
CS122 Lecture: Exceptions

Last revised April 3, 2017

Objectives:

1. Introduce the concepts of program robustness and reliability
2. Introduce exceptions
3. Differentiate between exception throwers, catchers, and propagators

Materials:

1. Online Java documentation to project
2. ExceptionsDemo1 and ExceptionsDemo2. to project, demonstrate
3. Modified ExceptionDemo1.java - showing effect of not catching an

unchecked exception
4. Throwable type hierarchy to project.

I. Robustness and Reliability of Programs

A. It is generally desirable that software exhibit two distinct, but related
characteristics:

1. We say that a program is reliable if its output is consistently
correct for any legitimate input.

2. We say that a program is robust if it can handle illegitimate input
and/or other external failures in a reasonable way

Example: consider a program whose task it is to calculate the
square root of a number that the user inputs.

a) We say that it is reliable if, whenever it is given a number >= 0
(and within the range of the double data type) it produces the
correct square root, accurate to the number of decimal places
used for the double type.

1

b) We say that it is robust if it does something reasonable (e.g.
pops up a dialog informing the user of the problem) whenever
its input is a malformed number (typing “O” instead of “0”) or
is negative or is greater than the maximum value for a double.

3. Note the relationship between these concepts: a reliable program
does not produce incorrect results without complaint (e.g.
outputting 1000 if the user inputs -1); but if it is not robust it may
crash in such a case, rather than failing gracefully.

4. Notice that reliability is primarily concerned with avoiding internal
errors; robustness is primarily concerned with coping gracefully
with external errors.

B. Producing robust and reliable software requires a great deal of care
and clear thinking. Today, we will talk about a tool found in Java
(and many modern programming languages) that can help in doing so:
the exception mechanism.

II. Exceptions

A. Consider the various kinds of things that can go wrong outside a
program’s control.

ASK

1. The program’s user may input data that is malformed or
inconsistent with the program’s requirements.

2. An attempt to access data on an external storage medium (e.g. a
disk) may fail due to:

a) Attempting to access a non-existent file.

b) Some violation of the file protection mechanism

c) Attempting to perform an operation that is inherently
impossible (e.g. writing to an ordinary CD)

2

d) Attempting to read past the end of a file.

e) Attempting to write when the storage medium is full.

f) Various hardware problems.

3. Another computer system with which the program communicates
over a network may be inaccessible, or may fail during the course
of an interaction.

4. etc.

B. To provide for such contingencies, Java utilizes the notion of
“throwing an exception”.

1. An exception is a special kind of object (belonging to the class
java.lang.Exception or a subclass of it) that encapsulates
information about something that has gone wrong - generally a
message and sometimes other information as well.

2. A method that detects an anomaly may “throw” an exception. For
example, a statement like the following may appear in a method
that attempts to establish a network connection to another system,
but is unable to contact it
throw new ConnectException("Unable to contact ...");

(the class ConnectException is defined in the package
java.net. Like most exception classes, its constructor takes as a
parameter a message that describes the cause of the exception)

3. Actually, most exceptions are thrown by classes in the Java API,
though it is possible for a program to create and throw its own
exceptions as well.

SHOW online documentation for the parseDouble() method of
class java.lang.Double. Note that it can throw a
NumberFormatException if the number it is asked to parse is
malformed.

3

4. Note that an exception is thrown by the method that detects an
exception. Usually, this method does not know how to handle the
exception.

Example: if the parseDouble() method of class
java.lang.Double is given a String parameter that does not
represent a legitimate number, it has no knowledge of what to do
to ask the user to enter a new one. Perhaps the value is coming
from a text field in a GUI, or from console input, or perhaps its
read from a file. All that the method can do is detect that
something has gone wrong and expect that object that called it to
do something appropriate.

5. The other end of the process of throwing an exception is “catching
an exception.”. Generally speaking, the method that knows how to
handle an exception is the one that wants to catch it and do
something about it.

Example: A program that illustrates some simple uses of
exceptions: ExceptionsDemo1:

RUN

Demonstrate with a legitimate value, "two", and -1

6. PROJECT CODE

a) If the user enters a malformed number, parseDouble() will
throw a NumberFormatException. That causes computation
within the try block to immediately terminate (i.e. no attempt
is made to validate the value or calculate the square root), and
control goes immediately to the catch block, where the a
message is printed.

4

b) If the user enters a negative number, then the throw new
ArithmeticException() statement is executed. Once again,
control goes to the catch block, where a message is printed,
again skipping the square root calculation.

(1)Note that it is possible for Java code you write to explicitly
throw an exception.

(2)Actually, a throw statement just like this appears in the code
for the parseDouble method of java.lang.Double.

c) Once the user enters a legitimate value (hopefully the first
time!), the code to actually calculate and display the square root
is executed.

C. Sometimes, there are other methods between the method thrower
(which detected the problem) and the exception catcher (which knows
how to take corrective action.) The intervening methods are called
exception propagators.

Example: ExceptionsDemo2.

