus of other courses.) For this course, we focus on
SQL mechanisms that allow the DBA to control what a person may
do with the data, once properly authenticated.

C. There are three key concepts involved in understanding the security
mechanisms of SQL. (We will use the terminology used in IBM's Db2
documentation - other systems may use slightly different names for the
same concepts.)

1. "An authorization ID is a character string that is obtained by the
database manager when a connection is established between the
database manager and ... a process." (SQL Reference Manual Vol I
page 67 - note that "database manager" here means the DBMS - not
a human manager!)

a) Db2 recognizes both individual authorization IDs and group
authorization IDs. (A given individual may belong to one or
more groups.) An authority may be granted to an individual, or
to a group; an individual has an authority if granted to him/her
or to a group to which he/she belongs.

b) On our systems, Db2 uses the login mechanism of Linux - thus
an authorization ID is typically a Linux user name or group
name, and the user authenticates himself/herself through
knowing the associated Linux password.

40

(1)Note that this is done on the SERVER - and so uses the user
names and passwords on the server.

(2)It is also possible to set up a database in which authentication
is done on the CLIENT (using its password database). This
means that the server trusts the client's claim that a certain user
is who the client says he/she is - which avoids the need for the
user to have an account on the server, but creates a new
possibility for penetration of the system.

c) It is also possible, in principle, for a DBMS to have its own
authentication mechanism with authorization id's that are
specific to the DBMS. (For example, mySQL uses this
approach). We will not pursue this further.

2. An object is a protectable entity, such as

a) The database instance (Db2 meaning of this term)

b) A specific database

c) A schema within a database

d) A table or view within a schema

e) A specific column within a table or view

f) These objects form a hierarchy - i.e. to access a table, a user
must first have rights to access the database in which it is
contained.

3. An authority (also called privilege) is the right to perform a certain
operation on an object. There are different kinds of authorities that
apply to objects at different levels.

(Note: The Db2 documentation calls these authorities, but the SQL
standard uses the term privileges. I'll use the SQL standard term)

41

D. SQL privileges for various kinds of objects.

1. The privilege names are standard SQL names - not specific to Db2

2. We will not attempt to exhaustively cover all privileges - just
selected important ones. In particular, we will only consider
privileges related to the logical and view level of database access.
There are a number of privileges that pertain to physical level
operations (allocation of space, creation of indices etc) that we will
not discuss now - but may refer to later.

3. Privileges that apply to the entire instance

a) SYSADM - the System Administrator Privilege. This is the
highest level of authority.

(1)One place where this privilege is needed is to actually create
or drop individual databases within an instance.

(2)In Db2, SYSADM authority is granted to any user who is
logged in to the Linux account that actually owns the
database instance (e.g. db2inst1 in our case.) This is often
different from the root account for administering Linux
itself..

(3)A person with SYSADM privilege implicitly has all
privileges with regard to all objects except those specifically
related to system security, for which SECADM is needed.
(So in this regard it is much like root on Unix, but only for
the database).

b) SYSCTRL - the authority to manage system resources such as
disk space. This privilege is like SYSADM in some ways,
except that it does not include any authority to actually see or
alter data - only space.

42

c) SYSMAINT - the authority to perform maintenance tasks such
as backup. It does not include any authority to actually see or
alter data.

4. Privileges that apply to a specific database

a) DBADM - adminstrative privileges within a particular database
- similar to SYSADM, but only with regard to a specific
database.

b) CONNECT - the privilege to connect to the database.
(Obviously, no other access to the database is possible without
this.)

c) IMPLICIT_SCHEMA - the ability to create an implicit schema
within the database (with the same name as the authorization id
of the user creating it.) Only the database administrator can
create a schema with any other name.

d) CREATETAB - the privilege to create tables within the
database.

5. Privileges that apply to a schema within a database

a) CREATEIN - the privilege to create objects within the schema.
CREATETAB on the database is also needed to create tables.)

b) ALTERIN - the privilege to alter objects within the schema

c) DROPIN - the privilege to drop objects within the schema

6. Privileges that apply to a specific table or view

a) SELECT - the privilege to see the content of a table or view (by
using a select statement), and to create views based on a table.

43

b) INSERT - the privilege to insert rows in a table (by using an
insert statement on the table or an insertable view on the table)

c) UPDATE - the privilege to update rows in a table (by using an
update statement on the table or an updatable view on the table)

d) DELETE - the privilege to delete rows from a table (by using a
delete statement on the table or a deletable view on the table)

e) ALTER - the privilege to add columns to a table or to add or
drop constraints on a table.

f) REFERENCES - the privilege to create a table that includes a
references constraint that refers to this table. (This is needed because
otherwise someone could prevent a deletion of a row from the table
by creating another table with a foreign key constraint and storing a
value into a row that prevents deletion of the matching row from the
table he is trying to interfere with.)

g) CONTROL - we will discuss this shortly

7. Privileges that apply to a specific column within a table or view.

a) The UPDATE privilege may be granted only on specific
columns within a table, rather than on the entire table.

b) The REFERENCES privilege may be granted only on specific
columns within a table, rather than on the entire table.

c) There is no form of the SELECT privilege that allows seeing
only specific columns within a table - this is not needed, because
a view can be used for this purpose. (We will discuss views
shortly)

d) There is obviously no column-specific form of INSERT or
DELETE, since these operations inevitably affect an entire row.

44

8. Note that there are no privileges that apply to a specific row within
a table - such privileges can be achieved through views.

E. Granting of privileges

1. For each object, the DBMS maintains a record of what privileges
are granted to specific authorization id's. With the exception of
SYSADM (which is determined by one's login), these privileges
are stored in the system catalog.

2. For each object, the DBMS also maintains a record of who created
the object, who is therefore the owner of the object and receives all
appropriate privileges relative to that object.

Example: To create a table, once must have the CREATETAB
privilege within the database and the CREATEIN privilege within
the schema. Once one creates a table, he/she automatically has
SELECT, INSERT, UPDATE, DELETE, ALTER, CONTROL (and
several other privileges we haven't mentioned) on the table.

The same is true with views, except that CREATETAB is not
needed, and ALTER is not applicable.

3. A privilege can be granted to an authorization ID that does not
already have it by the SQL GRANT statement

a) This has the following general form:

GRANT privilege ON object TO recipient

PROJECT BUT DO NOT DEMO cut and paste version

Example: to give the user "aardvark" authority to look at the
data in table "foo" the following statement would be used:

grant select on foo to user aardvark  

 

PROJECT BUT DO NOT DEMO cut and paste version

45

Another example: grants in library database creation code

b) So who has the right to grant privileges on an object?

(1)A holder of SYSADM or DBADM on the instance or
database.

(2)The owner (creator) of the object.

(3)The holder of CONTROL privilege on that object.

(4)The grant statement for table-level privileges includes a
with grant option clause which allows the recipient of a
particular privilege on a particular object to grant the same
privilege to others.

c) Of course, there are often objects which every person (who has
the ability to connect to the database) may be entitled to access.
Explicitly granting privileges to each user is painful to say the
least, and breaks down if a user is added after privileges are
granted. It also makes the storage of privilege information in
the system tables unwieldy, to say the least.

For this reason, the grant statement allows privileges to be
granted to a group or to everyone (public), as well as to an
individual user.

Example: Let anyone who can connect to the database see the
content of table foo:

grant select on foo to public  
 
PROJECT BUT DO NOT DEMO cut and paste version

This translates into a single entry in the system catalog that
grants select access to all users.

46

F. Revoking of Authority

1. The granter of a privilege may withdraw it by using the SQL
REVOKE statement. Note, though, that if the same person has
been granted a given privilege by two grantors, then if one revokes
the privilege it will still remain in force.

(This forms the basis of a security loophole in some SQL systems.
If user A grants access to some object to user B with grant option,
then user B can conspire with user C to retain that access even if
user A chooses to withdraw it, as follows: User B grants access to
user C with grant option, then user C grants access back to user B.
The resulting loop in the grants prevents some implementations
from revoking the grant if A now tries to revoke the access from
B.)

2. Db2 handles this somewhat differently - to revoke a privilege, one
needs to have SYSADM or DBADM authority, or CONTROL
authority on the object in question - i.e. the original grantor of the
privilege is not an issue. However, it is still possible that if A
grants some privilege to B, who then grants it to C (both with grant
option), and A revokes the privilege from B, C can give it back to
B!

G. Another use for a view is to give very fine-grained access control to a
table. Sometimes, a given individual must be allowed to see to only a
portion of a table - e.g.

1. A given user may be allowed to only see certain columns. For
example, in a personnel database most users would be prohibited
from seeing the salary column.

a) Recall that there is no "SELECT" privilege at the column level.

b) Instead, a view can be used.

47

Example: The account_owners view created in the examples
we did for the introductory lecture only showed the names of
account owners - not their balances. (Demo using intro on my
machine)

create view account_owners as  

select owner, address  
from accounts;  

 
PROJECT

DEMO

2. A given user may be allowed to see only certain rows.

Example: the own_accounts view in the examples we did for the
introductory lecture only one to see his/her own accounts.

create view own_accounts as  

select *  
from accounts  
where upper(owner) = user;  

 
PROJECT

The query used in defining the view must have a "where" clause
that grants access to a row based on correlation between some
value(s) in the row and the identify of the person accessing the
view.

DEMO

a. Show all accounts when connected as db2inst1

b. Try to show all accounts when connected as aardvark; then
show view

48

3. In order to use a view to limit access to certain columns or rows of
a table.

a) The creator of a view must have suitable access to the
underlying table (e.g. SELECT authority.)

b) Others may be given access to data through the view, even
though they don't have direct access to the underlying table(s).

(1)This is done by giving SELECT authority on the VIEW.

(2)Now, the DBMS checks two SELECT privileges when a
view is accessed: the authority of the accessor to access the
view, and the authority of the creator of the view to access
the underlying tables.

49