DEMO

PROJECT Code for evaluate() method

1. evaluate() throws an arithmetic exception if division by zero is
attempted. (Note: Java allows division by zero for doubles,
because it has an internal representation for infinity! So we have
to throw an exception explicitly in this case.)

2. evaluate() propagates a NumberFormat exception if either of the
numbers the user typed is malformed.

5

D. Thus, with regard to a particular exception, a given method may be

1. The thrower of the exception - i.e. it detects and reports the
problem, but is not able to handle it itself (e.g. division by 0 in the
above example)

2. A propagator of the exception - i.e. it passes on exception
information from methods it calls to the method that calls it (e.g.
NumberFormat in the above example)

3. A catcher of the exception - i.e. it knows how to handle the
exception appropriately (e.g. the ActionListener in
ExceptionsDemo2)

4. It is possible for a method to be both the thrower and the catcher of
some exception. (e.g. the ActionListener in ExceptionsDemo1).

E. In general, the Java compiler enforces the following constraints:

1. A method that may be a thrower of a given exception - but which
does not itself catch it - must declare this fact via a throws clause
in its prototype:

somemethod(---) throws <type of exception>

2. A method that is a propagator of a given exception must declare
that fact in the same way.

3. A method that calls a method that declares that it throws a certain
exception (a thrower or a propagator) must either:

a) Be itself a propagator of that exception

b) Be a catcher of that exception

6

4. The combined effect of the above is that every exception that can
be thrown is caught by someone - which, in turn, helps to ensure
robustness of programs.

III.Errors and Unchecked Exceptions

A. There are, two giant “loopholes” in the Java compiler’s enforcement
of these rules.

The following is part of the hierarchical structure of “throwable”
objects

java.lang.
Throwable

java.lang.
Error

java.lang.
Exception

java.lang.
Runtime
Exception

various kinds
of “checked”
exceptions

various kinds
of “unchecked”
exceptions

:

Note that any object that is thrown by a throw statement must belong
to a subclass of Throwable.

1. The class Error and its subclasses represent severe problems that
should not be caught. The following statement appears in the Java
API documentation: “An Error is a subclass of Throwable that

7

indicates serious problems that a reasonable application should
not try to catch.” For this reason, the Java compiler does not
require a method that throws an Error to declare that fact via a
throws clause. This, in turn, means that any method that calls
another method might itself end up being a propagator of an
Error, without having to declare that fact.

2. The class RuntimeException and its subclasses represent
“unchecked exceptions” for which the compiler does not require a
throws declaration either. The rationale for this is that these
represent problems that are so pervasive that practically every
method would have to declare them, which would end up littering
the code and obscuring the checked exceptions.

It should be noted that this category includes some types of
exceptions that one might wish were checked exceptions - for
example NumberFormatException is unchecked, though some
methods that throw it do declare it even though they are not
required to - e.g. Double.parseInt.

Example: Show ModifiedExceptionDemo1.java, which deletes the
code to catch a NumberFormatException. Note that it still
compiles - because the exception is an unchecked exception.
Show what happens if a bad number is entered in this case. (Show
output on console as well.)

B. Nonetheless, most important kinds of exceptions do fall into the
category of checked exceptions. (Indeed, this category includes some
exceptions one might wish were not). And the Java compiler’s
enforcement of the rules regarding throwers, propagators, and
catchers of such exceptions does help to ensure that a programmer
will think about how to make a program robust in the face of the
errors they represent.

8

IV.Writing Robust Programs.

A. Accordingly, in order to write robust programs, you should proceed as
follows:

1. Anticipate the kinds of things that can go wrong due to external
forces (user error, hardware problems, etc.)

2. Be sure that an appropriate exception is thrown when such a
problem is detected. (In general, the methods of the standard java
libraries do this for you - but there are times when you might want
to code a throw statement yourself to handle a non-standard
problem such as a value that is too small or large.)

3. Be sure your code handles each exception properly.

a) A method that detects a problem, but does not itself know how
to fix it, and so throws an exception, should be declared as a
thrower of the exception.

b) For each problem that can occur, identify the code that is
capable of handling the exception appropriately, and
incorporate a try..catch block in that code, making it a
catcher of the exception.

c) If there are methods between the thrower and the catcher,
declare these methods as propagators.

4. Java enforces explicit declaration of throwers and propagators in
the case of checked exceptions. If the compiler complains about
failure to declare or catch an exception, think through why this is
happening and cope with the exception appropriately - don't just
put in throws declarations to satisfy the compiler without
understanding what's happening.

9

5. There will be times when you will want to explicitly provide for
handling of unchecked exceptions - even though the Java compiler
does not force you to - e.g. a NumberFormatException.

B. Examples in the Library

Where are exceptions used to produce more robust code in the Library
project?

ASK

1. LibraryDatabase throws exceptions in getPatron() and getCopy() if
the requested patron or copy does not exist.

2. CheckoutUseCase throws exceptions if an attempt is made to
check out a copy that is already out or on the list.

3. Several GUI components catch exceptions like these and report
them to the user via a dialog box.

10

